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Abstract

This paper presents our work in the WMT
2020 Word and Sentence-Level Post-editing
Effort Quality Estimation (QE) Shared Task.
Our system follows standard Predictor-
Estimator architecture, with a pre-trained
Transformer as the Predictor, and specific
classifiers and regressors as Estimators. We
integrate Bottleneck Adapter Layers in the
Predictor to improve the transfer learning
efficiency and prevent from over-fitting. At
the same time, we jointly train the word- and
sentence-level tasks with a unified model with
multitask learning. Pseudo-PE assisted QE
(PEAQE) is proposed, resulting in significant
improvements on the performance. Our
submissions achieve competitive result in
word/sentence-level sub-tasks for both of
En-De/Zh language pairs.

1 Introduction

Quality Estimation (QE) assesses the translation
quality of machine translation (MT) system output
when ground truth reference is not available (Spe-
cia et al., 2013, 2018). For the word-level QE task,
participants are required to tag tokens and gaps of
the translation output from an unknown MT sys-
tem with OK and BAD, as well as tokens in the
source with the same tags. The result is measured
by Matthews Correlation Coefficient (MCC). For
the sentence-level task, participants are required to
predict the Human Translation Error Rate (HTER)
scores of the machine translation outputs and the
result is evaluated in terms of the Pearson’s corre-
lation coefficient.

Our team participates in some of the sub-tasks
in two language pairs (En-De and En-Zh) (Specia
et al., 2020). With regard to the En-De track, at
word-level, our model achieves the MCC score
of 0.5828 on the target side, and 0.5234 on the
source side; at sentence-level, our model ranks the

first place with a Pearson R score of 0.7583. With
regard to the En-Zh track, we only submit the target
side of word-level sub-task, and achieves a MCC
score of 0.5872.

Our system is implemented with fairseq (Ott
et al., 2019) (for En-De track) and THUMT (Zhang
et al., 2017) (for En-Zh track). We extend the origi-
nal Transformer (Vaswani et al., 2017) model to fit
the QE task, and leverage transfer learning to fine-
tune the model with the task specific dataset (Dai
and Le, 2015; Howard and Ruder, 2018; Radford
et al., 2018). The contributions of our work are as
follows:

• We follow the Predictor-Estimator (Kim and
Lee, 2016; Kim et al., 2017; Wang et al., 2018;
Li et al., 2018; Kepler et al., 2019) architecture
and build a unified QE model based on the
standard Transformer MT model.

• Bottleneck Adapter Layers (Houlsby et al.,
2019; Yang et al., 2020) are integrated into
the model for efficient transfer learning.

• We propose the Pseudo-PE assisted QE
(PEAQE) method which effectively improve
the performance.

The architecture of our model is shown in Figure
1.

2 Task Description

A more detailed description of the word- and
sentence-level QE tasks is given in this section.

2.1 Word-Level
Word-level QE estimates the translation quality
by producing a sequence of tags for both source
and target. For target sentences, both tokens and
gaps are required to be tagged with OK or BAD,
while for source sentences, only tokens are tagged
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Figure 1: This figure shows the architecture of our
model, where SRC and Pseudo-PE are concatenated
as the encoder input, a copy of SRC and MT are con-
catenated as the decoder input. The output feature are
passed through four linear layers to make prediction for
four tasks.

with OK or BAD. This is usually modelled as a
sequential labelling problem. The tag of token in-
dicates whether the word is correctly translated or
not, while the tag of gap indicates whether one or
more words are missing here. The number of total
tags for each MT sentence is 2N + 1, where N is
the number of tokens in the sentence.

The evaluation metrics of the word-level task
is the Matthews Correlation Coefficient (MCC),
an appropriate measurement for unbalanced labels.
MCC is defined as follows:

S =
TP + FN

N

P =
TP + FP

N

MCC =
TP
N − SP√

SP (1− S)(1− P )
, (1)

where TP , TN , FP and FN represent for true
positives, true negatives, false positives and false
positives respectively; and N is the number of in-
stance (Fonseca et al., 2019).

