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Abstract

Converting a knowledge graph or sub-graph
to natural text is useful when answering ques-
tions based on a knowledge base. High-
capacity language models pre-trained on large-
scale text corpora have recently been shown
to be powerful when fine-tuned for the
knowledge-graph-to-text (KG-to-text) task. In
this paper, we propose two classes of methods
to improve such pre-trained models for this
task. First, we improve the structure aware-
ness of the model by organizing the input as
well as learning optimal ordering via multitask
learning. Second, we bridge the domain gap
between text-to-text and KG-to-text tasks via a
second-phase KG-to-text pre-training on sim-
ilar datasets and extra lexicalization supervi-
sion to make the input more similar to natural
text. We demonstrate the efficacy of our meth-
ods on the popular WebNLG dataset. Our best
model achieves an almost 3 point BLEU im-
provement on a strong baseline while lowering
the relative slot-error-rate by around 35%. We
also validate our results via human evaluation.

1 Introduction

There is an abundance of highly accurate knowl-
edge in various forms of structured data organized
in tables and knowledge graphs (KGs). Knowledge
graphs, such as Wikidata or DBpedia, are essential
for many applications, where the data is stored in
resource description framework (RDF) format with
each triple containing a subject, a property, and
an object. Converting a knowledge sub-graph to
natural text is an important step for natural commu-
nication in question answering applications such
as in voice assistants. For example, when the user
asks for information about a politician, the sys-
tem not only needs to retrieve a sub-graph of RDF
triples related with that person, but also needs to
fluently describe these triples in natural language
responses. As such, KG-to-text is a form of Natural

Language Generation (NLG) for generating textual
descriptions from a sub-graph of a KG.

Traditional approaches separate the KG-to-text
task into several micro-tasks, including discourse
ordering, sentence structuring, lexicalization, and
referring expression generation. However, with the
advancement of end-to-end neural network mod-
els, attempts have been made to build neural NLG
systems that treat the problem as a single task and
perform both the planning and realization aspects
of text generation simultaneously. Although end-to-
end models trained from scratch did not outperform
pipeline approaches (Nayak et al., 2017; Moryossef
et al., 2019; Ferreira et al., 2019), end-to-end mod-
els pre-trained on large-scale text corpora have
been shown to achieve state-of-the-art when fine-
tuned on the KG-to-text task (Kale, 2020).

However, it is computationally prohibitive to de-
velop large pre-trained models for converting any
structure (e.g., KG, Table) to text. Moreover, there
is much less available unlabeled structured data
than text which is essential for self-supervised pre-
training. Thus, we look into ways of adapting the
pre-trained text-to-text models for the KG-to-text
task. This comes with a few challenges: First, the
model is not aware of the implicit planning stage
that can be essential in the task to form natural de-
scriptions. In this stage, the triples are reorganized
but the content within each triple is kept unchanged
to smooth the description of the sub-graph. Second,
such language models are optimized for unstruc-
tured text and have generally not seen any KG
representations during their pre-training phase.

In this work, we study the advantages and limita-
tions of these pre-trained models for the KG-to-text
task, and propose improvements from two perspec-
tives. First, we examine improving the model’s
awareness of structures. This can be achieved via
two methods: (1) organizing the input before feed-
ing it to the model; (2) learning the structure in the
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input by multitask learning of the optimal ordering.
Second, we bridge the domain gap between text-
to-text and KG-to-text tasks. This is achieved by
(3) a second-phase KG-to-text pre-training, as well
as (4) extra lexicalization supervision to make the
input more similar to natural text.

The rest of this paper is organized as follows:
We describe the benchmark dataset and discuss
the limitations of text-to-text pre-trained models
on KG-to-text task in Section 2. Our proposed
improvements are presented in Section 3. The ex-
perimental setup and results are discussed in Sec-
tion 4 and 5. Section 6 describes related work. We
conclude in Section 7 and present future directions.

