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Abstract

This paper describes the system submitted by

Papago team for the quality estimation task at

WMT 2020. It proposes two key strategies for

quality estimation: (1) task-specific pretrain-

ing scheme, and (2) task-specific data augmen-

tation. The former focuses on devising learn-

ing signals for pretraining that are closely re-

lated to the downstream task. We also present

data augmentation techniques that simulate the

varying levels of errors that the downstream

dataset may contain. Thus, our PATQUEST

models are exposed to erroneous translations

in both stages of task-specific pretraining and

finetuning, effectively enhancing their gener-

alization capability. Our submitted models

achieve significant improvement over the base-

lines for Task 1 (Sentence-Level Direct Assess-

ment; EN-DE only), and Task 3 (Document-

Level Score).

1 Introduction

With the widespread use of machine translation sys-

tems, there is a growing need to evaluate translated

results at low-cost. The task of quality estima-

tion (QE) addresses this issue, where the quality of

a translation is predicted automatically given the

source sentence and its translation. The estimated

quality can inform users about the reliability of the

translation, or whether it needs to be post-edited.

Previous QE systems generally include pretrain-

ing and finetuning steps, where the former step

involves masked language modeling (MLM) uti-

lizing large parallel corpora, with the expectation

that the models will learn cross-lingual relation-

ships (Kepler et al., 2019; Kim et al., 2019). The

models are, in turn, finetuned with task-specific

data. However, while the pretraining step involves

∗Equal contribution
† Work done during internship at Naver Corp.
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Figure 1: Overview of our approach for Task 1 and 3.

training data with near-perfect translations, low-

quality translations are only introduced during the

finetuning step.

In this work, we suggest two key strategies that

could alleviate this pretrain-finetune discrepancy

in QE tasks by: (1) adopting a task-specific pre-

training objective which is close to that of the

downstream task, and (2) generating abundant task-

specific erroneous sentence pairs and their learning

signals. Our approach, which is depicted in Fig-

ure 1, is motivated from BLEURT (Sellam et al.,

2020), where we extend their general approach to

the bilingual QE setting. Our submitted systems

achieve significant improvements in performance

over the baseline systems on WMT20 Shared Tasks

for QE (Specia et al., 2020): an absolute gain of

+35.2% in Pearson score for (Task 1) Sentence-

Level Direct Assessment (EN-DE), and +18.4% in

Pearson score for (Task 3) Document-Level Score.

2 Sentence-Level QE: Direct Assessment

The task of sentence-level QE for direct assessment

(DA) involves predicting the perceived quality of

the translation given the source and the translated

sentences.

Following the footsteps of the previous work
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on QE, our sentence-level system also utilizes the

pretrained multilingual language models such as

BERT (Devlin et al., 2018) and Cross-lingual Lan-

guage Model (XLM) (Conneau and Lample, 2019).

As the size of the training corpus for the QE task

is very limited (7K sentence pairs), it is crucial to

align these models closely to the task using more

data in the form of task-specific pretraining.

As opposed to pretraining the models on parallel

corpora using the standard MLM approach, we

pretrain the models in a multi-task setting using

learning signals and data that are arguably more

task-specific similar to Sellam et al. (2020).

2.1 Task-Specific Data Augmentation

In order to better align the pretrained models to the

QE task, synthetic sentence pairs that contain vari-

ous types of translation errors are generated from

clean parallel corpora1. For each target sentence,

we generate two perturbed sentences by separately

applying one of the four methods described below.

Omitted Word We randomly omit at most three

words from the target-side, simulating inadequate

translations.

Word Order Based on the part-of-speech (POS)

tag for each word in the target sentence, and pre-

defined sequences of POS patterns, we randomly

swap two target words if those words match one of

the patterns. The POS patterns can be contiguous,

e.g., adjective-space-noun, or long-ranged, e.g.,

noun-*-adjective. When none of the patterns are

matched, we randomly swap two words.

Lexical Selection For each target sentence, we

mask out at most three words randomly, and ap-

ply mask-filling via a German BERT model from

Hugging Face2. The purpose of this alteration is

to generate fluent but somewhat inadequate target

sentences.

