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Abstract

In this paper, we describe our TMU neural ma-
chine translation (NMT) system submitted for
the Patent task (Korean—Japanese) of the 7th
Workshop on Asian Translation (WAT 2020,
Nakazawa et al., 2020). We propose a novel
method to train a Korean-to-Japanese transla-
tion model. Specifically, we focus on the vo-
cabulary overlap of Korean Hanja words and
Japanese Kanji words, and propose strategies
to leverage Hanja information. Our experi-
ment shows that Hanja information is effec-
tive within a specific domain, leading to an im-
provement in the BLEU scores by +1.09 points
compared to the baseline.

1 Introduction

The Japanese and Korean languages have a strong
connection with Chinese owing to cultural and his-
torical reasons (Lee and Ramsey, 2011). Many
words in Japanese are composed of Chinese char-
acters called Kanji. By contrast, Korean uses the
Korean alphabet called Hangul to write sentences
in almost all cases. However, Sino-Korean! (SK)
words, which can be converted into Hanja words,
account for 65 percent of the Korean lexicon (Sohn,
20006). Table 1 presents an example of conversions
of SK words into Hanja, which are compatible with
Japanese Kanji words.

In addition, several studies have suggested that
overlapping tokens between the source and target
languages can improve the translation accuracy
(Sennrich et al., 2016; Zhang and Komachi, 2019).
Park and Zhao (2019) trained a Korean-to-Chinese
translation model by converting Korean SK words
from Hangul into Hanja to increase the vocabulary
overlap.

In other words, the meaning of a vocabulary
overlap on NMT is that each corresponding word’s

'Sino-Korean (SK) refers to Korean words of Chinese
origin.
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Korean (Hangul) Z}<1 210 2
Korean (Hanja) — H /A ELi JLEE
Japanese (Kanji) HJA S hEy
English Natural Language Processing

Table 1: Example of conversion of SK words in Hangul
into Hanja and Japanese translation into Kanji.

embeddings are the same. Conneau et al. (2018)
and Lample and Conneau (2019) improved trans-
lation accuracy by making embeddings between
source words and their corresponding target words
closer. From this fact, we hypothesize that if the
embeddings of each corresponding word are closer,
the translation accuracy will improve.

Based on this hypothesis, we propose two ap-
proaches to train a translation model. First, we
follow Park and Zhao (2019)’s method to increase
the vocabulary overlap to improve the Korean-to-
Japanese translation accuracy. Therefore, we per-
form Hangul to Hanja conversion pre-processing
before training the translation model. Second, we
propose another approach to obtain Korean and
Japanese embeddings that are closer to Korean
SK words and their corresponding Japanese Kanji
words. SK words written in Hangul and their coun-
terparts in Japanese Kanji are superficially differ-
ent, but we make both embeddings close by using a
loss function when training the translation model.

In addition, in this study, we used the Japan
Patent Office Patent Corpus 2.0, which consists of
four domains, namely chemistry (Ch), electricity
(El), mechanical engineering (Me), and physics
(Ph), whose training, development, and test-n12
data have domain information. Our methods are
more effective when the terms are derived from
Chinese characters; therefore, we expect that the
effect will be different per domain. This is because

2Here, test-n, test-n1, test-n2, and test-n3 data, and test-n
consist of test-nl, test-n2, and test-n3.
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Korean (Hangul) 124 N9j
Korean (Hanja)  Z12jA] N9J
Japanese Tnl®H N
English Therefore, N

FTFS 001 %ol5tE AT
GHES 001 %BLATFR RaEsith
GHEIE 001 BLIFic RET 5,
content 0.01 % or less limit.

Table 2: Korean sentence and sentence in which SK words are converted into Hanja, together with their Japanese

and English translations.

there are domains in which there are many terms
derived from Chinese characters. Therefore, to ex-
amine which Hanja information is the most useful
in each domain, we perform a domain adaptation
by fine-tuning the model pre-trained by all training
data using domain-specific data.