2 Background

2.1 Enriched WebNLG Dataset

The KG-to-text data we use in this work is the
enriched version of WebNLG dataset (Ferreira
et al., 2018). In the WebNLG dataset (Gardent
et al., 2017a,b), there are multiple subject-property-
object triples in each entry and multiple text refer-
ences are provided for each entry that describe the
triple set. The triples are structured in diverse graph
shapes and the generated text needs to cover the
information in all triples. The enriched WebNLG
dataset further provides intermediate supervision
for each reference text such as gold triple ordering
and gold sentence boundary. For example, for an
entry with two triples (William Anders, occupation,
Fighter pilot) and (William Anders, was a crew
member of, Apollo 8), the reference text “Williams
Anders was a fighter pilot and a crew member of
Apollo 8.” has a gold triple order of (first, sec-
ond), and “William Anders was part of the Apollo
8 crew and was once a fighter pilot.” has a gold
triple order of (second, first). There are 246 distinct
properties in the dataset over 10 training domains
and 5 unseen test domains. After removing cor-
rupt entries, there are (6940, 872, 1862) entries and
(18102, 2268, 4928) reference texts in training, dev,
and test sets, respectively.

2.2 Text-to-text Pre-trained Models

In this work, we use BART (Lewis et al., 2019) as
our text-to-text pre-trained model as well as our
baseline method. Similar to T5 (Raffel et al., 2019)
used in Kale (2020), BART is a transformer-based
sequence-to-sequence encoder-decoder model pre-
trained on unlabeled text data with de-noising ob-
jectives, where input is corrupted with noise and

the model learns to reconstruct the original text.

Fine-tuning on KG-to-text Fine-tuning text-to-
text pre-trained models on the KG-to-text task is a
form of transfer learning, which has already been
shown useful for other downstream tasks such as
document classification, question answering, and
summarization (Raffel et al., 2019). With the lan-
guage model and world knowledge learned from
training on large-scale text data, the fine-tuned mod-
els generate more natural, fluent text and show bet-
ter robustness to out-of-domain data. Since BART
takes text sequence as input, we represent triples as
linearized strings, using tags to indicate subjects,
properties, and objects. This is similar to how Kale
(2020) used T5. For example, the flattened string
of the triple (Subject, Property, Object) is “ s Sub-
ject p Property o Object”. Multiple flattened
triples can be concatenated to form the final input.

KG-to-text Task Challenges The main limita-
tion of fine-tuning BART on KG-to-text, unlike
common downstream NLP tasks, is the gap be-
tween the expected natural language and the struc-
tured RDF triples. This gap is twofold: (1) the
model is not aware of the implicit planning stage
in the KG-to-text task, where the triples are reorga-
nized but the content within is kept unchanged; (2)
the model also has generally not seen any KG rep-
resentations during the pre-training phase, making
it difficult to understand the triples and grasp the
relationships within and between triples.

Table 1 shows examples of typical errors made
by the baseline model. In the top example, the
second and third triples are incorrectly merged and
the fifth triple is completely ignored; in the bottom
example, the property in the fourth triple is wrongly
described as preceded by. These errors are due to
insufficient understanding of the implicit triple set
structure and the information within triple, as well
as poor implicit planning. We also observe that the
model is almost perfect on small triple sets, and
errors are mostly seen in larger entries with four or
more triples while having complex graph structures.
This further indicates the limitation of the baseline
in understanding triple structures and relations.

3 Improvements upon Pre-trained
Language Models for KG-to-text

Inspired by the limitations of the baseline text-to-
text pre-trained models for the KG-to-text task, we
propose methods to improve the triple structure
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Input Output
(Baked Alaska, country, France)
(Hong Kong, leader name, Carrie Lam)
(France, leader name, Gerard Larcher)
(France, language, French language)
(Baked Alaska, region, Hong Kong)

baked alaska is a dish from france,
where the french language is spoken.
carrie lam and gerard larcher are lead-
ers in hong kong.

