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Abstract
Data-to-text generation has recently seen a
move away from modular and pipeline ar-
chitectures towards end-to-end architectures
based on neural networks. In this work, we
employ knowledge graph embeddings and ex-
plore their utility for end-to-end approaches
in a data-to-text generation task. Our experi-
ments show that using knowledge graph em-
beddings can yield an improvement of up to
2 – 3 BLEU points for seen categories on the
WebNLG corpus without modifying the under-
lying neural network architecture.

1 Introduction

Data-to-text generation is concerned with building
systems that can produce meaningful texts in a hu-
man language from some underlying non-linguistic
representation of information (Reiter and Dale,
2000). Traditionally, most applications for data-to-
text generation have relied on rule-based systems
which are designed using a modular pipeline archi-
tecture (Gatt and Krahmer, 2018). However, there
has been a shift recently towards end-to-end archi-
tectures using neural networks to convert data in
the input to text in a natural language in the output.
This trend is largely inspired by the success of the
end-to-end approaches in the related task of ma-
chine translation as well as the availability of large
corpora for data-to-text generation such as the Wik-
iBio (Lebret et al., 2016) or the ROTOWIRE (Wise-
man et al., 2017) datasets, which contain input
data in the form of a table consisting of rows and
columns. However, the structure and representation
of the input data can vary significantly depending
on the task at hand. For example, the input can also
be a knowledge graph (KG) represented as a set
of RDF-triples like the WebNLG corpus (Gardent
et al., 2017) or a dialogue-act-based meaning rep-
resentation like the E2E dataset (Novikova et al.,
2017).

In this work, we employ pre-trained knowledge
graph embeddings (KGEs) for data-to-text gener-
ation with a model which is trained in an end-to-
end fashion using an encoder-decoder style neu-
ral network architecture. These embeddings have
been shown to be useful in similar end-to-end archi-
tectures especially in domain-specific and under-
resourced scenarios for machine translation (Mous-
sallem et al., 2019). We focus on the WebNLG cor-
pus which contains RDF-triples paired with verbal-
isations in English. We compare the use of KGEs
to two baseline models – the standard sequence-
to-sequence model with attention (Bahdanau et al.,
2015) and the transformer model (Vaswani et al.,
2017). We also do a comparison with pre-trained
GloVe word-embeddings (Pennington et al., 2014).

2 Related Work

Castro Ferreira et al. (2019) have compared
pipeline-based and end-to-end architectures for
data-to-text generation on the WebNLG corpus.
Their findings suggest that the systems which are
trained end-to-end are comparable to pipeline meth-
ods on seen data categories but do not generalise
to new and unseen domains of data. Marcheggiani
and Perez-Beltrachini (2018) proposed an encoder
based on graph convolutional networks to exploit
the structure in the input for an end-to-end system
which showed a slight improvement over the stan-
dard LSTM encoder. However, their test set did
not include data from new and unseen categories.
As an alternative to end-to-end training, Moryossef
et al. (2019) suggested to split the task into two
stages, where the first stage is responsible for text
planning while the second stage focuses on text re-
alization. This approach generates fluent text in the
output using a neural generation component while
at the same time the planning stage gives explicit
control over the structure of the generated text.
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train dev test
Number of ... seen seen seen unseen

... data-text pairs 20,470 2,550 2,494 1,726
... triples 62,209 7,801 7,527 4897

... entities 1,776 1,142 1,159 863
... lexicalisation tokens 493,236 62,416 60,318 39,389
... lexicalisation types 4,806 2,819 2,795 2,147

Table 1: WebNLG corpus statistics.

Annervaz et al. (2018) classifies KGEs into two
categories: structure-based and semantically en-
riched. Structure-based embeddings encode only
entities and relations while semantically-enriched
also take into account the associated semantic in-
formation. Approaches where relationships are
interpreted as displacements operating on the low-
dimensional embeddings of the entities, have been
implemented within the TransE toolkit (Bordes
et al., 2013). RDF2Vec (Ristoski and Paulheim,
2016) uses language modelling approaches for un-
supervised feature extraction from sequences of
words and adapts them to RDF graphs. Cochez
et al. (2017) exploited the Global Vectors algo-
rithm in RDF2Vec to compute embeddings from
the co-occurrence matrix of entities and relations.
However, Joulin et al. (2017b) showed that a BoW
based approach with the fastText algorithm (Joulin
et al., 2017a) generates state-of-the-art results in
KGEs. For data-to-text generation, Chen et al.
(2019) have shown that leveraging external knowl-
edge is useful in generating text from Wikipedia
infoboxes. In our work, we incorporate pre-trained
KGEs based on the fastText model with an end-to-
end approach for the data-to-text generation.

