
1

Abstract

We present in this paper our mining
system for shared task WebNLG
Challenge 2020. The general idea of the
system is that we generate the semantic
template of the output reference from the
input RDF XML structure. In the training
process, we perform the following
subtasks: (i) extract the core information
from input RDF; (ii) generate semantic
templates from corresponding references.
With new RDF XML data, we detect the
core information, in turn add the new
template into the warehouse and determine
the output semantic template. We will
evaluate the output natural language
references in two processes: automatic and
human evaluations. The results of the first
tested process show that our system
generates the high quality English
descriptions from testing RDF XML
structures and has a good contribution to
the NLG state-of-the-art.

1 Introduction

Natural Language Generation (NLG) plays a
critical role in the modern era. Researchers
proposed different approaches to generate high-
quality text from input structured data in different
domains (Gatt and Krahmer, 2018; Laha et al.,
2019; Moryossef et al., 2019; Shimorina and
Gardent, 2018; Trisedya et al., 2018; Nguyen and
Tran, 2018, 2020; Moussallem et al. 2018;
Jagfeld et al., 2018; Dušek et al., 2018, 2020;
Ferreira et al., 2019). Especially, with the
growing need in the Semantic Web (SW)
communities, there are the requirements for NLG
works to provide a natural means for presenting

this data in an organized, coherent and accessible
way.

In the first major task of WebNLG 2020 1
shared task, the Organizer provided English
dataset for training which comprises data-text
pairs for 16 distinct DBpedia2 categories. Each
entry in the dataset comprises a Resource
Description Framework3 (RDF) triple set paired
with several natural language (NL) references. We
illustrated an example of an English entry in the
training data1 in Table 1. The aim of this major
task is to generate the appropriate NL reference
for each input triple set.

RDF XML

<entry category="Airport" size="3">
<modifiedtripleset>
 <mtriple>Aarhus_Airport |

location | Tirstrup</mtriple>
 <mtriple>Tirstrup | country |

Denmark</mtriple>
 <mtriple>Denmark | language |

Danish_language</mtriple>
</modifiedtripleset>

</entry>

References

• Aarhus Airport is located in Tirstrup,
Denmark; where the language is Danish.

• Aarhus Airport is located in Tirstrup,
Denmark where the language spoken is
Danish.

• Aarhus Airport is located in Tirstrup,
Denmark where the Danish language is
spoken.

Table 1: Sample of <RDF triple set – NL
references>.

The primary purpose of this article is to present
our system in RDF-to-text generation task.
Developing from the ideas in (Nguyen and Tran,

1 https://webnlg-challenge.loria.fr/challenge_2020/
2 https://wiki.dbpedia.org/
3 https://www.w3.org/TR/rdf11-concepts/

WebNLG 2020 Challenge: Semantic Template Mining
for Generating References from RDF

 Trung Tran Dang Tuan Nguyen
Saigon University, Ho Chi Minh City, Vietnam

ttrung@nlke-group.net
dangnt@sgu.edu.vn

3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+),
Dublin, Ireland (Virtual), 18 December 2020, pages 177–185, c©2020 Association for Computational Linguistics

Attribution 4.0 International.

http://creativecommons.org/licenses/by/4.0/

2

2018, 2020), we propose the mining approach that
creates the intermediate semantic template from
input RDF data. We represent the general
architecture of our system in Fig.1 with the
following main components: (i) information
extraction in which we detect the core contents

and classify into groups; (ii) template mining in
which we analyze the above groups and input
references to form the semantic template; (iii)
augmentation in which we analyze the new RDF
data without references to define the new template
and augment to the warehouse.

Figure 1: The general architecture of semantic template mining system.

The rest of article is separated as follows. We
clarify the background knowledge in Section 2
and describe our generation system in Section 3.
Section 4 details the evaluation from the
Organizers and analyzes the results. We offer
conclusions in Section 5.

2 Background Knowledge

The main content of this section is to clarify the
background knowledge that we apply in the
research. The first part is to present Flat Triple
Meaning Representation (MR) which is an
intermediate structure to express core information
from input RDF XML data. The second part is to
present Jaro-Winkler Similarity, which is used to
find the phrases which have the similarity content
and then we determine which one should be
selected to form the templates. The third part is to
present aliased parameters and semantic template
which are the core information in our system.