(A Long Long Way, preceded by, Annie Dunne)
(A Long Long Way, country, Ireland)
(A Long Long Way, publisher, Viking Press)
(A Long Long Way, followed by, The Secret Scripture)

a long long way was written in ireland
and published by viking press. it was
preceded by annie dunne and the secret
scripture.

Table 1: Typical errors made by pre-trained models fine-tuning on enriched WebNLG dataset.

awareness as well as bridge the gap between the
text-to-text pre-training and KG-to-text fine-tuning.

3.1 Improving Triple Structure Awareness
We propose two complementary methods: pro-
viding a better organized input triple order to the
model, and providing extra supervision to ease the
learning of planning.

Better organized input Pre-trained models
could be more aware of the relations between the
triples if we implicitly or explicitly encoded the tree
structure in the flattened input sequence. Direct lin-
earization into a sequence can make learning the
tree structure more difficult. For implicit structure,
we reorder the triples in a fixed tree traversal order,
such as breadth-first search (BFS) or depth-first
search (DFS). For explicit structure, we discard
the triple-level input and directly flatten the KG
graph into a textual tree representation with brack-
ets (loops are broken randomly).

In addition to ordering triples in tree traversal
orders, we also explore having a consistent order
for sibling triples that share the same subject. This
is inspired by the observation that some properties
are often lexicalized before others, for example,
the birth date of a person often precedes the death
date in description. We find an optimal ordering of
the properties which can cover 70% of the sibling
property pairs, and use this order for sibling triples.

Multitask Learning of Planning and Text Gen-
eration This method is similar to classic NLG
models, in which both a planning stage and a real-
ization stage are combined to generate text. As pre-
trained models have high capacity, we use the same
model to perform planning and KG-to-text jointly
in a multitask learning (MTL) fashion: given the
input triples, the first task is to plan by predicting
the indices of the gold triple order and the second
task is to generate the text describing the triples.

For the task of planning, we leverage gold triple
order, which is extracted from each text reference,
indicating the order in which the input triples are
described. We consider multiple ways to provide
supervision on gold triple order during training in
multitask approaches: by concatenating gold order
and text in target sequence, by having one encoder
and two decoders for two tasks, and by pooling the
data of both tasks together and using tags to indi-
cate the corresponding task. We also explore the
classic pipeline approach as a cascading alternative
of multitask learning, with two pre-trained models,
one for predicting triple order and the other for text
generation using the predicted order.

3.2 Bridging the Gap between text-to-text
and KG-to-text

As mentioned earlier, a major challenge in using
pre-trained models for KG-to-text is the gap be-
tween natural language and the RDF triples. In
this section, we propose two methods to tackle this
challenge. The first method brings the text-to-text
pre-trained model closer to KG-to-text, while the
second brings the KG-to-text data closer to a text-
to-text task.

Second-phase Pre-training on a Noisy KG-to-
text Dataset Similar to the domain-adaptive pre-
training found effective on text classification tasks
(Gururangan et al., 2020), the most straightforward
approach for bridging the gap between text-to-text
and KG-to-text is to perform a second-phase pre-
training on data and tasks similar to KG-to-text. We
explore utilizing an inverse relation extraction (RE)
dataset, DocRED (Yao et al., 2019), containing
96 distinct relations. The goal of RE is to extract
triples from text, so the reverse of this task could
be roughly treated as KG-to-text. Although addi-
tional information might exist in the text compared
to in the extracted triples, the noisy second-phase
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pre-training could still benefit the model’s general-
ization for the final KG-to-text task.