2.2 Sentence-Level
The sentence-level QE predicts the Human Trans-
lation Error Rate (HTER) (Specia et al., 2018) of
given translation outputs. HTER is an edit-distance
measure, calculating the ratio between the num-
ber of edits (insertions/deletions/replacements) re-

Attributes En-De En-Zh

# Instance 7,000 7,000
# SRC Token 11,4980 115,585
# MT Token 112,342 120,015
% MT Token BAD 28.15 54.33
% MT Gap BAD 4.60 8.04
% SRC Token BAD 26.95 53.60
BLEU (MT, PE) 49.40 30.40
µ(HTER) 0.3181 0.6280
σ(HTER) 0.2017 0.2040

Table 1: The statistics of the training set for both lan-
guage pairs.

quired and the reference translation length, namely
HTER = (Insertions + Delations + Replacement) /
Reference Words. In the QE task, where references
are not available, HTER is roughly an estimation.
As HTER is a real value ranging from 0 to 1, it can
be modeled as a regression task. The evaluation
metrics of the sentence-level task is the Pearson
correlation coefficient.

3 Dataset

The dataset contains 7,000 sentences for the train-
ing set, 1,000 for the dev and 1,000 for the test.
Except from tags and HTER scores (labels), the
dataset also provides post-edit (PE) text, as the ref-
erence for generating QE labels. Note that this data
is also used in the Automatic Post Editing task in
WMT 2020. Detailed statistics of the dataset is
listed in Table 1, with some metrics of the source
(SRC) and translation (MT). The proportion of
BAD tags agains OK tags is imbalanced, especially
for Gap tags.

Apart from the brief descriptive statistics listed
in the table, our in-depth investigation on the pro-
vided dataset unveils some interesting findings:

• Different from the dataset in WMT 2019 QE
task (Fonseca et al., 2019), which is sampled
from IT domain, the dataset this year is col-
lected from Wikipedia. Therefore, mixing
data from previous years may not help to im-
prove this year’s performance.

• The BLEU score (Papineni et al., 2002) for
2020 dataset is significantly lower than that
of 2019, indicating much more operations are
required to edit the translation outputs into
the references. As a result, the distribution
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of labels for 2020 dataset is changed as well
when comparing with that of last year.

Unlike a standard translation task, where vari-
ous data augmentation techniques, such as back-
translation (Sennrich et al., 2016), are available,
QE task can hardly be improved with data augmen-
tation, as it requires unbiased and high-quality PEs
to generate tags and HTER scores. Meanwhile, the
change of dataset domain makes it impossible to en-
large the dataset by incorporating the dataset of last
year. Facing this challenging task, we propose the
PEAQE method, which will be further explained in
details in the following section.

4 Model

4.1 Unified QE Model

Our model follows the Predictor-Estimator (Kim
et al., 2017; Kepler et al., 2019) architecture. The
Predictor is considered as a feature extractor, which
can be a pre-trained language model (LM) or a
translation model. In our implementation, we use
the standard Transformer without the causal mask
as the Predictor, which is pre-trained with dataset
in news translation task of WMT 2019 En-De and
WMT 2020 En-Zh. The Estimator can be task spe-
cific classifiers which map the extracted features
into the target space, and can be modelled by sev-
eral fully connected layers. We use a unified QE
model to solve both word- and sentence-level tasks
by building three classifiers and a regressor to make
prediction on SRC tag, MT token tag, MT gap tag
and HTER score, respectively.

We define the encoder and decoder of the Trans-
former as functions f and g; SRC and MT text as
X and Y ; tags of SRC, MT token and MT gap as
Vx, Vy, Vg; and HTER score as Vh. The represen-
tation HX and HY are obtained by passing the X
and Y into the encoder and decoder respectively:

HX = f(X) (2)

HY = g(Y,HX). (3)

For a translation model, we usually append and
prepend the special token 〈s〉 to the SRC and TGT
text. Here we follow the same rule and thereby the
lengths of SRC and MT embeddings areM+1 and
N + 1 respectively. Meanwhile, we append and
prepend a special label 〈pad〉 to the original label
sequence during training, but loss of the padded
label is not computed. All predictions are obtained

by performing specific transformations φ· on the
hidden stats:

V̂x = φx(HX) (4)

V̂y = φy(HY ) (5)

V̂g = φg(HY ) (6)

V̂h = φh(hY,0). (7)

Note that the regressor φh only takes the embed-
ding of the MT’s first token to make predictions,
similar to the usage of [CLS] in BERT (Devlin
et al., 2018).

For all classification tasks, we use weighted
cross entropy as the loss function, and the weight
is calculated as follows: wi =

∑
|Ci|
|Ci| , which is

the inverse of the proportion of the instance with
class Ci. We use weighted cross entropy because
labels are highly imbalanced, and the loss should
be manipulated with the weight. For sentence-level
QE, we use mean squared error (MSE) as the loss
function, which is quite intuitive.

