
Proceedings of the Fifth Arabic Natural Language Processing Workshop, pages 38–48
Barcelona, Spain (Online), December 12, 2020

38

Deep Diacritization: Efficient Hierarchical Recurrence for Improved
Arabic Diacritization

Badr AlKhamissi1, Muhammad N. ElNokrashy1,2, and Mohamed Gabr2

badr@khamissi.com, muhammad.nael@gmail.com, mohamed.gabr@hotmail.com
1The American University in Cairo (AUC)

2Microsoft Egypt Development Center (EGDC)

Abstract

We propose a novel architecture for labelling character sequences that achieves state-of-the-art
results on the Tashkeela Arabic diacritization benchmark. The core is a two-level recurrence
hierarchy that operates on the word and character levels separately—enabling faster training and
inference than comparable traditional models. A cross-level attention module further connects
the two, and opens the door for network interpretability. The task module is a softmax classifier
that enumerates valid combinations of diacritics. This architecture can be extended with a recur-
rent decoder that optionally accepts priors from partially diacritized text, which improves results.
We employ extra tricks such as sentence dropout and majority voting to further boost the final
result. Our best model achieves a WER of 5.34%, outperforming the previous state-of-the-art
with a 30.56% relative error reduction.

1 Introduction

The Arabic script (and similarly Hebrew, Aramaic, Pahlavi...) is an impure abjad. These writing systems
represent short consonants and long vowels using full letter graphemes, but generally omit short vowels
and consonant length from writing. This leaves the task of inferring the missing phonemes to the reader
by using context from neighbouring words and knowledge of the language structure to determine the
correct pronunciation and disambiguate the meaning of the text. Those sounds are represented by dia-
critical marks—small graphemes that appear usually above or below a basic letter in the abjad. Table 2
shows the diacritics considered in this work. Diacritics are usually utilized in specific domains where it
is important to explicitly clear up ambiguities or where inferring the correct forms might be difficult for
non-experts, such as religious texts, some literary works such as poetry, and language teaching books as
novice readers have yet to build up the intuition for reading undiacritized text.

We focus in this work on diacritization of Arabic texts. However, our proposed architecture has no ex-
plicitly language-dependent components and should be adaptable for other character sequence labelling
tasks. Although it is the first language of several million people, and is spoken in some of the fastest
growing markets (Tinsley and Board, 2013), the Arabic language, like many others, lacks attention from
the NLP community compared to established test bed languages such as English or Chinese, which
both enjoy higher momentum and an abundance of established resources and techniques. The automatic
restoration of diacritics to Arabic text is arguably one of the most important NLP tasks for the Arabic
language. Besides direct applications like facilitating learning, diacritics are used to enhance language
modeling, acoustic modeling for speech recognition, morphological analysis, machine translation, and
text-to-speech systems (which need to restore the lost phonemes to render words properly) (Zitouni and
Sarikaya, 2009; Azmi, 2013).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
Affiliation emails: 1{balkhamissi, m.n.elnokrashy}@aucegypt.edu

2{muelnokr, mogabr}@microsoft.com
* This work is not sponsored by the affiliated institutions of the authors.
** This work was accepted at the Fifth Arabic Natural Language Processing Workshop (WANLP 2020).

mailto:badr@khamissi.com
mailto:muhammad.nael@gmail.com
mailto:mohamed.gabr@hotmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:balkhamissi@aucegypt.edu
mailto:m.n.elnokrashy@aucegypt.edu
mailto:muelnokr@microsoft.com
mailto:mogabr@microsoft.com

39

To illustrate this further, Table 1 shows the Arabic word Elm1 in different diacritized forms with their
corresponding English translations, showcasing the importance of diacritics in resolving ambiguity. Note
that the MADA (Habash et al., 2009) morphological analyzer produces at least 13 different forms for this
undiacritized word (Belinkov and Glass, 2015).

Arabic (diacritized) Transliteration English Translation
�ÕÎ�

�
« Ealima He knew

�ÕÎ�

�
« Eulima It was known

�Õ

��
Î

�
« Eal∼ama He taught

�Õ
�
Î«

� Eilomu Knowledge
�Õ
�
Î

�
« Ealamu Flag

Table 1: Subset of possible diacritized forms for Elm adapted from (Belinkov and Glass, 2015)

Table 2 shows the different diacritics commonly used in Arabic texts along with their phonemic sym-
bols. They fit roughly into four kinds. (1) H. arakāt are diacritics for short vowels; we have three: fath. ah,
kasrah, dammah. The symbols for those vowels have another form (usually a visual doubling) used at the
end of a word to form a (2) tanwı̄n, or nunation, which is a VC sound of the h. arakah’s vowel followed
by the consonant “n” ({a, i, u}n). (3) The shaddah is the gemination symbol used to indicate consonant
doubling. It can be combined with one of the h. arakāt or tanwı̄n on the same character. Finally, (4) the
sukūn is used to indicate that the current consonant is not followed by a vowel and instead forms a cluster
with the next consonant. Diacritics which appear at the end of a word are referred to as case-endings
(CE); most of which are specified by the syntactic role of the word. They are harder to infer than the
core-word diacritics (CW) that specify lexical selection and appear on the rest of the word (Mubarak et
al., 2019).