Property Lexicalization In RDF triples, the se-
mantic representations for the properties are of-
ten under-specified or even cryptic. Moreover, the
property name in the input can be far from its ex-
pected surface form. To address this challenge, we
curate lexicalization templates for each property in
the WebNLG and DocRED datasets. For example,
the triple (Julia Morgan, significant building, River-
side Art Museum) is lexicalized into “Julia Morgan
designed Riverside Art Museum”. We might also
need to change the sentence’s voice, e.g., (British
Hong Kong, representative, Chris Patten) is lexical-
ized into “Chris Patten served as representative of
British Hong Kong”. By using property lexicaliza-
tion templates, the triple inputs are converted into a
form closer to natural language and are more easily
consumed by pre-trained language models.

4 Experimental Setup

Baseline Our baseline model is based on fine-
tuning BART using the flattened triples with the
original order. We run our experiments five times
with different random seeds to have a better idea of
the random performance fluctuations. Since small
pre-trained models have limited generalization abil-
ity after fine-tuning (Kale, 2020), we experiment
with BART Base (6 Encoder and Decoder layers,
140M parameters) to find the best configuration
and deploy the best setting on BART Large (12 En-
coder and Decoder layers, 400M parameters). For
pre-processing, we converted camel-case entities
into plain text and cleaned special tokens. We fine-
tune BART for 50 epochs using Lamb optimizer
(You et al., 2019) with learning rate of 1.65e−4
and early stopping with a patience of 10.

Automatic Metrics For measuring similarity be-
tween the output and references, we use BLEU-4
(Papineni et al., 2002) with multiple references as
the metric. For semantic fidelity, we use slot error
rate (SER) measured by the percentage of unique
input entities missing in the output. Standard SER
only considers exact match of entities in the text
output, but many entities in the WebNLG dataset
need to be rephrased in the natural text descrip-
tions (e.g., when the property is nationality, the
object United States is often rephrased to Ameri-
can). Thus, we modify the SER metric to account
for the rephrasing of entities seen in gold refer-

BLEU SER
Baseline 55.92 3.96

(a)

+ DFS 56.96 3.83
+ BFS 56.25 4.19
+ DFS w/ P-order 56.14 4.25
+ BFS w/ P-order 56.02 3.92

(b)

+ Pipeline 55.60 4.25
+ MTL concat (order‖text) 56.46 2.65
+ MTL concat (text‖order) 56.30 3.51
+ MTL two decoders 56.47 3.79
+ MTL data pooling 55.82 3.30

(c)
+ P-Lex first-lex w/ tag 58.71 3.30
+ P-Lex first-lex w/o tag 58.62 3.03
+ P-Lex merged 58.01 3.87

(d) + Pre-train DocRED 56.92 3.71

Table 2: WebNLG test results on using different imple-
mentations for (a) triple reordering, (b) multitask learn-
ing, (c) property lexicalization, and (d) second-phase
pre-training. The abbreviations are provided in the text.

ences. As such, SER would capture cases where
the model is missing some entities (and hence some
triples) in the output but would fall short if an en-
tity is misused in other relations. To check whether
the improvements on the metrics are statistical sig-
nificant, we also conduct independent two-sample
t-tests with a threshold of 0.05.

Human Evaluations To measure the occurrence
of errors that cannot be captured by automatic met-
rics, we randomly select entries from test set and
annotate the outputs of the baseline and best model
for grammaticality and correctness. Specifically,
the human annotators are asked two binary ques-
tions with customized guidelines: (1) Is the gener-
ated description grammatical? (2) Given the input
triple set, is the generated output correct? The lat-
ter consists of various aspects such as information
omission and hallucination.

5 Results

For each of the improvements proposed in Sec-
tion 3, we consider multiple alternatives and com-
pare their performance. As shown in Table 2, the
test set BLEU of the BART base model is close to
the T5 base model (Kale, 2020), and we use this as
a strong baseline to study the effectiveness of our
proposed techniques.

5.1 Better Organized Input

We observe that explicit tree representation using
brackets yields slightly worse results in both BLEU
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Baseline Input s Antioquia Department p country o Colombia
s Bandeja paisa p ingredient o Chorizo
s Bandeja paisa p region o Antioquia Department

Target Chorizo is an ingredient in Bandeja paisa, a dish from the Antioquia Department region, in Colombia.