The model is trained under the multi-task learn-
ing framework by summing up the loss of all sub-
tasks with specific weights:

L =λh

√
(V̂h − Vh)2 (8)

−
∑

τ∈{x,y,g}

λτ logP (Vτ |X,Y ),

where {x, y, g} represents for classification tasks
and h represents for regression task, and λ is the
weight of loss for a specific task. Although the
multi-task setting could improve the overall perfor-
mance, the evaluation is performed separately, it
means we can train models that are optimized for
the specific task, which can be achieved by giving
larger weight to the loss of that task.

4.2 Bottleneck Adapter Layer
As mentioned in the previous section, the provided
training set is relatively small, make the model
to be easily over-fitted if all weights are updated.
Therefore, we decide to integrate the Bottleneck
Adapter Layers (BAL) (Houlsby et al., 2019) while
keeping parameters of original Transformer fixed
(Yang et al., 2020).

BAL can be easily implemented with two fully-
connected layers with a non-linear activation, and
is embedded into the Transformer with residual
connections after the self-attention layer and the
FFN layer, respectively.
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In the experiment, we find that the bottle with a
“thick” neck (”like FFN layers in the Transformer
with higher dimension in the middle part”) could
further improve the performance without seriously
sacrificing training efficiency. More specifically,
we tested three neck sizes, i.e. thin, same and thick.
The thin and same neck basically reaches 97%-
99% of performance compared with training the
full Transformer without using BAL, which yields
the same result with (Houlsby et al., 2019). By
increasing the parameter size of BALs, we find
that the performance also increases linearly, finally
reaching the pick of 104% of the baseline perfor-
mance with the neck to have 2 × hidden size.

4.3 Pseudo-PE Assisted QE
QE tags can be generated with post-edits (PEs)
or reference (REF) of MT. In this dataset, PE is
provided, and QE tags are generated accordingly, if
PE can be directly used to assist the model learning
QE tags, the training efficiency will be dramatically
increased. Inspired by the Pseudo-PE technique
proposed in the (Kepler et al., 2019), we hope to
fully leverage PE, for example, integrating them
as part of the network input. However, for the
test set, where PEs are not available, we must find
an alternative approach. So, we made following
assumption:

δ(MT,REF) ≈ δ(MT,PE) + δ(PE,REF), (9)

where δ is any distance measurement function. In
the equation, PE is regarded as an intermediate
node between MT and REF. Under such assump-
tion, if we could find any translation that is better
than MT, although not as good as PE, the transla-
tion can also be used as a substitute of PE, denoted
as PE’. we call this method as Pseudo-PE assisted
QE (PEAQE). Finding PE’ is relatively easy when
we could access unconstrained resources. Using an
APE system or a robust online translation system
to produce better translation outputs are two feasi-
ble approaches. After comparing the BLEU scores
of the training set between many online transla-
tion services and an APE system trained by us,
we decide to use Google Translate outputs as the
Pseudo-PE. The BLEU score for official MTs and
Google MTs in the dev set are 50.9/ 67.8 for En-De,
and 22.62/41.77 for En-Zh, indicating that Google
MT outputs, with a high quality, could be used as
Pseudo-PEs in the testing phase.

To leverage PEs, we simply concatenate them
with the SRCs and encoded them via an encoder.

We find that using the features of SRC text from the
encoder could not produce acceptable predictions.
Therefore, we decide to concatenate SRCs with
MTs again on the decoder side, and use the decoder
to extract features for both of them. More formally:

H[X;Z] = f([X;Z]) (10)

H[X;Y ] = g([X;Y ],H[X;Z]), (11)

where Z represents for official PEs (training) or
Pseudo-PEs (testing). Finally, the hidden state
H[X;Y ] is sliced with the max length of X , and
recover back to HX and HY , which are used as in
the original model. Official PE and Pseudo-PE can
be used respectively during training and testing to
assist the model to make better prediction.

5 Experiment

Our experiments of all sub-tasks for En-De and part
of sub-tasks for En-Zh trak are performed on the
WMT 2020 dataset. The model without Pseudo-PE
assistance is considered as the baseline.