In this study, we examine the effect of Hanja
information and domain adaptation in a Korean-
to-Japanese translation. The main contributions of
this study are as follows:

e We demonstrate that Hanja information is ef-
fective for Korean to Japanese translations
within a specific domain.

e In addition, our experiment shows that the
translation model using Hanja information
tends to translate literally.

2 Related Work

Several studies have been conducted on Korean—
Japanese neural machine translation (NMT). Park
et al. (2019) trained a Korean-to-Japanese trans-
lation model using a transformer-based NMT sys-
tem with relative positioning, back-translation, and
multi-source methods. There have been other
attempts that combine statistical machine trans-
lation (SMT) and NMT (Ehara, 2018; Hyoung-
Gyu Lee and Lee, 2015). Previous studies on
Korean—Japanese NMT did not use Hanja infor-
mation, whereas we train a Korean-to-Japanese
translation model using data in which SK words
were converted into Hanja words.

Sennrich et al. (2016) proposed byte-pair encod-
ing (BPE), i.e., a sub-word segmentation method,
and suggested that overlapping tokens by joint
BPE is more effective for training the translation
model between European language pairs. Zhang
and Komachi (2019) increased the overlap of to-
kens between Japanese and Chinese by decompos-
ing Japanese Kanji and Chinese characters into an
ideograph or stroke level to improve the accuracy
of Chinese—Japanese unsupervised NMT. Follow-
ing previous studies, we convert Korean SK words
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from Hangul into Hanja to increase the vocabulary
overlap.

Conneau et al. (2018) proposed a method to build
a bilingual dictionary by aligning the source and tar-
get word embedding spaces using a rotation matrix.
They showed that word-by-word translation using
the bilingual dictionary can improve the translation
accuracy in low-resource language pairs. Lample
and Conneau (2019) improved the translation ac-
curacy by fine-tuning a pre-trained cross-lingual
language model (XLM). The authors observed that
the bilingual word embeddings in XLM are similar.
Based on these facts, we hypothesize that if the
embeddings of each corresponding word become
closer, the translation accuracy will improve. In
this study, we use Hanja information to make the
embeddings of each corresponding word closer to
each other.

Some studies have focused on exploiting Hanja
information. Park and Zhao (2019) focused on the
linguistic connection between Korean and Chinese.
They used the parallel data in which the Korean
sentences of SK words were converted into Hanja
to train a translation model and demonstrated that
their method improves the translation quality. In
addition, they showed that conversion into Hanja
helped translate the homophone of SK words. Yoo
et al. (2019) proposed an approach of training Ko-
rean word representations using the data in which
SK words were converted into Hanja words. They
demonstrated the effectiveness of the representa-
tion learning method on several downstream tasks,
such as a news headline generation and sentiment
analysis. To train the Korean-to-Japanese trans-
lation model, we combine these two approaches
using Hanja information for training the transla-
tion model and word embeddings to improve the
translation quality.

In domain adaptation approaches for NMT,
Bapna and Firat (2019); Gu et al. (2019) trained
an NMT model pre-trained with massive parallel
data and retrained it with small parallel data within
the target domain. In addition, Hu et al. (2019)



Korean Japanese

Model Partition Sent. Tokens  Types Tokens  Types

train 999,758 31,151,846 21,936 31,065,360 24,178

dev 2,000 106,433 6,475 104,307 6,098

. test-n 5,230 272975 9,530 269,876 9,018
Baseline

test-nl 2,000 108,327 6,425 106,947 6,137

test-n2 3,000 153,195 7,522 151,253 6,656

test-n3 230 11,453 1,666 11,676 1,644

train 999,755 32,066,032 26,046 30,474,136 27,541

dev 2,000 109,460 6,944 103,994 6,119

Hanja-conversion test-n 5,230 298,404 9,832 269,146 9,166

test-nl 2,000 111,543 6,941 106,653 6,162

test-n2 3,000 175,131 6,410 150,844 6,717

test-n3 230 11,730 1,759 11,649 1,634

Table 3: Statistics of parallel data after each pre-processing.

proposed an unsupervised adaptation method that
retrains a pre-trained NMT model using pseudo-
in-domain data. In this study, we perform domain
adaptation by fine-tuning a pre-trained NMT model
with domain-specific data to examine whether
Hanja information is useful, and if so, in which
domains.