Symbol Name Type Transliteration IPA phoneme
�
è dammah h. arakāt u /u/
�
è fathah h. arakāt a /a/

è� kasrah h. arakāt i /i/
�
è dammatain tanwı̄n N /un/
�
è fathatain tanwı̄n F /an/

è
�

kasratain tanwı̄n K /in/
�
è shaddah shaddah ∼ /h:/ Gemination.
�
è sukūn sukūn o No vowel.

Table 2: Primary Arabic diacritics on letter è

The paper is structured as follows: First we cover some of the approaches used in related works on
restoring Arabic diacritics. Then we introduce our system and support it by comparing experimental
results on an adapted version of the Tashkeela corpus (Zerrouki and Balla, 2017) proposed by (Fadel et
al., 2019a) as a standard benchmark for Arabic diacritization systems. Each design decision will then be
motivated by an ablation study. We analyze the learned attention model then discuss existing limitations
in an error analysis. Finally, we offer directions for future work.

1This paper uses Buckwalter transliteration.

40

2 Related Work

The literature surrounding the automatic diacritization of Arabic text provides methods in two categories:
classical rule-based solutions, and statistical modeling-based methods. Early approaches have worked
on constructing a large set of language specific rules to restore the lost diacritics (Habash et al., 2009;
Zitouni et al., 2006; Pasha et al., 2014; Darwish et al., 2017). Researchers have then shifted to rely more
on learning-based methods that do not require extra expert systems such as morphological analyzers
and part-of-speech taggers. (Belinkov and Glass, 2015) have shown that recurrent neural networks are
suitable candidate models for learning the task entirely from data and can be easily extended to other
languages and dialects without the use of manually engineered features. Other methods such as hidden
Markov models (HMMs) (Elshafei et al., 2006), conditional random fields (CRFs) (Darwish et al., 2017),
maximum-entropy models (Zitouni et al., 2006) and finite-state transducers (Nelken and Shieber, 2005)
have similarly been employed. However, more recent works have started to use deep (neural-based)
architectures such as sequence-to-sequence transformers and recurrent cell-based models inspired by
work in Neural Machine Translation (Mubarak et al., 2019). Solutions combining both rule-based and
deep learning methods appear in recently published work (Abbad and Xiong, 2020). (Zalmout and
Habash, 2020) have shown that the diacritization task benefits from jointly modelling lexicalized and
non-lexicalized morphological features instead of targeting only the diacritization task.

3 Approach

3.1 Datasets
We report on the cleaned version of the Tashkeela corpus (Fadel et al., 2019a)—a high quality, publicly
available dataset. It is split into train (2,449k tokens), dev (119k tokens), and test (125k tokens) sets.

3.2 Architecture

Figure 1: D3 Architecture

In this work, we propose two models: The Two-Level Diacritizer (D2) and the Two-Level Diactritizer
with Decoder (D3). D3 extends D2 by allowing partially diacritized text to be taken as input—a much
needed feature for neural diacritizers (Fadel et al., 2019a). D2 outperforms fully character-based models
in both task and runtime performance measures.

3.2.1 Two-Level (Hierarchical) Model
Restoring diacritics can be seen as a character sequence labeling task. Each label depends on word- and
character-level context. This structure motivates the hierarchy in our two-level encoder architecture—
the first encoder sees the sequence of words (where words are atoms) and provides word-level context

41

for the second, character-level encoder. The character-level encoder is evaluated independently for each
word in the sentence, enabling much faster training and inference compared to character-level recurrent
cell-based models of similar structure to previous works (Belinkov and Glass, 2015; Mubarak et al.,
2019; Zalmout and Habash, 2020; Fadel et al., 2019b). Let Ts be the maximum number of words
allowed in a sentence and Tw the maximum number of characters allowed in a word. Then the overall
character sequence length that a model in prior works would see is in the order of (Ts · Tw). In contrast,
our approach operates on a maximum sequence length of Ts at the word level and Tw at the character
level. Because character-level recurrence is independent of characters outside the current word, the
serial bottleneck complexity goes from O

