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Abstract

This paper presents the team TransQuest’s
participation in Sentence-Level Direct
Assessment shared task in WMT 2020. We
introduce a simple QE framework based on
cross-lingual transformers, and we use it to
implement and evaluate two different neural
architectures. The proposed methods achieve
state-of-the-art results surpassing the results
obtained by OpenKiwi, the baseline used in
the shared task. We further fine tune the QE
framework by performing ensemble and data
augmentation. Our approach is the winning
solution in all of the language pairs according
to the WMT 2020 official results.

1 Introduction

The goal of quality estimation (QE) systems is
to determine the quality of a translation without
having access to a reference translation. This
makes it very useful in translation workflows
where it can be used to determine whether an
automatically translated sentence is good enough
to be used for a given purpose, or if it needs to
be shown to a human translator for translation
from scratch or postediting (Kepler et al., 2019).
Quality estimation can be done at different levels:
document level, sentence level and word level (Ive
et al., 2018). This paper presents TransQuest, a
sentence-level quality estimation framework which
is the winning solution in all the language pairs in
the WMT 2020 Sentence-Level Direct Assessment
shared task (Specia et al., 2020).

In the past, high preforming quality estimation
systems such as QuEst (Specia et al., 2013)
and QuEst++ (Specia et al., 2015) were heavily
dependent on linguistic processing and feature
engineering. These features were fed into
traditional machine-learning algorithms like
support vector regression and randomised decision
trees (Specia et al., 2013), which then determined

the quality of a translation. Even though, these
approaches provide good results, they are no longer
the state of the art, being replaced in recent years
by neural-based QE systems which usually rely on
little or no linguistic processing. For example the
best-performing system at the WMT 2017 shared
task on QE was POSTECH, which is purely
neural and does not rely on feature engineering at
all (Kim et al., 2017).

In order to achieve high results, approaches
such as POSTECH require extensive pre-training,
which means they depend on large parallel
data and are computationally intensive (Ive
et al., 2018). TransQuest, our QE framework
removes this dependency on large parallel data
by using crosslingual embeddings (Ranasinghe
et al., 2020) that are already fine-tuned to reflect
properties between languages (Ruder et al., 2019).
Ranasinghe et al. (2020) show that by using them,
TransQuest eases the burden of having complex
neural network architectures, which in turn entails
a reduction of the computational resources. That
paper also shows that TransQuest performs well in
transfer learning settings where it can be trained
on language pairs for which we have resources and
applied successfully on less resourced language
pairs.

The remainder of the paper is structured as
follows. The dataset used in the competition
is briefly discussed in Section 2. In Section 3
we present the TransQuest framework and the
methodology employed to train it. This is followed
by the evaluation results and their discussion in
Section 4. The paper finishes with conclusions and
ideas for future research directions.

2 Dataset

The dataset for the Sentence-Level Direct
Assessment shared task is composed of data
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extracted from Wikipedia for six language pairs,
consisting of high-resource languages English-
German (En-De) and English-Chinese (En-Zh),
medium-resource languages Romanian-English
(Ro-En) and Estonian-English (Et-En), and low-
resource languages Sinhala-English (Si-En) and
Nepalese-English (Ne-En), as well as a a Russian-
English (Ru-En) dataset which combines articles
from Wikipedia and Reddit (Specia et al., 2020).
Each language pair has 7,000 sentence pairs
in the training set, 1,000 sentence pairs in the
development set and another 1,000 sentence pairs
in the testing set. Each translation was rated
with a score between 0 and 100 according to
the perceived translation quality by at least three
translators (Fomicheva et al., 2020). The DA scores
were standardised using the z-score. The quality
estimation systems have to predict the mean DA
z-scores of the test sentence pairs (Specia et al.,
2020).

3 Methodology

This section presents the methodology used to
develop our quality estimation methods. Our
methodology is based on TransQuest our recently
introduced QE framework (Ranasinghe et al.,
2020). We first briefly describe the neural network
architectures TransQuest proposed, followed by the
training details. More details about the framework
can be found in (Ranasinghe et al., 2020).