3 NMT with Hanja Information

Our model is based on the transformer architecture
(Vaswani et al., 2017), and we share the embed-
ding weights between the encoder input, decoder
input, and output to make better use of the vocab-
ulary overlap between Korean and Japanese. We
do not use language embedding (Lample and Con-
neau, 2019) to distinguish the source and target lan-
guages. We propose two models using the Hanja
information described below.

3.1 NMT with Hanja Conversion

We expect that the translation accuracy will im-
prove by converting Korean SK words into Hanja
to increase the source and target vocabulary over-
lap. In the Hanja-conversion model, we converted
SK words written in Hangul into Hanja via pre-
processing. Table 2 presents an example of the
Hanja conversion. This conversion can increase
the number of superficially matching words with
Japanese sentences. We trained the translation
model after the conversion.

3.2 NMT with Hanja Loss

In the Hanja-loss model, we make the embeddings
of the SK word and its corresponding Japanese

Kanji word closer to each other. We use a loss
function to achieve this goal as follows:

N
L=1Lr+ ) (1-Sim(E(S,),E(K,) (1)

n=1

where L is the loss function per-batch and L is
the loss of the transformer architecture. In addi-
tion, S and K are the lists of SK words and its
corresponding Japanese Kanji words in the batch,
respectively, and IV is the length of the S and K
lists (e.g., when the sentence is the example of Ta-
ble 2 and the batch size is one, S = (H7, ©]
Sk ), K = (& H &, LT, IR%E) and N =
3.). Here, E is a function that converts words into
embedding, and Sim is a cosine similarity func-
tion. Therefore, the Hanja-loss function (Equation
1) decreases when the SK word and Japanese Kanji
word vectors become more similar.

We extract Kanji words in Japanese sentences to
obtain K, and then normalize Kanji into traditional
Chinese and convert it into Hangul using a Chinese
character into Hangul conversion tool. If the con-
version tool cannot convert normalized Kanji into
Hangul, we remove the Kanji word from K. To
obtain S, we search for the same Hangul words
from the parallel Korean sentence. The reason for
using the Kanji-to-Hangul conversion is the ambi-
guity of Hangul-to-Hanja conversion. Conversion
of Kanji into Hangul is mostly unique®. For ex-
ample, the SK word “AF” can be converted into
“I] (mountain)” or “fi£ (acid)” in Hanja and Kanji,

3Kanji-to-Hangul conversion has certain ambiguity owing
to the initial sound rule in the Korean language.
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Model Ch El Me Ph
Baseline Tokens / Percentage 270,406 /3.9 86,262/ 1.1 63,837/0.6 93,516/1.1
Types / Percentage 5,681/31.0 5,070/29.3 4,202 /22.8 5,442/ 29.6
Hanja-conversion Tokens / Percentage 1,697,758/24.2 1,525433/20.1 1,678,554/17.7 1,530,997/19.0
Types / Percentage 10,803 /49.5 9,010/45.0 8,449/39.3 10,165/ 46.8

Table 4: Statistics on vocabulary overlap between Korean and Japanese per-domain training data. The tokens and
types are the numbers of overlap words and their types, and percentage is the percentage of their numbers to all

data.

respectively, and the SK word into Hanja word
conversion has certain ambiguity. By contrast, the
Kanji word “[1]” can be converted uniquely into
the SK word “At.”

4 Domain Adaptation

We examine the effect of domain adaptation, which
uses domain-specific data for retraining the pre-
trained model trained by all training data. We trans-
late the test data for each domain using a domain-
specific translation model.

For training and validation, we split the training
and development data into four domains: chemistry,
electricity, mechanical engineering, and physics
using domain information. We use these data to
build domain-specific translation models.