2.1 Flat Triple Meaning Representation

Following forming Flat MR structure in the E2E
Challenge 2017 (Dušek et al., 2018, 2020), we
define a new structure called Flat Triple Meaning
Representation (MR) which is the plaintext form
of RDF XML. This form is like the representation
of relationships between predicates of Flat MR
structure from (Nguyen and Tran, 2018, 2020).

We define a Flat Triple MR:
• We transform each triple of RDF XML into a

list of predicates of Flat Triple MR.
• Each predicate comprises: (i) the name of

predicate, which is the relationship between
two items; (ii) the subject parameter, which
expresses the first item; (iii) the object
parameter, which expresses the second item.

As an example, we can transform the RDF

XML in Table 1 into Flat Triple MR:

178

3

location[Aarhus_Airport | Tirstrup];
country[Tirstrup | Denmark]; language[Denmark
| Danish_language];

In Fig.2, we illustrate the relationships between
parameters and predicates in the above Flat Triple
MR:

Figure 2: The relationship between each predicate and

its parameters.

2.2 Jaro-Winkler Similarity

Jaro Similarity (Jaro, 1989, 1995; Winkler, 1990,
2006; Cohen et al., 2003) is the measure of
similarity between two strings. We calculate the
value of Jaro distance in the range [0, 1]. From
this range, the value 1 means the strings are equal
and the value 0 means these two strings do not
have similarity at all.

The Jaro Similarity (Wikipedia, 2020) is
calculated with the following formula:

𝐽𝑎𝑟𝑜_𝑠𝑖𝑚(𝑠1, 𝑠2)

= {

0, 𝑖𝑓 𝑚 = 0
1

3
(
𝑚

|𝑠1|
+
𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the above formula: (i) |si| is the length of si; (ii)
m is the number of “matching characters”; (ii) t is
the number of “transpositions”.

The characters of s1 and s2 respectively, are
considered matching only if they are the same and
not farther than:

⌊
max (|𝑠1|, |𝑠2|)

2
⌋ − 1

Winkler (1990) introduced the Jaro-Winkler
similarity5, which is a modification of the Jaro

similarity. The author placed more weight on
matching the first i characters. If l is the largest
number such that the first l characters of s1 match
those of s2, then the Jaro-Winkler similarity is
defined as:

𝑆𝑖𝑚𝐽𝑊(𝑠1, 𝑠2) = 𝑆𝑖𝑚𝐽(𝑠1, 𝑠2) + 𝑙𝑝[1 − 𝑆𝑖𝑚𝐽(𝑠1, 𝑠2)]

In the above formula, p is a constant scaling factor
for how much the score is adjusted upwards for
having common prefixes.
We apply the Jaro-Winkler similarity at the
following actions:
• Determine the rate of similarity between

corresponding references of each Flat Triple
MR. We then keep only the most frequent
references.

• Determine the groups of words that express
each predicate and corresponding parameters.

• Determine the phrases that have the similar
meaning when handling new Flat Triple MR.

2.3 Semantic Template and Aliased
Parameters

Developing from ideas in (Nguyen and Tran,
2018, 2020; Gardent et al. 2017; Ferreira et al.
2019) about generating intermediate templates
from input structured-data, we define special
semantic templates for this research. These
templates take the role is the intermediate
structures of the final references.

To reduce the dependence on vocabulary,
especially when handling cross domains, we
define new aliases for parameters in each Flat
Triple MR. The idea to determine new aliases is
described as follows:
• Analyzing each Flat Triple MR paired with

corresponding NL references, we found that
there is one item taking the central role. Other
items have relationships with this one and
with each other in some levels.

• The item taking the central role will have the
alias AGENT.

• The other items will have the alias
PATIEN_X, with X = [1, n], n < total number
of items.

As an example, the Flat Triple MR in Fig.2 can
be transformed into a new one as follows:

location[AGENT | PATIENT_1]; country[PATIENT_1
| PATIENT_2]; language[PATIENT_2 | PATIENT_3];

179

4

Figure 3: The relationship between each predicate and

its aliased parameters.

In our system, the semantic templates are the core
information, which represents the structured form
of the output NL references. Each semantic
template comprises three principal components:
• Aliased parameters from Flat Triple MR.
• Groups of words that express predicates from

Flat Triple MR.
• Linking words that connect phrases in the

output text.
As an example, the references in Table 1 have

the following semantic templates with aliased
parameters from Table 3:

• AGENT is located in PATIENT_1, PATIENT_2;

where the language is PATIENT_3.
• AGENT is located in PATIENT_1, PATIENT_2

where the language spoken is PATIENT_3.
• AGENT is located in PATIENT_1, PATIENT_2

where the PATIENT_3 is spoken.