3.1 Neural Network Architectures

The TransQuest framework that is used to
implement the two architectures described here
relies on the XLM-R transformer model (Conneau
et al., 2020) to derive the representations of the
input sentences (Ranasinghe et al., 2020). The
XLM-R transformer model takes a sequence of no
more than 512 tokens as input, and outputs the
representation of the sequence. The first token of
the sequence is always [CLS] which contains the
special embedding to represent the whole sequence,
followed by embeddings acquired for each word
in the sequence. As shown below, proposed neural
network architectures of TransQuest can utilise
both the embedding for the [CLS] token and the
embeddings generated for each word (Ranasinghe
et al., 2020). The output of the transformer (or
transformers for SiameseTransQuest described
below), is fed into a simple output layer which
is used to estimate the quality of translation. The

way the XLM-R transformer is used and the output
layer are different in the two instantiations of the
framework. We describe each of them below. The
fact that TransQuest does not rely on a complex
output layer makes training its architectures much
less computationally intensive than alternative
solutions. The TransQuest framework is open-
source, which means researchers can easily
propose alternative architectures to the ones
TransQuest presents (Ranasinghe et al., 2020).

Both neural network architectures presented
below use the pre-trained XLM-R models released
by HuggingFace’s model repository (Wolf et al.,
2019). There are two versions of the pre-trained
XLM-R models named XLM-R-base and XLM-
R-large. Both of these XLM-R models cover
104 languages (Conneau et al., 2020), potentially
making it very useful to estimate the translation
quality for a large number of language pairs.

TransQuest implements two different neural
network architectures (Ranasinghe et al., 2020)
to perform sentence-level translation quality
estimation as described below. The architectures
are presented in Figure 1.

1. MonoTransQuest (MTransQuest): The
first architecture proposed uses a single
XLM-R transformer model and is shown
in Figure 1a. The input of this model
is a concatenation of the original sentence
and its translation, separated by the [SEP]
token. TransQuest proposes three pooling
strategies for the output of the transformer
model: using the output of the [CLS] token
(CLS-strategy); computing the mean of all
output vectors of the input words (MEAN-
strategy); and computing a max-over-time of
the output vectors of the input words (MAX-
strategy) (Ranasinghe et al., 2020). The
output of the pooling strategy is used as the
input of a softmax layer that predicts the
quality score of the translation. TransQuest
used mean-squared-error loss as the objective
function (Ranasinghe et al., 2020). Similar
to Ranasinghe et al. (2020), the early
experiments we carried out demonstrated that
the CLS-strategy leads to better results than
the other two strategies for this architecture.
Therefore, we used the embedding of the
[CLS] token as the input of a softmax layer.

2. SiameseTransQuest (STransQuest): The
second approach proposed in TransQuest
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relies on the Siamese architecture depicted
in Figure 1b which has shown promising
results in monolingual semantic textual
similarity tasks (Reimers and Gurevych, 2019;
Ranasinghe et al., 2019). For this, we fed
the original text and the translation into
two separate XLM-R transformer models.
Similarly to the previous architecture, we
experimented with the same three pooling
strategies for the outputs of the transformer
models (Ranasinghe et al., 2020). TransQuest
then calculates the cosine similarity between
the two outputs of the pooling strategy.
TransQuest used mean-squared-error loss as
the objective function. Similar to Ranasinghe
et al. (2020) in the initial experiments
we carried out with this architecture the
MEAN-strategy showed better results than the
other two strategies. For this reason, we
used the MEAN-strategy for our experiments.
Therefore, cosine similarity is calculated
between the mean of all output vectors of the
input words produced by each transformer.

3.2 Training Details

We used the same set of configurations suggested
in Ranasinghe et al. (2020) for all the language
pairs evaluated in this paper in order to ensure
consistency between all the languages. This
also provides a good starting configuration for
researchers who intend to use TransQuest on a new
language pair. In both architectures, we used a
batch-size of eight, Adam optimiser with learning
rate 2e−5, and a linear learning rate warm-up over
10% of the training data. The models were trained
using only training data. Furthermore, they were
evaluated while training using an evaluation set
that had one fifth of the rows in training data. We
performed early stopping if the evaluation loss did
not improve over ten evaluation rounds. All of the
models were trained for three epochs. For some
of the experiments, we used an Nvidia Tesla K80
GPU, whilst for others we used an Nvidia Tesla
T4 GPU. This was purely based on the availability
of the hardware and it was not a methodological
decision.