For testing, we use the domain information an-
notated with the test-nl data. However, the test-n2
and test-n3 data do not have domain information.
Therefore, we train a domain prediction model by
fine-tuning Korean or Japanese BERT (Devlin et al.,
2019) using the labeled training data of the Japan
Patent Office Patent Corpus 2.0 to predict the do-
main information of test-n2 and test-n3 data.

5 Experimental Settings

5.1 Implementation

We use the fairseq* implementation of the trans-
former architecture for the baseline model and the
Hanja-conversion model and extend the implemen-
tation for the Hanja-loss model. Table 7 presents
some specific hyperparameters that are used in all
models.

To train the domain prediction model for do-
main adaptation (Section 4), we used the Bidi-
rectional WordPiece tokenizer, character model of
KR-BERT? (Lee et al., 2020) as the Korean BERT
and the bert-base-japanese-whole-word-masking

*https://github.com/pytorch/fairseq
>https://github.com/snunlp/KR-BERT
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model® as the Japanese BERT.
5.2 Data

To train the Korean-to-Japanese translation model,
we used the Korean<>Japanese dataset of the Japan
Patent Office Patent Corpus 2.0, which consists of
training, development, test-n, test-nl, test-n2, and
test-n3 data. We apply the following preprocess for
each model.

Baseline model We tokenize Korean sentences
using MeCab’ with the mecab-ko dictionary®, and
Japanese sentences with the IPA dictionary. After
tokenization, we delete sentences with more than
200 words from the training data and apply shared
byte-pair encoding (BPE, Sennrich et al., 2016)
with a 30k merge operation size. Table 3 presents
the statistics of the pre-processed data.

NMT with Hanja Conversion To train the
Hanja-conversion model, we convert South Korean
words into Hanja using a Hanja-tagger” and nor-
malize Hanja and Kanji in parallel sentences into
traditional Chinese using OpenCC'?. After conver-
sion, we apply the same pre-processing with the
baseline model. Table 3 also presents the statistics
of pre-processed data!! for the Hanja-conversion
model. In addition, Table 4 presents the statis-
tics on the overlap of tokens between Korean and
Japanese per-domain training data.

NMT with Hanja Loss We use the same pre-
processed data as the baseline model. To extract
the set of SK words and Kanji (Section 3.2) for the
Hanja-loss model, we normalize Kanji into tradi-
tional Chinese using OpenCC and convert it into
Hangul using Hanja!.

Shttps://github.com/cl-tohoku/bert-japanese
"http://taku910.github.io/mecab/
8https://bitbucket.org/eunjeon/mecab-ko-dic/src/master/
*https://github.com/kaniblu/hanja-tagger
Phttps://github.com/BY Void/OpenCC
""'The number of tokens differs from the baseline because
we apply the tokenization after Hanja conversion.
Phttps://pypi.org/project/Hanja/



Korean BERT Japanese BERT
Partition Ch El Me Ph  Ch EI Me Ph
test-n2 645 589 1,131 635 538 782 1,094 586
test-n3 17 43 64 106 19 60 49 102

Table 5: The test-n2 and test-n3 data size of each domain, which are predicted by the domain prediction models
(Section 4). Korean BERT and Japanese BERT are the models used to train the domain prediction models.

Model dev test—n test-nl test-n2 test-n3
Baseline 68.41+0.11 71.84+0.18 72.46+0.09 73.42+0.25 45.124+0.50
Hanja-conversion 67.86+0.14 63.70+£0.24 71.96+0.23 56.68+0.43 44.60+0.44
Hanja-loss 68.47+0.07 71.96+0.14 72.60+0.07 73.55+0.22 44.85+0.50

Table 6: BLEU scores of each single model. These BLEU scores are the average of the four models. The Hanja-
loss model achieves the highest scores in the test-n, test-nl, and test-n2 data.

Hyperparameter Value
Embedding dimension 512
Attention heads 8
Layers 6
Optimizer Adam
Adam betas 0.9, 0.98
Learning rate 0.0005
Dropout 0.1
Label smoothing 0.1
Max tokens 4,098

Table 7: Hyperparameters.