3 Semantic Template Mining System

We present in this section the principal
components of our system. As illustrated in the
general architecture in Fig. 1, there are two
processes to perform:
• In the training process, we (i) extract the

information from Flat Triple MR, and (ii)
build the warehouse that contains the
semantic templates from the mining
component.

• When analyzing new RDF data, we (i) extract
the information from Flat Triple MR, (ii)
determine the semantic template, or (iii)
create the new semantic template and
augment to the warehouse.

3.1 Information Extraction Component

The first phase for realizing this step is to
determine which item in all predicates should take
the alias AGENT. We handle this phase through
following steps:
• Step 1. Determine the frequency of each item

in all predicates from left to right.
• Step 2. Determine the items that have the

highest frequency.
• Step 3. Determine the first item taking the

alias AGENT which satisfies: (i) has the
highest frequency; (ii) has the highest number
of times taking subject parameter position.

To determine the alias PATIEN_X for other items,
we perform two steps:
• Step 1. Consider each item from left to right

that is not AGENT.
• Step 2. Set the alias PATIEN_X for this item

and increase X.
As an example, the Flat Triple MR with aliased
parameters illustrated in Fig. 3 results from
applying the above method for the original Flat
Triple MR in Fig. 2.
In the second phase of this component, we
classify predicates into distinct groups. The reason
for performing this phase is to better understand
the grammatical structures of references.
Therefore, when analyzing new RDF data in
unknown domains, we could define the
appropriate new semantic templates.

In this study, we define four groups of
predicates. With each group, we clarify the
general English grammatical structure for all
predicates.
• Group 1. The predicates in this group

show the situations in which the AGENT
takes the object role of the action
performed by the PATIENT_X.

As an example, we have Flat Triple MR
“operatingOrganisation[AGENT | PATIENT_1]”. The
predicate “operatingOrganisation” indicates that
AGENT takes the object role and PATIENT_1 takes
the subject role of the action. One semantic
template for this Flat Triple MR is “AGENT is

operated by PATIENT_1.”.
• Group 2. The predicates in this group

show the situations in which the
PATIENT_X is the property / location /
career of the AGENT.

As an example, we have Flat Triple MR
“location[AGENT | PATIENT_1]”. The predicate

180

5

“location” indicates that PATIENT_1 is the location
of AGENT. One semantic template for this Flat
Triple MR is “AGENT is located in PATIENT_1.”.
• Group 3. The predicates in this group

show the situations in which the
PATIENT_X is the date time.

As an example, we have Flat Triple MR
“birthDate[AGENT | PATIENT_1]”. The predicate
“birthDate” indicates that PATIENT_1 is the date
time. One semantic template for this Flat Triple
MR is “AGENT was born on PATIENT_1.”.
• Group 4. The remaining predicates should

be in this group.
As an example, we have Flat Triple MR
“almaMater[AGENT | PATIENT_1]”. One semantic
template for this Flat Triple MR is “AGENT was

graduated from the PATIENT_1.”.

3.2 Template Mining Component

We build the warehouse of semantic templates
and dictionary of corpora in this component. The
crucial question here is: How to determine the
strings (groups of words) that express the
information of each parameter or predicate? To
answer this question, we perform the following
sub-tasks:
During the first sub-task, we analyze the
parameter with the following steps:
• Step 1. Split the parameter into a set of

separated tokens.
• Step 2. Adding the prepositions to the suitable

position in the above set. We handle this step
according to training references and common
English communications. We then create the
new string from the set of token in each
situation. We will add the new string into the
dictionary.

• Step 3. We determine the number of tokens in
each string. We then sort the list of strings
according to the number of tokens from
highest to lowest.

As an example, with parameter
“Jones_County,_Texas”, we can have strings: “Jones

County Texas” or “Jones County, Texas”.
During the second sub-task, we determine the
strings in reference that have the similarity with
each string in the list from the above first task,
which expresses the current considering
parameter. We perform this task through the
following steps:
• Step 1. We build the list of n-grams from the

considering reference. Here, n is the number

of tokens of each string from the list in the
above first sub-task. We then create the string
for each n-gram.