Repeated Phrase In order to simulate the repe-

tition problem in translations generated by neural

machine translation models, we alter the target sen-

tence by adding a repetition of a random phrase

within the sentence. The length of the random

phrase is at most three tokens.

1Europarl v10 and News Commentary v15
2bert-base-german-cased,

https://huggingface.co/transformers/

pretrained_models.html

2.2 Task-Specific Learning Signals

As the goal of the downstream task is to predict the

DA scores which represent the “perceived quality”

of the translation, we need to consider pretraining

signals that can capture the somewhat subjective

notion of “good” and “bad” translations.

Consulting the related works, we prepared the

three learning signals:

• SentenceBERT score (Reimers and Gurevych,

2019)

• BERTScore (Zhang et al., 2019), extended to

multilingual setting

• Target (German) Language Model (GPT-2,

Radford et al. (2019)) score

For each sentence pair in the original bilingual

corpora as well as the augmented ones, the three

types of learning signals are computed, and later

used in the task-specific pretraining.

2.2.1 SentenceBERT Score

For a given sentence, SentenceBERT produces a

semantically meaningful sentence embedding that

can be compared using a distance metric.

We note that when comparing the distance be-

tween two sentence vectors, the Kendall rank cor-

relation coefficient (Kendall, 1938) is computed

instead of the cosine similarity measure as the for-

mer correlates better with the human judgement,

possibly because it produces a more widespread

range of scores than the latter especially when the

dimension of the sentence vectors is high.

In our experiments, we used the publicly avail-

able multilingual SentenceBERT model released

from UKPLab3 that supports 13 languages includ-

ing English and German.

2.2.2 Multilingual BERTScore

While SentenceBERT score looks at the sentence

embedding as a whole, BERTScore computes a

similarity score for each token in the pair of sen-

tences. We include BERTScore as one of the

learning signals because we feared that the mean-

pooling of the BERT-embedded tokens within the

SentenceBERT model, while effective in extracting

the overall meaning of the sentence, may overlook

some of the small semantic details within the sen-

tence.

3distiluse-base-multilingual-cased,
https://github.com/UKPLab/

sentence-transformers
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However, as the original BERTScore is designed

to work in monolingual setting, i.e. evaluating a

translation against a reference sentence, it needs to

be extended in multilingual setting using a multi-

lingual BERT (mBERT) model. Analogous to the

original approach, the multilingual BERTScores

can be computed in various ways depending on

which side we are computing the maximum simi-

larities from.

In our experiments, we devise a metric where we

merge both the source- and target-side maximum

similarities between tokens with the corresponding

inverse document frequency (IDF) weighting; thus,

given a sequence of vectorized source and target

tokens, s and t, we defined the mBERTScore of s

and t to be:

Ss→t + St→s∑
si∈s

idf(si) +
∑

tj∈t
idf(tj)

where

Ss→t =
∑

si∈s
idf(si)maxtj∈tsi

⊤
tj

St→s =
∑

tj∈t
idf(tj)maxsi∈stj

⊤
si

2.2.3 Target Language Model Score

While SentenceBERT and multilingual BERTScore

can be used as proxies for evaluating the “adequacy”

of the translation, empirically, we noticed that they

cannot seem to sufficiently represent the “fluency”

of translated target sentence. In other words, both

metrics may assign high scores to the translated

sentence if key source tokens are translated and

present in the translation, even when the overall

sentence may not be articulate.

To address this issue, the target language model

(GPT-2) score is added to the set of learning signals.

We simply use the arithmetic mean of the token-

level predictions to produce the score for a target

sentence. We utilize the pretrained GPT-2 model

for German released by Zamia Brain4.

2.3 Model Architecture

We have two stages for task-specific training, i.e.

first with the augmented data and the learning sig-

nals, and second with the provided QE dataset (ref.

Section 2.4). As the output to predict for each stage

is different, we utilize the following two types of

model architectures.