3.3 Implementation Details

The TransQuest framework was implemented using
Python 3.7 and PyTorch 1.5.0. To integrate the
functionalities of the transformers we used the

version 3.0.0 of the HuggingFace’s Transformers
library. The implemented framework is available
on GitHub1.

4 Evaluation, Results and Discussion

This section presents the evaluation results of our
architectures and the fine tuning strategies that can
be used to improve the results. We first evaluate
the TransQuest framework with the default setting
(Section 4.1). Next we evaluate an ensemble setting
of TransQuest in Section 4.2. We finally assess the
performance of TransQuest with augmented data.
We conclude the section with a discussion of the
results.

The evaluation metric used was the Pearson
correlation (r) between the predictions and the
gold standard from the test set, which is the
most commonly used evaluation metric in WMT
quality estimation shared tasks (Specia et al., 2018;
Fonseca et al., 2019). We report the Pearson
correlation values that we obtained from CodaLab,
the hosting platform of the WMT 2020 QE shared
task. As a baseline we compare our results with the
performance of OpenKiwi as reported by the task
organisers (Specia et al., 2020).

4.1 TransQuest with Default settings

The first evaluation we carried out was for the
default configurations of the TransQuest framework
where we used the training set of each language
to build a quality estimation model using XLM-R-
large transformer model and we evaluated it on a
test set from the same language.

The results for each language with default
settings are shown in row I of Table 1. The
results indicate that both architectures proposed
in TransQuest outperform the baseline, OpenKiwi,
in all the language pairs. From the two
architectures, MTransQuest performs slightly
better than STransQuest.

As shown in Table 1, MTransQuest gained≈ 0.2-
0.3 Pearson correlation boost over OpenKiwi in all
the language pairs. Additionally, MTransQuest
achieves ≈ 0.4 Pearson correlation boost over
OpenKiwi in the low-resource language pair Ne-
En.

1TransQuest GitHub repository - https://github.
com/tharindudr/transQuest

https://github.com/tharindudr/transQuest
https://github.com/tharindudr/transQuest
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(a) MTransQuest architecture (b) STransQuest Architecture

Figure 1: Two architectures of the TransQuest framework.

Low-resource Mid-resource High-resource

Method Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh

I MTransQuest 0.6525 0.7914 0.7748 0.8982 0.7734 0.4669 0.4779
STransQuest 0.5957 0.7081 0.6804 0.8501 0.7126 0.3992 0.4067

II MTransQuest-base 0.6412 0.7823 0.7651 0.8715 0.7593 0.4421 0.4593
STransQuest-base 0.5773 0.6853 0.6692 0.8321 0.6962 0.3832 0.3975

III MTransQuest ⊗ 0.6661 0.8023 0.7876 0.8988 0.7854 0.4862 0.4853
STransQuest ⊗ 0.6001 0.7132 0.6901 0.8629 0.7248 0.4096 0.4159

IV MTransQuest ⊗ - Aug 0.6849 0.8222 0.8240 0.9082 0.8082 0.5539 0.5373
STransQuest ⊗ - Aug 0.6241 0.7354 0.7239 0.8621 0.7458 0.4457 0.4658

V OpenKiwi 0.3737 0.3860 0.4770 0.6845 0.5479 0.1455 0.1902

Table 1: Pearson (r) correlation between TransQuest algorithm predictions and human DA judgments. Best results
for each language (any method) are marked in bold. Rows I, II, III and IV indicate the different settings of
TransQuest, explained in Sections 4.1-4.3. OpenKiwi baseline results are in Row V.

4.2 TransQuest with Ensemble

Transformers have been proven to provide
better results when experimented with ensemble
techniques (Xu et al., 2020). In order to improve
the results of TransQuest we too followed an
ensemble approach which consisted of two steps.
We conducted these steps for both architectures in
TransQuest.

1. We train TransQuest using the pre-trained
XLM-R-base transformer model instead of
the XLM-R-large transformer model in the
TransQuest default setting. We report the
results from the two architectures from this
step in row II of Table 1 as MTransQuest-base
and STransQuest-base.