• Step 2. We browse each string from Step 1
and consider two situations:
▪ Step 2.1. If the current string is normal

type. We apply the Jaro-Winkler
similarity5 to compare with the
considering string from the list in the
above first sub-task. If the similarity is
higher than the threshold is 0.9, then we
(i) add into the dictionary and (ii) replace
by the alias of current considering
parameter.

▪ Step 2.2. If the current string is date type.
We transform this string and the
considering string from the list in the
above first sub-task into date format. We
then check if these two dates are the same
or not. If they are the same dates, then we
(i) add into the dictionary and (ii) replace
by the alias of current considering
parameter.

As an example, with the above defined strings, we
determine some strings from training references:
“Jones County in Texas”. Another example is
parameter “1913-05-05”, we determine the string
that expressed the same date is “May 5th 1913” or
“May 5, 1913”.
During the third sub-task, we detect the groups
of words that express each predicate with the
same idea as in the above first and second sub-
task.
• Step 1. We analyze the current predicate. We

create a string that contains all tokens
extracted from this predicate.

• Step 2. We build three lists of n-grams from
the considering reference. Here n is in turn
one of three numbers: (i) number of the above
tokens – 1; (ii) number of the above tokens;
(iii) number of the above tokens + 1. We then
create the string for each n-gram.

• Step 3. We apply the Jaro-Winkler similarity5
to compare with the string from Step 1. If the
similarity is higher than the threshold is 0.8,
then we (i) add into the dictionary and (ii)
replace by the alias of current considering
parameter.

As an example, with predicate “cityServed”, we
have some similar strings: “city is served by” or
“serves the city”.

181

6

3.3 Augmentation Component

We realize this step through two main phases:
• Phase 1. We assign alias AGENT and

PATIENT_X for each parameter and classify
predicates into groups.

As an example, consider Flat Triple MR
“producer[English_Without_Tears | Anatole_de_Grunwald]”
in the surprise domain. We have the alias Flat
Triple MR “producer[AGENT | PATIENT_1]”. The
predicate “producer” is classified into Group 2, as
mentioned in Section 3.1.
• Phase 2. Based on the information from

Phase 1, we define the new semantic
templates for input Flat Triple MR having 1
to 7 predicates.

As an example, with the above Flat Triple MR,
we the find the new semantic templates: (i) “The

producer of AGENT is PATIENT_1.”; (ii) “AGENT was

produced by PATIENT_1.”.
The key ideas for handling phase 2 are:
• As mentioned in Section 3.1, with each group

of predicate, we have the similar English
grammatical structures.

• We see that the complex semantic templates
in warehouse, which are the output of Flat
Triple MR having more than one predicate,
are actually different grammatical structures
to express the combination between other
semantic templates, which are the output of
Flat Triple MR having less number of
predicates. We define the new complex
structures based on this observation and
common English communication.

4 Experiment and Evaluation

The Organizer provided the testing data with three
types of characteristics: (i) all the entities and
categories of RDF triples/texts existed in the
training data; (ii) only categories of RDF
triples/texts existed in the training data and not the
entities; (iii) surprise domains in which the
categories do not exist in the training data. The
total amount of testing data can be classified into
categories as in Table 2:

Categories Surprise

Domain
Number
Entries

Percentage
on Total
Entries

Airport 95 5.34%
Artist 109 6.13%
Astronaut 82 4.61%
Athlete 50 2.81%
Building 46 2.59%
Celestial Body 49 2.75%
City 83 4.65%
Comics Character 30 1.69%
Company 66 3.71%
Film X 264 14.84%
Food 46 2.59%
Mean Of
Transportation

 58 3.26%

Monument 46 2.59%
Musical Work X 290 16.30%
Politician 29 1.63%
Scientist X 259 14.56%
Sports Team 44 2.47%
University 90 5.06%
Written Work 43 2.42%

Table 2: Brief analysis of testing data.

4.1 Automatic Evaluation

According to the WebNLG 2020 Challenge, to
measure the scores, the Organizer used five main
metrics: BLEU (Papineni et al. 2002), METEOR
(Lavie and Agarwal 2007), chrF++ (Popović,
2015, 2017), TER (Snover et al. 2006), and
BERT-Score (Zhang et al. 2020). There are total
33 guess systems, including 2 baseline systems
for the comparison. According to the results, our
system ranks 9th when ordered by METEOR
metric, which means our system gets better
METEOR than 24 other submissions, including 2
baseline systems. Besides, when comparing with
2 baseline systems, our system gets better points
in most of the metrics.