BERT’s 9th Layer or

XLM’s 5th Layer Conv1D

[CLS] MaxPoolMeanPool

Concat

Linear

Score

Block

Score ScoreScore

Model for Task-Specific Pretraining Score Block

[CLS] source [SEP] target [SEP]

Score

Block

Score

Block

Figure 2: The model architecture (left) for the task-

specific pretraining using the augmented dataset and

learning signals. It consists of three separate Score

Blocks (right) added on top of the BERT’s or XLM’s

layer.

Concatenated Vectors

Linear

Block

Concat

Linear

DA Score

Dropout

Linear

Tanh

Linear

×2

Model for Task-Specific Finetuning Linear Block

Linear

Block

Linear

Block

Figure 3: The model architecture (left) for the task-

specific finetuning using the provided QE dataset. For

each concatenated vector computed within each Score

Block (c.f. Fig. 2.), a Linear Block (right) is added on

top of it. The results from the Linear Blocks are con-

catenated and used to produce the final DA score.

2.3.1 Model for Task-Specific Pretraining

On top of the specific layer of the pretrained

mBERT or XLM models, we attach a series of

layers called “Score Block” for each type of learn-

ing signal as depicted in Figure 2. We utilize the

9th and 5th layer of the BERT and XLM models,

respectively, as these layers are reported to be more

semantically relevant (Jawahar et al., 2019; Zhang

et al., 2019).

In addition to using the vector representation

of the [CLS] token, utilizing the mean-pooled

and max-pooled vectors from all tokens further

improved the performance.

2.3.2 Model for Task-Specific Finetuning

Once the task-specific pretraining is completed, we

begin the finetuning by adding layers above the

concatenation layer within each Score Block, as

4gpt2-german-345M-r20191119,
http://zamia-speech.org/brain
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shown in Figure 3. Thus, we have three concate-

nated vectors being fed to three “Linear Blocks”

separately, whose purpose is to reduce the dimen-

sions of the hidden representation, preparing it for

the final regression layer.

We note that applying dropout (Srivastava et al.,

2014) to these linear layers helps with the perfor-

mance.

2.4 Task-Specific Training

We experiment with three different types of pre-

trained models: mBERT5, XLM trained with MLM

(XLM-MLM)6, and XLM trained with causal lan-

guage modeling (XLM-CLM)7. All of the pre-

trained models are available at Hugging Face.

2.4.1 Task-Specific Pretraining (TSP)

As the size of the provided QE dataset is small, we

make use of the existing parallel data as well as

the error-induced synthetic data. For the EN-DE

bilingual dataset, we select a subset from this year’s

training corpora for WMT News Translation Task,

summing to just under 10M sentence pairs; for the

synthetic dataset, the size is 3.4M.

Given the concatenated source and target sen-

tences as an input, the model for TSP is trained

to predict the three types of learning signals in a

multi-task setting by minimizing the sum of the

mean squared error losses for each signal (ref. Fig-

ure 2).

2.4.2 Task-Specific Finetuning (TSF)

Once the model is trained with the augmented data,

its parameters are loaded to the model for TSF

(ref. Figure 3), and finetuned using the QE dataset.

This time, the model learns to predict the mean

z-normalized DA score.

3 Document-Level QE: MQM Scoring

Given a source and its translated document, this

task involves identifying translation errors and es-

timating the translation quality of the document

based on the taxonomy of the Multidimensional

Quality Metrics (MQM)8. With the pre-defined

MQM taxonomy, human annotators assess whether

the translation satisfies the specifications, and from

these annotations, an MQM score is obtained. In

5bert-base-multilingual-cased
6xlm-mlm-ende-1024
7xlm-clm-ende-1024
8http://www.qt21.eu/mqm-definition

this work, we focus on building a system that pre-

dicts the MQM score for a given pair of source and

translated document.

The major difficulty that we encountered in this

task was the lack of training data. As the amount

of provided data is limited (8,591 sentence pairs),

a model that is solely finetuned on this small-scale

data was not capable enough to differentiate sen-

tences with varying level of errors.

To address this issue, we propose simple yet

effective methods for task-specific data augmenta-

tion, and task-specific training framework9.