2. We perform a weighted average ensemble for
the output of the default setting and the output
we obtained from step 1. We experimented
on weights 0.8:0.2, 0.6:0.4, 0.5:0.5 on the
output of the default setting and output from
the step 1 respectively. Since the results
we got from XLM-R-base transformer model
are slightly worse than the results we got
from default setting we did not consider the
weight combinations that gives higher weight
to XLM-R-base transformer model results.
We obtained best results when we used the
weights 0.8:0.2. We report the results from the
two architectures from this step in row III of
Table 1 as MTransQuest ⊗ and STransQuest
⊗.
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As shown in Table 1 both architectures in
TransQuest with ensemble setting gained ≈ 0.01-
0.02 Pearson correlation boost over the default
settings for all the language pairs.

4.3 TransQuest with Data Augmentation

All of the languages had 7,000 training instances
that we used in the above mentioned settings
in TransQuest. To experiment how TransQuest
performs with more data, we trained TransQuest
on a data augmented setting. Alongside the
training, development and testing datasets, the
shared task organisers also provided the parallel
sentences which were used to train the neural
machine translation system in each language. In the
data augmentation setting, we added the sentence
pairs from that neural machine translation system
training file to training dataset we used to train
TransQuest. In order to find the best setting
for the data augmentation we experimented with
adding 1000, 2000, 3000, up to 5000 sentence pairs
randomly. Since the ensemble setting performed
better than the default setting of TransQuest, we
conducted this data augmentation experiment on
the ensemble setting. We assumed that the sentence
pairs added from the neural machine translation
system training file have maximum translation
quality.

Up to 2000 sentence pairs the results continued
to get better. However, adding more than 2000
sentence pairs did not improve the results. We
did not experiment with adding any further than
5000 sentence pairs to the training set since the
timeline of the competition was tight. We were
also aware that adding more sentence pairs with
the maximum translation quality to the training file
will make it imbalance and affect the performance
of the machine learning models negatively. We
report the results from the two architectures from
this step in row IV of Table 1 as MTransQuest
⊗-Aug and STransQuest ⊗-Aug.

This setting provided the best results for both
architectures in TransQuest for all of the language
pairs. As shown in Table 1 both architectures
in TransQuest with the data augmentation setting
gained ≈ 0.01-0.09 Pearson correlation boost
over the default settings for all the language
pairs. Additionally, MTransQuest ⊗-Aug achieves
≈ 0.09 Pearson correlation boost over default
MTransQuest in the high-resource language pair
En-De.

4.4 Error analysis

In an attempt to better understand the performance
and limitations of TransQuest we carried out
an error analysis on the results obtained on
Romanian - English and Sinhala - English.
The choice of language pairs we analysed was
determined by the availability of native speakers
to perform this analysis. We focused on the
cases where the difference between the predicted
score and expected score was the greatest. This
included both cases where the predicted score was
underestimated and overestimated.

Analysis of the results does not reveal very
clear patterns. The largest number of errors
seem to be caused by the presence of named
entities in the source sentences. In some cases
these entities are mishandled during the translation.
The resulting sentences are usually syntactically
correct, but semantically odd. Typical examples
are RO: În urmă explorărilor Căpitanului James
Cook, Australia s, i Noua Zeelandă au devenit
t,inte ale colonialismului britanic. (As a result of
Captain James Cook’s explorations, Australia and
New Zealand have become the targets of British
colonialism.) - EN: Captain James Cook, Australia
and New Zealand have finally become the targets of
British colonialism. (expected: -1.2360, predicted:
0.2560) and RO: O altă problemă importantă
cu care trupele Antantei au fost obligate să se
confrunte a fost malaria. (Another important
problem that the Triple Entente troops had to face
was malaria.) - EN: Another important problem
that Antarctic troops had to face was malaria.
(expected: 0.2813, predicted: -0.9050). In the
opinion of the authors of this paper, it is debatable
whether the expected scores for these two pairs
should be so different. Both of them have obvious
problems and cannot be clearly understood without
reading the source. For this reason, we would
expect that both of them have low scores. Instances
like this also occur in the training data. As a
result of this, it may be that TransQuest learns
contradictory information, which in turn leads to
errors at the testing stage.