In Table 3, we show the results of the top ten
systems according to the automatic evaluation
results4 and two baseline systems (take the rank
15 and 18 respectively).

SYSTEM
ID

BLEU BLEU
NLTK

METEOR CHRF++ TER BERT
PRECISION

BERT
RECALL

BERT
F1

BLEURT

id18 53.98 0.535 0.417 0.690 0.406 0.960 0.957 0.958 0.62
id30 53.54 0.532 0.414 0.688 0.416 0.958 0.955 0.956 0.61
id30_1 52.07 0.518 0.413 0.685 0.444 0.955 0.954 0.954 0.58
id34* 52.67 0.523 0.413 0.686 0.423 0.957 0.955 0.956 0.6
id5 51.74 0.517 0.411 0.679 0.435 0.955 0.954 0.954 0.6
id35* 51.59 0.512 0.409 0.681 0.431 0.956 0.954 0.954 0.59

182

7

id23 51.74 0.514 0.403 0.669 0.417 0.959 0.954 0.956 0.61
id2 50.34 0.500 0.398 0.666 0.435 0.954 0.950 0.951 0.57
id15 40.73 0.405 0.393 0.646 0.511 0.940 0.946 0.943 0.45
id28 44.56 0.432 0.387 0.637 0.479 0.949 0.949 0.948 0.54
….
Baseline 40.57 0.396 0.373 0.621 0.517 0.946 0.941 0.943 0.47
….
baseline_2 37.89 0.371 0.364 0.606 0.553 0.933 0.935 0.930 0.42

Table 3: Results of automatic evaluation: top ten systems and two baseline systems.

The full results of automatic evaluation are
showed at the final WebNLG 2020 website4.

4.2 Human Evaluation

For human evaluation, the Organizer assesses the
system outputs according to the following criteria
by native speakers recruited on crowdsourcing
platforms: (i) Data Coverage – how much
information from the data has been covered. The
text will be evaluated if it fully covers all
predicates shown in the data; (ii) Relevance – this
criterion evaluates if the text contains any non-
presented predicates. The text will be evaluated if
it mentions/describes only predicates which are in
the input; (iii) Correctness – the text will be
evaluated if it describes predicates (which are
both in data and text, e.g. relevant predicates) with
correct objects. Also, the subject has to be
described correctly; (iv) Text Structure – the text
will be evaluated if it is grammatical and well-
structured, which means the
structural/grammatical quality, written in good
English; (v) Fluency – the text will be evaluated
if it progresses naturally and sounds like a
coherent whole, which means the “naturalness”.

Each criterion has been rated with a single
number in the range from “0” (completely
disagree) to “100” (completely agree). The scores
as they appear for each criterion have been
normalised (z-scores) and clustered into groups
among which there are no statistically significant
differences according to the Wilcoxon rank-sum
significant test.
According to the results of human evaluation,
there are total 17 systems, including 2 baseline
systems, which were evaluated in this phase. Our
system ranks 1st in the first three criteria (Data
Coverage, Relevance, Correctness), ranks 3rd in
Text Structure criterion and ranks 4th in Fluency
criterion. In Table 4, we show the results of our
system (DANGNT-SGU) compared with two

4 https://beng.dice-research.org/gerbil/

baseline systems as well as five other systems
which rank 1st in at least three criteria, according
to human evaluation phase. The results are
ordered alphabetically. The full results can be
viewed at the final WebNLG 2020 website4.

As can be seen in Table 4, our system gets
better scores in most of the criteria than two
baseline systems, especially in the first three
criteria (Data Coverage, Relevance, Correctness).
Besides, there are two systems, which are
AmazonAI and OSU_Neural_NLG, rank 1st in all
criteria.

The testing results show that our system
generates good quality references from RDF
structures in WebNLG 2020 Challenge
experiment sections. Based on cursory checks,
our system was able to create long,
grammatical, meaningful, multi-sentence output,
as illustrated by the following example:

Flat Triple
MR

populationDensity[Ciudad_Ayala | 1604.0];
leaderTitle[Ciudad_Ayala | Governator];
country[Ciudad_Ayala | Mexico];
elevationAboveTheSeaLevel[Ciudad_Ayala |
1147.0];
timeZone[Ciudad_Ayala | Pacific_Daylight_Time];

Reference Ciudad Ayala, which is in the time zone of Pacific
Daylight Time, is led by the Governator in Mexico. It
has a population density of 1604.0 and an elevation
of 1147.0 above sea level.