3.1 Task-Specific Data Augmentation

We generate erroneous sentence pairs and their

pseudo-MQM scores from Europarl and QE train-

ing corpus in accordance with the MQM taxonomy.

3.1.1 Generating Erroneous Sentence Pairs

Out of the 45 error categories specified in QE anno-

tations, we select five frequent categories for which

we can automatically perturb the target-side of the

parallel corpus at little cost. More details on our

data augmentation technique for each category are

provided below.

Omitted Preposition We introduce an error into

the target-side of a sentence pair by randomly omit-

ting one of the French prepositions that exist in the

sentence.

Omitted Determiner The same process is done

for French determiners as for prepositions.

Wrong Preposition We replace a French prepo-

sition with another one. When more than one can-

didate exists, we choose one at random.

Word Order We exploit grammatical pattern

that most descriptive adjectives go after the noun

in French sentences (unlike English ones). Us-

ing an in-house French POS tagger, we identify

post-nominal adjectives and place them in front

of the corresponding nouns so that they are now

pre-nominal.

Lexical Selection We mask-out target tokens at

random positions, and substitute them with tokens

predicted by the Camembert language model (Mar-

tin et al., 2020).

9The code will be available at https://github.com/
naver/PATQUEST.
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Error name Sentence Length
Total

error severity

Pseudo

MQM

Original sentence Vous avez souhaité un débat à ce sujet dans les prochains jours, au cours de cette période de session. 21 0 100.0

(1) Wrong Preposition Vous avez souhaité un débat à ce sujet chez les prochains jours, au cours de cette période de session. 21 5 76.2

(2) Omit Determiner Vous avez souhaité un débat à ce sujet dans les prochains jours, au cours de cette période de session. 21 5 76.2

(1)+(2) Vous avez souhaité un débat à ce sujet chez les prochains jours, au cours de cette période de session. 20 10 52.4

Original sentence Cela placerait l’UE dans une situation délicate vis-à-vis de ces pays et de la communauté internationale. 23 0 100.0

(1) Word Order Cela placerait l’UE dans une situation délicate vis-à-vis de ces pays et de la internationale communauté. 23 5 78.3

(2) Lexical Selection Cela placerait l’UE dans une situation inconfortable vis-à-vis de ces pays et de la communauté internationale. 23 5 78.3

(1)+(2) Cela placerait l’UE dans une situation inconfortable vis-à-vis de ces pays et de la internationale communauté. 23 10 56.5

Table 1: Examples of erroneous sentence pairs generated from the Europarl corpus.

Error name Sentence Length
Total

error severity

Pseudo

MQM

Original sentence son travail a été présenté dans le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 23 15 34.8

(1) Wrong Preposition son travail a été présenté pour le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 23 20 13.0

(2) Omit Determiner son travail a été présenté dans le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 22 20 9.1

(1)+(2) son travail a été présenté pour le washington post, quotidien bonbons, washingtonian, fit yoga et journal d’yoga. 22 25 -13.6

Original sentence Brûleur deux plaque de cuisson anti-adhésive de Coghlan 10 5 50.0

(1) Omit Preposition Brûleur deux plaque de cuisson anti-adhésive de Coghlan 9 10 -11.1

Table 2: Examples of erroneous sentence pairs generated from the WMT20 QE corpus.

3.1.2 Task-Specific Learning Signal

Once we introduce different types of errors into

the target-side sentences, the next step is to obtain

pseudo-MQM scores for the altered sentence pairs.

Two key elements for computing MQM score are

the length of a text, and its total error severity as

follows:

Pseudo-MQM = 100(1−
5.0 ∗ nerror + S

N
)

where N indicates the length of given target sen-

tence and nerror denotes the number of errors in-

troduced in it. We assign 5.0, the most frequent

severity, to each perturbation that we make. If an

error severity score, S, is assigned to the sentence

by human annotators, we add this score to compute

the total error severity score.

3.2 Model Architecture

We use pretrained mBERT or XLM10 as initial

parameters. The concatenation of a source sentence

and its corresponding target sentence with special

symbol tokens is taken as input: [CLS] source

[SEP] target [SEP].