A large number of problems are caused by
incomplete source sentences or input sentences
with noise. For example the pair RO:
thumbright250pxDrapelul cu fâs, iile ı̂n pozit,ie
verticală (The flag with strips in upright position) -
EN: ghtghtness 250pxDrapel with strips in upright
position has an expected score of 0.0595, but
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our method predicts -0.9786. Given that only
ghtghtness 250pxDrapel is wrong in the translation,
the predicted score is far too low. In an attempt to
see how much this noise influences the result, we
run the system with the pair RO: Drapelul cu fâs, iile
ı̂n pozit,ie verticală - EN: Drapel with strips in
upright position. The prediction is 0.42132, which
is more in line with our expectations given that one
of the words is not translated.

Similar to Ro-En, in Si-En the majority of
problems seem to be caused by the presence
of named entities in the source sentences. For
an example in the English translation: But the
disguised Shiv will help them securely establish
the statue. (expected: 1.3618, predicted: -
0.008), the correct English translation would be
But the disguised Shividru will help them securely
establish the statue.. Only the named entity
Shividru is translated incorrectly, therefore the
annotators have annotated the translation with a
high quality. However TransQuest fails to identify
that. Similar scenarios can be found in English
translations Kamala Devi Chattopadhyay spoke
at this meeting, Dr. Ann. (expected:1.3177,
predicted:-0.2999) and The Warrior Falls are
stone’s, halting, heraldry and stonework rather
than cottages. The cathedral manor is navigable
places (expected:0.1677, predicted:-0.7587). It is
clear that the presence of the named entities seem
to confuse the algorithm we used, hence it needs to
handle named entities in a proper way.

5 Conclusion

In this paper we evaluated different settings
of TransQuest in sentence-level direct quality
assessment. We showed that ensemble results
with XLM-R-base and XLM-R-large with
data augmentation techniques can improve the
performance of TransQuest framework.

The official results of the competition show that
TransQuest won the first place in all the language
pairs in Sentence-Level Direct Assessment task.
TransQuest is the sole winner in En-Zh, Ne-En and
Ru-En language pairs and the multilingual track.
For the other language pairs (En-De, Ro-En, Et-En
and Si-En) it shares the first place with another
system, whose results are not statistically different
from ours. The full results of the shared task can
be seen in Specia et al. (2020).

In the future, we plan to experiment more
with the data augmentation settings. We are

interested in augmenting the training file with
semantically similar sentences to the test set rather
than augmenting with random sentence pairs as we
did in this paper. As shown in the error analysis
in Section 4.4 the future releases of the framework
need to handle named entities properly. We also
hope to implement TransQuest in document level
quality estimation too.
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Findings of the WMT 2018 shared task on quality
estimation. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers,
pages 689–709, Belgium, Brussels. Association for
Computational Linguistics.

Lucia Specia, Gustavo Paetzold, and Carolina Scarton.
2015. Multi-level translation quality prediction with
QuEst++. In Proceedings of ACL-IJCNLP 2015
System Demonstrations, pages 115–120, Beijing,
China. Association for Computational Linguistics
and The Asian Federation of Natural Language
Processing.

Lucia Specia, Kashif Shah, Jose G.C. de Souza,
and Trevor Cohn. 2013. QuEst - a translation
quality estimation framework. In Proceedings of
the 51st Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 79–84, Sofia, Bulgaria. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, R’emi Louf, Morgan
Funtowicz, and Jamie Brew. 2019. Huggingface’s
transformers: State-of-the-art natural language
processing. ArXiv, abs/1910.03771.

Yige Xu, Xipeng Qiu, Ligao Zhou, and Xuanjing
Huang. 2020. Improving bert fine-tuning via
self-ensemble and self-distillation. arXiv preprint
arXiv:2002.10345.

https://doi.org/10.26615/978-954-452-056-4_116
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1613/jair.1.11640
https://doi.org/10.1613/jair.1.11640
https://doi.org/10.18653/v1/W18-6451
https://doi.org/10.18653/v1/W18-6451
https://doi.org/10.3115/v1/P15-4020
https://doi.org/10.3115/v1/P15-4020
https://www.aclweb.org/anthology/P13-4014
https://www.aclweb.org/anthology/P13-4014