183

8

System Data Coverage Relevance Correctness Text Structure Fluency

 Rank Avg. Z Rank Avg. Z Rank Avg. Z Rank Avg. Z Rank Avg. Z
AmazonAI 1 0.207 1 0.193 1 0.216 1 0.24 1 0.31
BASELINE 2 0.143 2 0.097 2 0.131 2 0.047 3 0.022
BASELINE2017 2 0.096 1 0.193 3 0.079 2 0.028 3 -0.082
bt5 2 0.06 1 0.134 1 0.146 1 0.177 2 0.13
DANGNT-SGU 1 0.228 1 0.153 1 0.136 3 -0.153 4 -0.162
NUIG-DSI 2 0.082 1 0.113 1 0.18 1 0.221 1 0.2
OSU_Neural_NLG 1 0.215 1 0.11 1 0.18 1 0.238 1 0.229
RALI 1 0.268 1 0.153 1 0.179 3 -0.211 4 -0.156
REF 2 0.173 1 0.112 1 0.181 1 0.162 2 0.181

Table 4: Results of human evaluation: our system and two baseline systems.

5 Conclusion

We have presented our mining system for
generating English natural language references
from XML RDF structure. Our approach has three
most important sub-tasks: (i) extract the core
information from input RDF; (ii) detect the group
for each relationship and aliases for its parameters
and generate semantic template; (iii) determine
new information and augment to the warehouse.
The evaluation results show that our approach
overcomes the requirements: (i) references have
lexical richness, syntactic variation, and discourse
phenomena; (ii) references cover whole contents
from the input RDF structure.

In future works, we intend to apply techniques
in Deep Learning and knowledge in linguistic
theories to improve the quality and naturalness of
generated texts. Besides, we expand our approach
to other datasets for a broader comparison.

References

Emilie Colin, Claire Gardent, Yassine M’rabet,
Shashi Narayan and Laura Perez-Beltrachini. 2016.
The WebNLG Challenge: Generating Text from
DBPedia Data. In Proceedings of INLG. Edinburgh
(UK).

William W. Cohen, Pradeep Ravikumar and Stephen
E. Fienberg. 2003. A comparison of string distance
metrics for name-matching tasks. KDD Workshop
on Data Cleaning and Object Consolidation, 3:
73–78.

Ondřej Dušek, Jekaterina Novikova and Verena
Rieser. 2018. Findings of the E2E NLG Challenge.
In Proceedings of INLG. Tilburg (The
Netherlands).

Ondřej Dušek, Jekaterina Novikova and Verena
Rieser. 2020. Evaluating the state-of-the-art of
End-to-End Natural Language Generation: The

E2E NLG challenge. Computer Speech &
Language, 59:123-156.

Thiago Castro Ferreira, Diego Moussallem, Emiel
Krahmer and Sander Wubben. 2018. Enriching the
WebNLG corpus. In Proceedings of INLG. Tilburg
(The Netherlands).

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In Proceedings of
EMNLP. Hong Kong (China).

Thiago Castro Ferreira, Claire Gardent, Nikolai
Ilinykh, Chris van der Lee, Simon Mille, Diego
Moussalem and Anastasia Shimorina. 2020. The
2020 Bilingual, Bi-Directional WebNLG+ Shared
Task: Overview and Evaluation Results
(WebNLG+ 2020). In Proceedings of the 3rd
WebNLG Workshop on Natural Language
Generation from the Semantic Web (WebNLG+
2020).

Albert Gatt and Emiel Krahmer. 2018. Survey of the
State of the Art in Natural Language Generation:
Core tasks, applications and evaluation. Journal of
Artificial Intelligence Research, 61:737–763.

Claire Gardent, Anastasia Shimorina, S. Narayan and
Laura Perez-Beltrachini. 2017. Creating Training
Corpora for NLG Micro-Planners. In Proceedings
of ACL. Vancouver (Canada).

Claire Gardent, Anastasia Shimorina, Shashi Narayan
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In
Proceedings of INLG. Santiago de Compostela
(Spain).