We experiment with two strategies for obtaining

sentence embeddings. First, we feed a hidden state

vector corresponding to [CLS] token (h[CLS]) to

a linear layer to compute a sentence-level MQM

prediction of ŷ:

ŷ = Wh[CLS] + b

where W and b are the weight matrix and bias vec-

tor of the linear layer, respectively. For the other

10xlm-mlm-enfr-1024

method, we use the concatenation of a mean-pooled

source representation (s ∈ R
n), mean-pooled tar-

get representation (t ∈ R
n) and their element-wise

differences (|s− t| ∈ R
n) in an attempt to enlarge

the model capacity:

ŷ = W · ReLU(Wr(s, t, |s− t|) + br) + b

where Wr ∈ R
3n×n and br are the weight ma-

trix and bias vector of an intermediate dimension-

reducing layer, respectively, and n denotes the di-

mension of hidden vectors. W and b are the weight

matrix and bias vector of the final linear layer.

3.3 Task-Specific Training

We suggest that the pretraining objective should be

similar to that of the downstream task in order to

mitigate the pretrain-finetune discrepancy (Yang

et al., 2019), and fully leverage the erroneous sen-

tence pairs that we generated. For this task, both

phases minimize the mean-squared loss function:

l = 1
K

∑K
k=1 ‖yk − ŷ‖2.

3.3.1 Task-Specific Pretraining (TSP)

We utilize Europarl parallel corpus (English-

French) to pretrain our submitted models11. To

acquire high quality data, we carried out the fol-

lowing filtering processes: (1) language detection

(filtering out non-English sentences in the source-

side, and non-French sentences in the target-side),

(2) length ratio filtering (eliminating sentence pairs

with length ratio greater than 1.8).

11We perform TSP after bringing pretrained parameters of
language models as initial weights.
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We assume that the remaining sentence pairs do

not contain any translation error. Therefore, we

assign the total error severity score of zero to these

pairs before the augmentation.

About 15.2 million examples12 are generated

with the above-mentioned data augmentation tech-

niques. The detailed examples are provided in Ta-

ble 1.

3.3.2 Task-Specific Finetuning (TSF)

The next step is to finetune our model using the

augmented QE train data. Unlike Europarl corpus,

we can fully leverage the MQM scores originally

assigned to the QE training dataset. We found that

performing the data augmentation with three cate-

gories (Omitted Determiner, Omitted Preposition,

and Wrong Preposition) effectively improves the

performance. The original QE training sentence

pairs represent about 5% of 169,997 sentence pairs

obtained from the data augmentation. We also pro-

vide the augmented examples for QE training data

in Table 2.

Since the learning objective is identical to that

of the pretraining phase, we can simply train the

same model with the augmented downstream task

data.

3.4 Document-Level MQM Score

We specify that the models are trained at sentence-

level, learning to predict the non-truncated version

of MQM scores which could take a range between

negative infinity and 100; this is to avoid potential

information loss that could arise from the trunca-

tion.

Given a document, the document-level MQM

score is computed from its sentence-level MQM

predictions in a closed form. Afterwards, we trun-

cate negative values to zero.

4 Experimental Results

4.1 Sentence-Level Task

Table 3 shows the Pearson correlation coefficient

between the predicted z-normalized DA scores and

the reference scores on the development set. We

note that the number of parameters for PATQUEST-

mBERT (724M) is greater than that of PATQUEST-

XLM (616M) models, resulting in the difference

in the correlation scores. Nevertheless, comput-

ing the arithmetic mean of the scores produced

12The size of the original Europarl English-French parallel
corpus is about 2M sentence pairs.

Model Pearson’s r ↑

PATQUEST-mBERT 0.486

PATQUEST-XLM-MLM 0.450

PATQUEST-XLM-CLM 0.452

PATQUEST-ensemble 0.501

Table 3: Results on the development set for Task 1 EN-

DE.