DFS Input s Bandeja paisa p ingredient o Chorizo
s Bandeja paisa p region o Antioquia Department
s Antioquia Department p country o Colombia

Target same as baseline
MTL
concat

Input same as baseline
Target 1 2 0. Chorizo is an ingredient in Bandeja paisa, a dish from the Antioquia Department region, in Colombia.

P-Lex
w/tag

Input <p> <s>Antioquia Department</s> is in <o>Colombia</o> </p>
<p> <o>Chorizo</o> is ingredient in the dish <s>Bandeja paisa</s> </p>
<p> <s>Bandeja paisa</s> is from <o>Antioquia Department</o> </p>

Target same as baseline

Table 3: Examples of input and target output after applying the proposed techniques.

and SER when compared with implicit tree traver-
sal methods. This may be due to the even larger
gap between the tree representations and natural
text. Thus, we only report the results on using im-
plicit tree traversal orders and having a consistent
order for sibling triples in Table 2-a.

Between different traversal orders, DFS per-
forms better than BFS, matching our observation
that humans tend to describe sub-graphs in a depth-
first fashion. However, using a fixed property order
for sibling triples (P-order) does not improve the
results. In summary, for a better organization of the
input, flattening triples in DFS order significantly
improves BLEU (p = 0.011) at no extra cost.

5.2 Multitask Learning of Planning and Text
Generation

In classic NLG models, text planning and text gen-
eration tasks are connected in cascade to form a
pipeline. We first follow the pipeline approach
using our pre-trained models: one BART is fine-
tuned on predicting the indices of the gold triple
order, and another BART is fine-tuned on using
the predicted triple order from the first BART to
generate text. Although the first BART can predict
the gold triple order indices with an accuracy of
66% on test set, the output of the second BART is
even worse than the baseline model without any
planning module (Table 2-b). We contribute the
inferior performance of the pipeline model to the
error propagation through the two separate stages:
for entries with more triples and complex graph
structure, the first BART is more likely to predict
wrong order, and the inconsistency in the predicted
order leads to more error in the generated text.

Next, we focus on the end-to-end approaches
and observe that simply concatenating the target
sequences of both tasks (order‖text) works better

than having two decoders or pooling data of the
two tasks, with significant improvements in both
BLEU (p = 0.039) and SER (p = 0.030) (see Ta-
ble 2-b). Since planning the order of the triples can
be seen as the pre-task of generating text, we hy-
pothesize that the sequential order of concatenation
in multitask is the key to the better performance.
In other words, during auto-regressive decoding,
the decoder could leverage the triple order plan it
had previously predicted to help generation, alle-
viating the problem of missing or modified triples.
We conducted another experiment by swapping the
concatenated tasks and using (text‖order) as the
target sequence, and the performance, especially
SER, is much worse than using the (order‖text)
target, in line with our hypothesis.

In order to validate the above hypothesis as to
the success of end-to-end multitask models trained
on the (order‖text) target format, we identified a
proxy task setup that is conceptually very simi-
lar to our proposed multitask learning: Train an
unshuffling auto-encoder, where natural language
text is broken into contiguous blocks of text and
shuffled, and the unshuffling auto-encoder predicts
the order of the text blocks as well as the original,
unshuffled text. We used the target-side WebNLG
dataset for this task, and we computed the exact
match between the model output and the unshuffled
text on the test set. We found that (order‖text) per-
formed substantially better than (text‖order) (91.44
vs 84.54), which itself performs slightly better than
the no-MTL baseline (82.53), offering strong vali-
dation for the hypothesis.

Other alternatives for the planning task are also
considered: predicting not only the gold triple order
but also the gold sentence boundary of the triples
provided in the enriched WebNLG dataset; instead
of predicting the indices of gold triple order, output
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the full flattened triples in gold order; adding triple
indices in input sequence to aid the prediction of
gold triple indices. However, none of these alterna-
tives yield a significant change in the metrics.