Glorianna Jagfeld, Sabrina Jenne and Ngoc Thang
Vu. 2018. Sequence-to-Sequence Models for Data-
to-Text Natural Language Generation: Word- vs.
Character-based Processing and Output Diversity.
In Proceedings of INLG. Tilburg (The
Netherlands).

184

9

Matthew A. Jaro. 1989. Advances in record linkage

methodology as applied to the 1985 census of
Tampa Florida. Journal of the American Statistical
Association. 84(406): 414–420.

Matthew A. Jaro. 1995. Probabilistic linkage of large
public health data file. Statistics in Medicine.
14(5–7): 491–498.

Alon Lavie and Abhaya Agarwal. 2007. METEOR:
An automatic metric for MT evaluation with high
levels of correlation with human judgments. In
Proceedings of the Second Workshop on Statistical
Machine Translation. Prague (Czech Republic).

Anirban Laha, Parag Jain, Abhijit Mishra and Karthik
Sankaranarayanan. 2019. Scalable Micro-planned
Generation of Discourse from Structured Data.
Journal of Computational Linguistics, 45(4):65–
170.

Amit Moryossef, Yoav Goldberg and Ido Dagan.
2019. Step-by-Step: Separating Planning from
Realization in Neural Data-to-Text Generation. In
Proceedings of NAACL-HLT. Minneapolis,
Minnesota (USA).

Diego Moussallem, Thiago Castro Ferreira, Marcos
Zampieri, Maria Claudia Cavalcanti, Geraldo
Xexeo, Mariana Neves and Axel-Cyrille Ngonga
Ngomo. 2018. RDF2PT: Generating Brazilian
Portuguese Texts from RDF Data. In Proceedings
of LREC. Miyazaki (Japan).

Diego Moussalem, Paramjot Kaur, Thiago Castro
Ferreira, Chris van der Lee, Anastasia Shimorina,
Conrads, Felix, Michael Röder, René Speck, Claire
Gardent, Simon Mille, Nikolai Ilinykh and Axel-
Cyrille Ngonga Ngomo. 2020. A General
Benchmarking Framework for Text Generation. In
Proceedings of the 3rd WebNLG Workshop on
Natural Language Generation from the Semantic
Web (WebNLG+ 2020).

Dang Tuan Nguyen and Trung Tran. 2018. Structure-
based Generation System for E2E NLG Challenge.
In E2E NLG Challenge System Descriptions.

Dang Tuan Nguyen and Trung Tran. 2020. A
Template-based Approach for Generating
Vietnamese References from Flat MR Dataset in
Restaurant Domain. In Proceedings of FDSE.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a method for
automatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics.
Philadelphia (USA).

Laura Perez-Beltrachini, Rania Mohamed Sayed and
Claire Gardent. 2016. Building RDF Content for
Data-to-Text Generation. In Proceedings of
COLING. Osaka (Japan).

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine
Translation. Lisbon (Portugal).

Maja Popović. 2017. chrF++: words helping character
n-grams. In Proceedings of the Second Conference
on Machine Translation, Volume 2: Shared Tasks
Papers. Copenhagen (Denmark).

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems, studies in natural
language processing edition. Cambridge University
Press.

Anastasia Shimorina, Elena Khasanova and Claire
Gardent. 2019. Creating a Corpus for Russian
Data-to-Text Generation Using Neural Machine
Translation and Post-Editing. In Proceedings of
BSNLP Workshop. Florence (Italy).

Anastasia Shimorina and Claire Gardent. 2018.
Handling Rare Items in Data-to-Text Generation.
In Proceedings of INLG. Tilburg (The
Netherlands).

Matthew Snover, Bonnie Dorr, Richard Schwartz,
Linnea Micciulla, and John Makhoul. 2006. A
Study of Translation Edit Rate with Targeted
Human Annotation. In Proceedings of Association
for Machine Translation in the Americas.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang
and Wei Wang. 2018. GTR-LSTM: A Triple
Encoder for Sentence Generation from RDF Data.
In Proceedings of ACL. Melbourne (Australia).

William E. Winkler. 1990. String Comparator Metrics
and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage. In Proceedings of the
Section on Survey Research Methods. American
Statistical Association: 354–359.

William E. Winkler. 2006. Overview of Record
Linkage and Current Research Directions.
Research Report Series, RRS.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In
Proceedings ICLR.

Wikipedia contributors. 2020. Jaro-Winkler distance.
Wikipedia, The Free Encyclopedia.

185