Model Pearson’s r ↑ MAE ↓ RMSE ↓

Baseline 0.146 0.679 0.967

PATQUEST-mBERT w/o synth. data 0.429 0.462 0.632

PATQUEST-ensemble w/o synth. data 0.457 0.464 0.640

PATQUEST-ensemble 0.498 0.454 0.637

Table 4: Submission results on the test set for Task 1

EN-DE.

by these three models improves the performance

(PATQUEST-ensemble).

The final result on the QE test set is shown in

Table 4. We observe that finetuning the model

with the additional error-induced synthetic data

improves the performance as well as ensembling

the models.

Our final submitted system (PATQUEST-

ensemble) finished 4th out of the 15 submitted sys-

tems13 in the final ranking of the sentence-level QE

task for English-German. In order to train a gen-

erally applicable QE system, we did not make use

of the data such as internal information from the

NMT models and in-domain Wikipedia texts that

could be extracted from the provided Wikipedia

titles.

4.2 Document-Level Task

The validation results on development set are

shown in Table 5. Both PATQUEST-mBERT

and PATQUEST-XLM models use representations

from [CLS] token. We build another two mod-

els, PATQUEST-mBERT variant 1 and 2, using the

concatenations of mean-pooled source representa-

tions, mean-pooled target representations, and their

element-wise differences.

Table 6 shows the test results of our submitted

PATQUEST models. For PATQUEST-ensemble,

we compute an average from the four models enu-

merated in Table 5.

In Table 7, the effectiveness of our training

scheme and data augmentation techniques is illus-

trated via an ablation study. Note that “Pretrained

mBERT (A)” in the table refers to the mBERT

13Excluding the disqualified team.
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Model Pearson’s r ↑ MAE ↓ RMSE ↓

PATQUEST-mBERT 0.431 14.401 22.330

PATQUEST-mBERT variant 1 0.406 14.418 22.872

PATQUEST-mBERT variant 2 0.380 14.909 23.215

PATQUEST-XLM 0.374 16.245 23.647

Table 5: Results on the development set of WMT20

document-level task.

Model Pearson’s r ↑ MAE ↓ RMSE ↓

Baseline 0.389 19.939 26.608

PATQUEST-mBERT 0.529 16.214 24.437

PATQUEST-XLM 0.546 15.821 23.846

PATQUEST-ensemble 0.573 15.611 23.327

Table 6: Submission results of PATQUEST models on

the test set of WMT20 document-level task.

model that is finetuned on the original QE data

without any task-specific training. Both TSP and

TSF enhance the generalization ability of model.

Note that the mBERT model trained via TSP and

TSF, “A + TSP + TSF”, is the same model as

PATQUEST-mBERT which itself achieves a sig-

nificant improvement over the baselines as shown

in Table 6.

Our final system (PATQUEST-ensemble) sub-

mitted for the document-level QE task, came 1st

out of the three submitted systems14. Similar to our

sentence-level system, our document-level system

also did not utilize any internal information from

the NMT models and in-domain Wikipedia data

tailored to the benchmark.

5 Conclusion

In this paper, we present a task-specific pretraining

scheme for the QE task. Our pretraining objective

is devised so that it is closely related (Task 1) or

identical (Task 3) to the finetuning objective. In ad-

dition, the models are exposed to abundant amount

of error-induced translations generated from large

parallel corpora, effectively alleviating the issue of

14Excluding the disqualified team

Model Pearson’s r ↑ MAE ↓ RMSE ↓

Pretrained mBERT (A) 0.263 16.146 23.090

A + TSF 0.341 (+ 0.078) 15.302 23.749

A + TSP 0.375 (+ 0.112) 15.496 23.444

A + TSP + TSF 0.431 (+ 0.168) 14.401 22.330

Table 7: Results on the development set of WMT20

document-level task adding up key components of our

model.

data scarcity.

Our proposed models yield significant improve-

ment over the baseline systems for the two tasks.
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Vassilina Nikoulina, and Jaesong Lee for the in-

sightful discussions, and Papago team members for

offering the fruitful feedback. We would also like

to extend our gratitude to Won Ik Cho for coming

up with the awesome name for our system.

References

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
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tiz Suárez, Yoann Dupont, Laurent Romary,
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