Domain Adaptation We split the training, devel-
opment, and test-n1 data using domain information,
where the distribution of each domain is equal. We
use the domain prediction model to split the test-n2
and test-n3 data. After splitting the data, we apply
the same pre-processing as the baseline model. In
addition, we use the same BPE model as the base-
line model. Table 5 presents the test-n2 and test-3
data sizes of each domain.

5.3 Results

Table 6 presents the BLEU scores of a single model.
We indicate the best scores in bold. In a single
model, the Hanja-loss model achieves the highest
scores for the test-n, test-n1, and test-n2 data. The
test-n data reveals an improvement of +0.12 points
from the baseline model.

The test-n2 data indicate that the Hanja-
conversion model cannot translate well on test-n2
data. The reason is that all words in the Korean
sentences of test-n2 data are written without any
segmentation, which causes many errors in Hanja
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conversion.

Table 8 presents the BLEU and RIBES scores of
the ensemble of four models and the domain adap-
tation ensemble models. When we use Japanese
BERT to predict the domain, there is a slight im-
provement in the test-n and test-n2 data when com-
pared with the baseline model'3. In addition, Table
8 reveals no difference between the baseline and
Hanja-loss models in the ensemble models.

Table 9 presents the per-domain dev and test-n1l
BLEU scores of each ensemble model. The Hanja-
loss model is not better than the baseline model
for all data, and there is no difference between the
baseline and Hanja-loss models.

6 Discussion

6.1 Hanja-conversion Model versus
Hanja-loss Model

In this section, we compare the Hanja-conversion
model and the Hanja-loss model. Table 6 indicates
that the Hanja-loss model is better than the Hanja-
conversion model in terms of the BLEU scores.
The reason for this result is that Hangul into Hanja
word conversion errors reduce the translation accu-
racy in the Hanja-conversion model.

6.2 Baseline Model versus Hanja-loss Model

In this section, we compare the baseline model and
the Hanja-loss model. Tables 6, 8 and 9 indicate
no difference between the baseline and Hanja-loss
models in terms of BLEU and RIBES scores.
Table 10 presents the results of human evalua-
tion. These figures are adequacy scores evaluated

BHowever, in Korean-to-Japanese translation, we cannot
use Japanese BERT to predict the domain.



Model dev test-n test-nl test-n2 test-n3
Baseline 69.36 /- 73.40/0.9504 73.76/0.9495 74.70/0.9543 53.70/0.9066
Hanja-loss 69.40/- 73.40/0.9504 73.81/0.9495 74.67/0.9544 53.73/0.9056
Korean BERT Baseline 69.20/- 73.39/0.9503 73.85/0.9494 74.66/0.9540 53.24/0.9063
Hanja-loss 69.26/- 73.38/0.9505 73.90/0.9495 74.61/0.9545 53.24/0.9060
Japanese BERT Baseline - /- 73.45/0.9502 -/- 7477709542 53.23/0.9049
Hanja -loss -/- 73.41/0.9505 -/- 74.66/0.9546 53.34/0.9052

Table 8: BLEU/RIBES scores of each ensemble of four models. The bottom two rows are the scores of the ensem-
ble models retrained by each domain-specific data. Korean BERT and Japanese BERT represent the experimental

results using the domain prediction models.

Ch El Me Ph
Model dev test-nl dev test-nl dev test-nl dev test-nl
Domain adaptation Baseline 69.57 7392 6845 7583 69.16 70.17 7153 76.34
Hanja-loss 70.08 72.67 68.26 7615 69.10 70.25 7141 76.45
Baseline 63.29 66.67 62.68 69.14 6523 65.83 64.53 6893
Hanja-loss 63.23  66.78 62.20 69.15 65.29 66.06 6527 70.12

Table 9: The per-domain dev and test-n1 BLEU scores of each domain adaptation model and each single model

trained by per-domain training data.