5.1 Experimental Settings

Our models are implemented with fairseq (Ott
et al., 2019) and THUMT (Zhang et al., 2017).
The fairseq version mainly deals with En-De tasks
thanks to the pre-trained models trained in WMT
2019 news translation task. The En-Zh pre-trained
model is implemented with THUMT and is trained
in WMT 2020 news translation task by our team.
For the En-De model, input and output embeddings
are shared, therefore SRC and TGT text can be
conveniently concatenated. For the En-Zh model,
vocabulary is not shared, when creating the input
sequence, we firstly pass tokens of English (SRC)
and Chinese (MT and PE) with specific word em-
bedding layer respectively, and than, concatenate
the hidden states of them accordingly. The number
of parameters of the En-De and En-Zh models are
270M and 353M, respectively. The batch size used
for training is 32. We use Adam (Kingma and Ba,
2015) to optimize parameters with learning rate of
1e-4 without any scheduler. Note that when dealing
with labels of sub-tokens, for each token, we only
assign the first sub-token with the label and sub-
sequent sub-tokens are assigned with the dummy
pad labels, which keeps the distribution of labels
unchanged. Our QE models are trained on a Nvidia
Tesla V100 GPU, and converge within 5 epochs.
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Lang Model MCC-MT MCC-SRC Pearson-R

En-De (Dev)
Baseline 44.50 32.46 55.26
+ PEAQE 60.05 45.31 71.69
+ Ensemble (14) 64.70 51.17 73.33

En-De (Test) + Ensemble (14) 58.28 52.34 75.83

En-Zh (Dev)
Baseline 43.06 - -
+ PEAQE 57.90 - -
+ Ensemble (5) 59.28 - -

En-Zh (Test) + Ensemble (5) 58.72 - -

Table 2: The experimental results of our model, where the baseline model is introduced in section 4.1. The
evaluation results of the test set are from the official leader-board.

5.2 Experimental Results

Table 2 shows the experimental results on the dev
and test sets. The performance of the baseline
model is relatively poor. By leveraging PEAQE, the
model achieves much better performance, demon-
strating that integrating PE directly into the QE
model could effectively assist the prediction. With
PEs, the model can receive stronger supervision
signal and is actually learning the procedure done
by the tagging script, making the entire learning
process easier. However, we clearly understand that
the performance of PEAQE strongly depends on
the quality of Pesudo-PEs, which becomes another
problem that should be solved in the future.

Here is another interesting finding during our
experiment. Initially, we also performed experi-
ments with mBERT (Devlin et al., 2018) and XLM
(Conneau and Lample, 2019) but not producing
desirable results. The reason might be size of the
dataset. We find that performing transfer learning
with pre-trained NMT model on the limited size
QE dataset is more effective than other pre-trained
multilingual LMs. We consider that NMT models
are naturally fit for MT related tasks because of the
learned prior between bilingual text, which might
not be captured by multilingual LMs where text in
different languages are trained independently.

6 Conclusion

We present our works for WMT 2020 QE shared
task. The experimental results demonstrate that per-
forming transfer learning with a pre-trained NMT
model on the QE task is effective. Compared to
only using SRC and MT text, we propose PEAQE
which could significantly improve the performance
of the model. But generating reliable Pseudo-PEs

that are compatible with QE tasks remains a prob-
lem that would be investigated in our future works.
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and André FT Martins. 2020. Findings of the wmt
2020 shared task on quality estimation. In Proceed-
ings of the Fifth Conference on Machine Translation:
Shared Task Papers.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality Estimation for Machine
Translation. Synthesis Lectures on Human Lan-
guage Technologies. Morgan & Claypool Publish-
ers.

Lucia Specia, Kashif Shah, José GC De Souza, and
Trevor Cohn. 2013. QuEst-A translation quality es-
timation framework. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 79–84.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, \Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jiayi Wang, Kai Fan, Bo Li, Fengming Zhou, Boxing
Chen, Yangbin Shi, and Luo Si. 2018. Alibaba sub-
mission for WMT18 quality estimation task. In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 809–815.

Hao Yang, Minghan Wang, Ning Xie, Ying Qin, and
Yao Deng. 2020. Efficient transfer learning for qual-
ity estimation with bottleneck adapter layer. In Pro-
ceedings of the 22nd Annual Conference of the Eu-
ropean Association for Machine Translation, EAMT
2020, Lisbon, Portugal, 3 - 5 November, 2020, pages
29–34.

Jiacheng Zhang, Yanzhuo Ding, Shiqi Shen, Yong
Cheng, Maosong Sun, Huan-Bo Luan, and Yang Liu.
2017. THUMT: an open source toolkit for neural
machine translation. CoRR, abs/1706.06415.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.2200/S00854ED1V01Y201805HLT039
https://doi.org/10.2200/S00854ED1V01Y201805HLT039
https://eamt2020.inesc-id.pt/proceedings-eamt2020.pdf
https://eamt2020.inesc-id.pt/proceedings-eamt2020.pdf
http://arxiv.org/abs/1706.06415
http://arxiv.org/abs/1706.06415