5.3 Property Lexicalization
From Table 2-c, we observed that property lexical-
ization provides significant improvement on BLEU
(p < 0.001), due to the higher similarity of flat-
tened triples using the templates and natural text.
However, each property might have multiple candi-
date templates to be lexicalized into. For example,
the property editor can be lexicalized into either
<subject>’s editor is <object> or <object> is
the editor of <subject> depending on voice. We
explore different ways of handling properties with
multiple templates: (1) always use the first tem-
plate; (2) merge all templates when flattening the
triple, separated by |; (3) use a random template; (4)
for each possible combination of triple templates,
duplicate the entry to form multiple data points.

We observed that (3) and (4) perform signifi-
cantly worse than others, indicating that a consis-
tent representation for the same property is more
important than covering all possible template varia-
tions. Moreover, as shown in Table 2-c, (1) P-Lex
first-lex has higher BLEU and SER than (2) P-Lex
merged, suggesting that only providing one tem-
plate for each property is enough for the pre-trained
models to understand the semantics of the property,
and the model can learn to rephrase the template
into other variations as needed.

We also consider two alternatives for flattening
the templates: one is using XML-style tags to mark
the start and end of the subject, object, and property
template; another is to directly insert entities into
the template with no tags included to be as close
as possible to natural text, similar to Kale and Ras-
togi (2020). We observed no significant difference
between these two alternatives when only apply-
ing the property lexicalization technique. However,
when combined with multitask learning, the repre-
sentation with XML-style tags outperforms the one
without tags; when combined with second-phase
pre-training, the representation without tags outper-
forms the one with XML-style tags.

5.4 Second-phase Pre-training
The inverse RE dataset that we use for second-
phase pre-training is DocRED, which has 3K docu-
ments with 96 distinct relations. We segment the
documents into sentences, resulting in 17K entries,

each containing one sentence and its extracted rela-
tions. After the second-phase pre-training, we per-
form the same fine-tuning process on the WebNLG
dataset. The results in Table 2-d show that the
further pre-training helps the model adapt to the
KG-to-text problem, with a significant increase in
BLEU (p = 0.003). On the other hand, due to the
noisy nature of inverse RE datasets (i.e., existence
of extra text not corresponding to any relations), no
significant gains on SER is observed.

5.5 Input and Output Format

Table 3 shows examples of flattened input triples
and target outputs after applying the best individual
configurations of our proposed techniques. For the
DFS tree traversal, the order of the flattened triples
is modified; for MTL by concatenation, the target
output is augmented with the target of the auxiliary
planning task; for property lexicalization, the input
triples are flattened using templates. Note that for
second-phase pre-training, the format of both input
and target output is the same as baseline and thus
not shown in the table.

5.6 Combination of the Techniques

Here, we study the combined effect of the best indi-
vidual techniques discussed before. Table 4 shows
the automatic evaluation results on the full test set,
the domains seen in training set, and the unseen
domains in the test set, respectively. We compare
the results using the baseline model, the individual
techniques, and the combinations of techniques. In-
stead of exhausting all combinations, we stack the
techniques in the order of extra resource used: DFS,
MTL by concatenation, property lexicalization, and
second-phase pre-training.

Comparing which technique is the most useful
By comparing the performance of the individual
techniques, we find that property lexicalization
results in highest improvement in overall BLEU
score, while multitask learning gives the best im-
provement in overall SER. This trend is also the
same for the unseen domains. For seen domains,
property lexicalization gives the highest improve-
ment in both metrics. DFS and property lexical-
ization help the model in both seen and unseen
domains, while the improvements of MTL and
second-phase pre-training are mostly observed in
unseen domains. Note that we also collect lexi-
calization templates for the unseen properties in
the test set, so that for the models involving prop-
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All Seen Unseen
BLEU SER BLEU SER BLEU SER