3 Dataset Description

The WebNLG corpus consists of data units made
up of RDF-triples extracted from DBpedia (Auer
et al., 2007), paired with reference text lexicali-
sations. These texts contain sequences of one or
more short sentences in English, verbalising the
data units in the input. The corpus contains triple-
sets from 15 DBpedia categories and is divided into
two subsets, seen and unseen for evaluation. The
ten seen categories are Airport, Astronaut, Building,
City, ComicsCharacter, Food, Monument, Sport-
sTeam, University and WrittenWork and the five
unseen categories are Artist, Athlete, CelestialBody,
Company, MeanOfTransportation and Politician.
The corpus1 contains 16,095 RDF-triples in the

1https://gitlab.com/shimorina/webnlg-dataset, v2.1

200 Public Square location Cleveland
200 Public Square floorCount 45

Cleveland country United States

200 Public Square has 45 floors and is located in Cleve-
land, United States.

BUILDING location LOCATION
BUILDING floor count FLOORCOUNT
LOCATION country COUNTRY

BUILDING has FLOORCOUNT floors and is located
in LOCATION, COUNTRY.

Table 2: Example of an input tripleset paired with ref-
erence text in the output (top) and corresponding delex-
icalised version (bottom).

input paired with 42,873 lexicalisations in the out-
put. We follow the same structure for splitting the
dataset into training and test sets as defined in the
challenge. The final evaluation is done on a test set
split into seen and unseen categories and the train-
ing set contains data only from the seen categories
(Table 1).

4 Methodology

Knowledge Graph Embeddings To leverage
KGEs, we train the embeddings on around 4.2
million entities and 661 relations represented in
the entire DBpedia repository, where each subject
s, or object o, of an RDF-triple can be associated
as a point in a continuous vector space. The re-
lation or the predicate p between the subject and
the object entities can be modelled as displacement
vector (s + p = o) while still preserving the inher-
ent structure of the KG. In this work, we use fast-
Text (Joulin et al., 2017b), which is based on a bag-
of-words representation and considers the subject
s and the object o entities along with the predicate
p as a unique discrete token. Thus, fastText models
co-occurrences of these entities and relations and
learns a word representation using a hierarchical
softmax. This allows us to create semantically-
enriched KGEs which are 500-dimensional vectors
that are used to initialise the encoder and decoder
embedding layers in our end-to-end system. As
a comparison to the usage of KGEs, we engage
300-dimensional GloVe embeddings as pre-trained
textual embeddings. For each model, we compare
the results with and without a delexicalisation step.

Delexicalisation Before training a model, we
perform a delexicalisation step where we modify
the RDF-triple in the input similar to Gardent et al.
(2017). The subject of the RDF-triple is replaced
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All Seen Unseen All Seen Unseen All Seen Unseen

BLEU METEOR Precision Recall Precision Recall Precision Recall

LSTM 35.0 53.8 4.3 26.3 39.0 8.2 67.4 49.5 90.0 73.8 37.7 7.0
LSTM + GloVe 38.0∗ 56.4∗ 4.2 27.9∗ 41.6∗ 7.3 73.3∗ 52.6∗ 94.9∗ 78.7∗ 45.9∗ 6.6
LSTM + KGEs 36.1∗ 56.9∗ 5.1∗ 27.5∗ 40.4∗ 9.2∗ 70.1∗ 51.8∗ 93.6∗ 75.1∗ 44.6∗ 10.2∗

Transformer 36.8∗ 54.6 3.7 27.2 40.7∗ 7.4 64.8 51.7∗ 92.6∗ 77.3∗ 31.1 7.1
Transformer + GloVe 39.0∗ 54.9∗ 6.9∗ 28.1∗ 40.7∗ 8.9 66.3 52.2∗ 92.6∗ 76.4∗ 36.6 9.4
Transformer + KGEs 38.8∗ 56.4∗ 5.3∗ 27.6∗ 40.7∗ 8.2 70.8∗ 51.2∗ 94.6∗ 74.8∗ 42.0∗ 9.7∗

DELEX

LSTM 42.0 52.4 15.2 28.8 39.9 10.9 85.9 54.9 94.3 77.5 86.3 15.5
LSTM + GloVe 44.5∗ 56.1∗ 11.9 28.6 40.6 9.5 88.3∗ 54.4 96.5∗ 79.2∗ 72.9 12.2
LSTM + KGEs 43.0∗ 54.5∗ 14.8 28.8 39.8 11.5 88.4∗ 55.1 96.1∗ 77.7 75.8 16.2
Transformer 38.0 50.9 11.5 27.9 38.8 10.8 83.3 54.0 94.2 76.5 77.4 15.4
Transformer + GloVe 44.2∗ 55.6∗ 16.7∗ 28.6 39.2 11.7 89.6∗ 54.9 96.3∗ 75.3 80.1 19.8∗