Model Adequacy
Baseline 4.71
Hanja-loss 4.70

Table 10: Human evaluation of each domain adaptation
ensemble models in test-n data. We use Japanese BERT
for domain prediction model.

by WAT 2020 organizers. In human evaluation, the
baseline model is better than the Hanja-loss model.
However, the improvement in scores is less than
+0.01 points. Our experiment using all the training
data reveals that there is little difference between
the baseline model and the Hanja-loss model.

6.3 Effect of Domain in the Hanja-loss Model

In this section, we examine the effect of the Hanja-
loss model in the domain-specific data.

BLEU Scores Table 9 presents the BLEU scores
of each model trained by domain-specific data. The
Hanja-loss model achieves the highest scores in the
Me and Ph domains. Specifically, the test data
in the field of physics reveals an improvement of
+1.09 points for the baseline model.

By contrast, in the Ch domain, there are no im-
provements in either the domain adaptation model
or the model trained by per-domain training data.
In the domain adaptation model of the Hanja-loss
model, the test data of Ch indicates a deteriora-

tion of -1.25 points for the baseline model. As the
reason for this result, we consider that Hanja infor-
mation is not necessary for the Ch domain because
there is more vocabulary overlap than the other
domains even without Hanja conversion (Table 4).

Outputs Table 11 presents a successful output
example of the Hanja-loss model. The base-
line model cannot translate the word “THA} A &7
which means “single yarn fiber,” in the source sen-
tence well, but the Hanja-loss model can translate
it correctly. We also found that the Hanja-loss
model tends to translate literally. In the output of
Table 11, the baseline model translates the word
“AF&-, ”which means “use,” into “F{\1,” whereas
the Hanja-loss model translates it into “(FF] > The
word “AF2” can translate into both “F\y” and
“fiF,” but “{f H” is the Hanja form of the SK
word “A}&-”

In Table 12’s output, the Hanja-loss model trans-
lates the word “7},” which means “piece” into “{[#],”
which is the Hanja form of the SK word of “7},”
but the translated word in the reference is “.”
Therefore, in the Hanja-loss model, if the refer-
ence sentence is not a literal translation, the BLEU
scores are low.

7 Conclusions and Future Work

In this paper, we described our NMT system sub-
mitted to the Patent task (Korean—Japanese) of the
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Reference PGA ilkiff & LT iz 13 Rk . (T 5 28 Ta5,

English As PGA fiber, we can use the single yarn fiber ...

Source PGA A 24, € EH A AT . A & &9l o

Source (Hanja) PGA #iift 24, il & & W HRWL ... (H &4 A o

Baseline PGA WM & LT3 . fl2 13 B . Tk,

Hanja-loss PGA filfff & LT Mz . B0 0E .. fHT5 2« i T& 5%,

Table 11: A successful output example of the Hanja-loss model.

Reference —D DN TIE. R 1 XCR2EF 12D E0HEKZEEY Z S8,
English In one form, R1 and R2 include one or more deuterium atoms.
Source SPF S Al e o 4, R 1 AR 2= 1/ o1 9] S5 904} & 2 @rel
Source (Hanja) S}t @] Ffii B A ,R1 D R2 =1 fif] DL | o] EKE JHT S alE ).
Baseline — FNEHEfE T3 R 1BXUR2IT 12 E EAZET Z S0 .
Hanja-loss — EMERERE TIX . R1BXUR21F. 1 H Lo EBEARIEYT Z S0,

Table 12: An unsuccessful output example of the Hanja-loss model.

7th Workshop on Asian Translation. We proposed
novel methods for training the Korean-to-Japanese
translation model, which uses Hanja information.
We also demonstrated that the effect of our pro-
posed method is different for all domain data.

However, some SK words are polysemous. Our
proposed method treats embeddings of such SK
words the same and cannot address this problem.
Therefore, the problem of polysemous words is a
major challenge for our proposed method.

In this study, we focused on vocabulary overlap
between Korean Hanja words and Japanese Kanji
words. In addition, many Hanja and Kanji words
are of Chinese origin. Therefore, in the future, we
will attempt to develop a translation method that
takes advantage of the vocabulary overlap among
Korean, Japanese, and Chinese.
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