Baseline 55.92±0.28 3.96±0.68 63.69 1.98 46.53 6.11
+ DFS 56.96 3.83 64.33 1.95 47.99 5.88
+ MTL 56.46 2.65 63.41 1.87 47.97 3.50
+ P-Lex 58.71 3.30 64.35 1.77 51.89* 4.97
+ Pre-train 56.92 3.71 63.43 2.2 49.08 5.35
+ DFS + MTL 56.77 2.63 63.28 1.81 48.79 3.53
+ DFS + MTL + P-Lex (Best) 58.67 2.48 63.63 1.81 52.65* 3.21
+ DFS + MTL + Pre-train 57.42 2.85 63.47 1.95 50.13 3.84
+ DFS + MTL + P-Lex + Pre-train 58.61 2.88 63.49 1.98 52.67* 3.87

Table 4: Automatic evaluation results of our proposed techniques on the WebNLG test set.

erty lexicalization (marked by * in Table 4), the
unseen domains are not strictly “unseen” although
the model has not been trained on these domains.

Performance improvement by integrating all
techniques When combining the techniques,
most of the improvements can be stacked on top
of each other. The only exception is when we
add second-phase pre-training on a combination of
DFS, MTL, and property lexicalition. This might
be because the model trained on combining the
former three techniques is already very powerful,
and the DocRED dataset for KG-to-text second-
phase pre-training includes too much noise to be
helpful for the model. Taking this into considera-
tion, the best BART base model using our proposed
techniques is DFS+MTL+P-Lex, with significant
improvements in both BLEU (p < 0.001) and SER
(p = 0.012). We will use this model for qualitative
analysis and human evaluations against baseline
model in the later sections.

Scaling to larger models To obtain the best per-
formance for text-to-text pre-trained model, we
also deploy the best config on BART large model.
We achieve 59.97 BLEU and 1.66 SER, compared
with the baseline BART large which yields 58.98
BLEU and 3.20 SER. This sets a new state-of-the-
art result on the enriched WebNLG dataset.

5.7 Qualitative Analysis
Table 5 shows the generated text of the baseline
and the best models. In the top example (seen do-
main), the baseline model incorrectly merges the
first triple into the fifth triple, while the best model
understands triple structure better and describes
the first triple correctly. The improvements can be
more clearly observed in the bottom example (un-
seen domain), where the baseline model misses the
second triple, and incorrectly modifies the property

in the first triple, the object in the third triple, and
both property and entities in the fourth triple. By
using our proposed techniques, the best model not
only covers the entities in each triple faithfully, but
also lexicalizes the unseen properties better.

5.8 Human Evaluations

We evaluate our best model alongside the baseline
model via human evaluations. We randomly select
250 seen and 250 unseen entries, and the outputs
of the baseline and the best (DFS+MTL+P-Lex)
model on these entries are annotated by 10 human
annotators trained on the task with custom correct-
ness and grammaticality guidelines. The results
are shown in Table 6. We can see that both models
which use BART as the underlying generator enjoy
almost perfect grammaticality. On the other hand,
our best model’s improvement for the correctness
is statistically significant which verifies our obser-
vations from the previous section. Note that the
correctness improvement for the triple sets from
unseen domains is larger as expected (p=0.0125
in McNemar’s test, N=250), although we observe
average metric improvements with the best model
in nearly all evaluations.

6 Related Work

In recent years, most studies on KG-to-text and
more broadly data-to-text use neural sequence-to-
sequence (seq2seq) systems to generate text. Yet
seq2seq systems were found to perform poorly in
correctness without proper semantic control (Dušek
et al., 2020). Moreover, seq2seq models for text
generation tasks treat all input words in a sequen-
tial order, often directly linearizing (Konstas et al.,
2017; Fan et al., 2019). This linearization is not op-
timal for encoding data with special structures as in
KG-to-text. To address this problem, triple-specific
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Input Triples (British Hong Kong, representative, Chris Patten)
(William Anders, was a crew member of, Apollo 8)
(William Anders, birth place, British Hong Kong)
(Apollo 8, crew members, Frank Borman)

Baseline Output william anders, born in british hong kong, was a crew member of apollo 8 along with
frank borman and chris patten.