Transformer + KGEs 43.2∗ 54.1∗ 15.8∗ 28.5 39.4 11.2 89.9∗ 54.2 96.9∗ 77.5 77.0 15.4

Table 3: Results for all, seen and unseen categories. DELEX indicates models trained on delexicalised corpus.
Models marked with ∗ are significantly better than the baseline LSTM model (p < 0.05). The best performing
model in each category is highlighted in bold face.

by the DBpedia category and the object is replaced
by the predicate using a pre-defined delexicalisa-
tion dictionary2. We also split the predicate in each
triple on the camelCase using a regular expression.
We perform this delexicalisation step on the refer-
ence text too based on the corresponding entities in
the input, as shown in Table 2.

5 Experimental Setup

We follow the WebNLG baseline system (Gardent
et al., 2017) as one of the baseline architectures
for our experiments, which is a vanilla sequence-
to-sequence LSTM model with attention where the
RDF triples in the input are linearised as a sequence
and the output text is tokenised before training.
We use another baseline based on the transformer
architecture similar to the end-to-end architecture
setup by Castro Ferreira et al. (2019).

The models are trained using the OpenNMT li-
brary (Klein et al., 2017). We use the default param-
eters for the baseline model: two hidden layers with
500 LSTM units per hidden layer and word embed-
dings of 500 dimensions. Dropout is applied with
value 0.3 and the LSTM models are trained with
stochastic gradient descent, starting with a learning
rate of 1.0 and learning rate decay enabled. For the
transformer model, the encoder-decoder setup con-
tains 6 layers with 512 hidden units. The word em-
beddings are 512-dimensional and the feed-forward
sublayers are 2048-dimensional. Each multi-head
attention sublayer consists of 8 attention heads.
Dropout is applied with value 0.1 and the model

2https://gitlab.com/webnlg/webnlg-baseline/

is trained using Adam optimizer (Kingma and Ba,
2015).

The overlap between the model vocabulary and
GloVe embeddings is 44.36% while for KGEs it
is 45.66%. For the delexicalised corpus, the over-
lap increases to 46.70% for GloVe and 47.40% for
KGEs respectively. Since the size of the vocabulary
of the training corpus is limited to a few thousand
words (around 5,000 unique words), we enable
the options for dynamic dictionary and shared vo-
cabulary to allow the model to share tokens on
between the source and the target side. All models
are trained for 100,000 steps and for evaluation on
the test set we take the checkpoint with the best
BLEU score on the validation set.

6 Results and Discussion

In this section, we report the results of our experi-
ments in terms of two commonly used evaluation
metrics, BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014). We also
report scores in terms of precision and recall of
the input entities covered in the output generations.
For statistical significance, we use MultEval (Clark
et al., 2011) to perform bootstrap resampling and
report the results on three test sets consisting of
instances from seen, unseen and all categories in
Table 3.

For the test set consisting of seen categories, us-
ing KGEs shows consistent improvement over the
baseline models for both LSTM and transformer
architectures. This improvement is observed in
both cases whether the delexicalisation step is per-
formed or not. For the models trained on the delex-
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Input Triples Acta Mathematica Hungarica LCCN number 83646315
Acta Mathematica Hungarica abbreviation Acta Math . Hungar .
Acta Mathematica Hungarica academicDiscipline Mathematics
Acta Mathematica Hungarica ISSN number 0236 - 5294

Reference Acta Mathematica Hungarica ( abbreviated as “ Acta Math . Hungar . ” ) covers the academic
discipline of Mathematics . It has the ISSN number of ” 0236 - 5294 ” and LCCN number 83646315 .

Model Generation BLEU METEOR

LSTM Acta Mathematica Hungarica ( Acta Math . Hungar . ) which has a discipline
of math has the LCCN number 83646315 and ISSN number 1588 - 2632 .

27.67 32.24

LSTM + GloVe Acta Mathematica Hungarica is abbreviated to Acta Math . Hungar . It has
the LCCN number 83646315 and the ISSN number 0236 - 5294 and LCCN
number 83646315 .

58.98 40.65

LSTM + KGEs Acta Mathematica Hungarica has the abbreviation of “ Acta Math . Hungar . ”
and comes under the academic discipline of Math . It has the LCCN number
83646315 and the ISSN number 0236 - 5294 .

53.31 44.96

Transformer Acta Mathematica Hungarica , or Acta Math . Hungar . has a LCCN number
of 83646315 and a ISSN number of 0236 - 5294 .