Best Output william anders, born in british hong kong, served as a crew member of apollo 8 along
with frank borman. chris patten is a representative of british hong kong.

Input Triples (Aston Martin V8, assembly, United Kingdom)
(United Kingdom, capital, London)
(Aston Martin V8, successor, Aston Martin Virage)
(Aston Martin Virage, manufacturer, Aston Martin)

Baseline Output the united kingdom is the location of the assembly of aston martin v8, the successor
to aston martin v8, which was designed by the manufacturer aston martin virage.

Best Output aston martin v8 was assembled in the united kingdom, the capital of which is london.
it was succeeded by aston martin virage which was created by aston martin.

Table 5: Examples of input and output of baseline and the best BART base model.

Seen Unseen
C Gr C Gr

Baseline 88.4 98 74 99.6
Best 91.6 99.6 82.4* 99.2

Table 6: Human evaluation results on correctness (C)
and grammaticality (Gr). * indicates p < 0.02 in Mc-
Nemar’s test.

or graph-based encoders have been proposed to bet-
ter process the KG triple input (Vougiouklis et al.,
2018; Distiawan et al., 2018; Marcheggiani and
Perez-Beltrachini, 2018; Schmitt et al., 2020; Zhao
et al., 2020). However, generic pre-trained models
cannot be used with a modified encoder and thus
the generalizability to unseen domain is limited.
There are also works on adding semantic supervi-
sions (Reed et al., 2018; Balakrishnan et al., 2019),
however, it requires extensive efforts to annotate
discourse relations in each reference text.

Due to the implicit microplanning stage in KG-
to-text, there also has been a debate over whether to
use a pipeline model or an end-to-end model. Stud-
ies found that using separate planning and text gen-
eration modules in a pipeline is better than one end-
to-end model trained from scratch (Nayak et al.,
2017; Moryossef et al., 2019; Ferreira et al., 2019).
But with the recent advancement of high-capacity
models pre-trained on large-scale text data, end-to-
end models achieved state-of-the-art performance
without the need of any extra planning module
(Kale, 2020). Our work follows this approach while
further making the end-to-end pre-trained model
better fit the KG-to-text task. Similar with our
property lexicalization technique, Kale and Rastogi

(2020) explored having natural text templates for
each unique slot in dialog acts. However the dialog
acts can be treated as a tree with depth of 1, which
is easier to understand by a seq2seq model than a
KG structure. Our property lexicalization not only
considers using templates, but also adds tags to pro-
vide structural information. Ribeiro et al. (2020)
also used pre-trained models on KG-to-text task
and experimented with task-adaptive pre-training.
However, in this work BART is around 10 BLEU
worse than T5 on WebNLG, but in our experiments
BART achieves similar performance, probably indi-
cating significant differences in the fine-tuning set-
tings. Moreover, this work found that pre-trained
model with prior world knowledge do not need to
understand the KG structure for relatively good per-
formance, in contrast, we focus on improving the
KG structure awareness of the model.

7 Conclusions

In this work, we address several challenges of us-
ing pre-trained models for KG-to-text. We pro-
pose techniques to improve text-to-text pre-trained
models for KG-to-text task by addressing triple
structure awareness and by bridging the domain
gap between text-to-text and KG-to-text. Our tech-
niques boost BLEU and SER over a strong baseline.
Our best model yields the SOTA result on the en-
riched WebNLG dataset and also shows significant
improvement over baseline by qualitative analysis
and human evaluation. To further utilize the benefit
of large-scale pre-training, a future direction is to
design a pre-training objective that better fits the
KG-to-text task.
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