34.75 39.75

Transformer + GloVe Acta Mathematica Hungarica , or Acta Math . Hungar . has a LCCN number
of 83646315 and a ISSN number of 0236 - 5294 .

34.75 39.75

Transformer + KGEs Acta Mathematica Hungarica is abbreviated to Acta Math . Hungar . It has
the LCCN number 83646315 and the ISSN number 0236 - 5294 .

55.26 42.47

Table 4: Qualitative example highlighting differences in the generations produced the different models. Mistakes
are highlighted in bold face, while fragments with underline correspond to the abbreviation predicate in the second
triple and fragments in italics refer to the academicDiscipline predicate in the third input triple.

icalised corpus, GloVe embeddings appear to pro-
duce better results than KGEs. This is due to the
fact that the KGEs are not trained on delexicalised
entities. Nonetheless, we observe delexicalisation
to be useful in generating text for unseen categories
where almost none of the entities and properties are
present in the training set. Our results are consis-
tent with Gardent et al. (2017) and Castro Ferreira
et al. (2019), who have also shown that end-to-end
neural approaches perform well on seen categories
but struggle to generalise on the unseen ones.

Similar to Wiseman et al. (2017), we propose
entity-based evaluation metrics to measure the cov-
erage of subject and object entities in the output
generation. For each subject and object entity in
the triples, we count unique entities extracted from
the output text, and calculate precision and recall
scores. A drawback of this approach is that it does
not penalise multiple repetitions of the same entity
in the output. However, it is useful as a measure
of how well the entities are represented in the out-
put. Our results suggest both KGEs and GloVe
embeddings yield an improvement in precision and
recall, especially in the seen categories. Delexicali-
sation also leads to an overall improvement in the
scores, however, neither KGEs nor GloVe embed-
dings appear to do well on unseen categories for
the delexicalised corpus in terms of these metrics.

Usually, data-to-text generation tasks involve

only non-linguistic entities in the input, which
makes it difficult to generate fluent and coherent
text in the output without explicitly defining the
rules for a mapping between the input entities and
output text. However, in the WebNLG corpus, the
predicate inside each triple can be considered as a
linguistic entity around which the output sentence
is structured. Table 4 shows a qualitative example
where the output from each model is structured
slightly differently on the two input predicates ab-
breviation and academicDiscipline. This example
also highlights some of the mistakes and errors pro-
duced by neural text generation approaches. For in-
stance, the baseline model produces incorrect ISSN
number in the output, while the LSTM+GloVe
model repeats the LCCN number twice. Another
notable error is the omission of academicDisci-
pline in the output by all models except the baseline
LSTM and LSTM+KGEs models, which highlights
the difficuly in generating text from a large number
of triples in the input.

7 Conclusion and Future Work

In this work we showed that using KGEs to ini-
tialise the encoder and decoder embeddings in neu-
ral data-to-text generation consistently achieves
better performance by up to 2 or 3 BLEU points
over the baseline models for the seen categories on
the WebNLG corpus. For future work, we plan to
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leverage KGEs with delexicalised DBpedia entries,
specifically to target the unseen data.

Acknowledgments

This work was conducted with the financial sup-
port of the Science Foundation Ireland Centre for
Research Training in Artificial Intelligence un-
der Grant No. 18/CRT/6223 and co-supported by
Science Foundation Ireland under grant number
SFI/12/RC/2289 2 (Insight), co-funded by the Eu-
ropean Regional Development Fund.

References
KM Annervaz, Somnath Basu Roy Chowdhury, and

Ambedkar Dukkipati. 2018. Learning beyond
datasets: Knowledge graph augmented neural net-
works for natural language processing. In Proceed-
ings of the 2018 Conference of NAACL-HLT, pages
313–322. ACL.
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Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural Text Generation from Structured Data with
Application to the Biography Domain. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1203–1213,
Austin, Texas. Association for Computational Lin-
guistics.

52

https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1299
https://doi.org/10.18653/v1/D19-1299
https://doi.org/10.18653/v1/D19-1299
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128


Diego Marcheggiani and Laura Perez-Beltrachini.
2018. Deep graph convolutional encoders for struc-
tured data to text generation. In Proceedings of
the 11th International Conference on Natural Lan-
guage Generation, pages 1–9, Tilburg University,
The Netherlands. Association for Computational
Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Diego Moussallem, Axel-Cyrille Ngonga Ngomo, Paul
Buitelaar, and Mihael Arcan. 2019. Utilizing knowl-
edge graphs for neural machine translation augmen-
tation. In Proceedings of the 10th International Con-
ference on Knowledge Capture, K-CAP ’19, page
139–146, New York, NY, USA. Association for
Computing Machinery.
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