(∑
w∈s |w|

)
≈ O(Ts ·Tw) down to O

(
|s|+maxw∈s{|w|}

)
≈

O(Ts + Tw), assuming adequate parallelization across word units. See Table 4 for a speed comparison.
Let s = {wi}Ts

i=1 denote a sequence of words. w = {wi}Ts
i=1 are the corresponding fastText features

pretrained on CommonCrawl Arabic data (Bojanowski et al., 2017). Let wi = {ci,j}Tw
j=1 denote the

sequence of characters for the word at index i in sentence s. Each character is assigned a 32-dimensional
learned embedding ci,j . Let f(w)i denote the feature vector from the word-level encoder which maps
each word in s to a contextual word representation. Let g(·)i,j denote the character-level recurrence that
outputs a contextual encoding of the character relative to its parent word and sentence. See Figure 1 for
an overview. Formally, the contextual embedding zi,j of ci,j is

gi,j = g ([ci,j ; f(w)i]) (1)

zi,j =
[
gi,j ; f

∗
i,j

]
(2)

Where f∗i,j is the attention view. Both f(·) and g(·) use Bidirectional LSTM (Bi-LSTM) layers (Graves
et al., 2005) trained with backpropagation through time. We note that any similar sequence modelling
architecture would be applicable (Chung et al., 2014; Vaswani et al., 2017) but leave that to future work.

3.2.2 Cross-level Attention Module
This module attends over the word-level encodings f(w) based on the character encodings g(·) of each
character in a word. In other words, it uses the initial contextualization of the characters (gi,j) to attend to
all words in the sentence (except the current) to refine the character’s representation. We use the attention
formulation from (Vaswani et al., 2017). For each character ci,j , we calculate

f∗i,j = AttendReduce (u = gi,j ;X = {...f(w)0:i−1, f(w)i+1:Ts ...}) (3)

where

AttendReduce (u;X) = WO

(
Softmax

t

(
WQ(u) ·WK(X)>t√

dK

)
·W V (X)

)
(4)

where in eq. (4), WQ, WK , W V , and WO are independent linear layers. We tried to remove WO but
faced lower performance.

3.2.3 Decoder
Used in D3, this component is a forward-only LSTM that takes as input a concatenation of the basic
contextual character embedding zi,j and a one-hot representation of the output of the previous character
from the classifier module. Formally: [zi,j ; ŷi,j−1]. The ŷi,j−1 signal passed to the decoder also encodes
the Beginning-of-Word in addition to the previous-character diacritics. This allows the model to accept
partially diacritized sentences such that the ground truth diacritic is injected in place of ŷi,j−1 during
inference. This feature is important as many Arabic texts contain sparse diacritics that act as hints to
assist readers. Having this clean signal yields improvements as shown in Figure 2.

3.2.4 Task Objective
The final classifier optimizes a Softmax objective over an enumeration of all valid diacritic combinations.
Combined, we have 3 h. arakāt in 4 variants (with tanwı̄n, shadda, tanwı̄n and shadda, and neither), the
sukūn, and the plain shadda. Thus 15 classes including the None (no diacritic) class.

42

3.3 Experimental Setup
3.3.1 Parameters, Hyper-parameters, and Regularization
Optimization We use the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of
0.002. The model is left to converge until the validation loss does not improve for 3 consecutive epochs
where each epoch enumerates a randomly shuffled version of the training segments exactly once. The
learning rate is reduced by half when the validation loss does not improve for one epoch. We train with
a mini-batch size of 128 segments.

Encoders and Decoder The word and character level encoders are each a 2-layer stacked Bi-LSTM
with 256 and 512 hidden units, respectively. We apply feature-level dropout (Srivastava et al., 2014) with
probability 0.2 to the input of the character level encoder. The decoder in D3 is a one-layer forward-only
LSTM with 1024 hidden units. All recurrent cells use a vertical and recurrent dropout of 0.25 each. The
recurrent dropout used is untied between time-steps, in contrast to (Gal and Ghahramani, 2016).

Context Window and Voting Similar to (Mubarak et al., 2019), we use a sliding context window of
size Ts on each sentence. A given sentence is split into several overlapping segments each of which is
given separately to the model during training. This works well as the local context is often sufficient for
correct inference. During inference, the same sequence of characters may appear in different contexts
(different segments from one sentence) and potentially lead to different diacritized forms. To choose the
final diacritic, we use a popularity voting mechanism and, in the case of a tie, choose one of the outputs
at random. The values chosen for Ts, Tw and the stride are: Ts = 10 with stride = 1 for training and
validation (a small Ts was observed to stabilize training and improve results); Ts = 20 with stride = 2
for evaluation/testing; and Tw = 13 for both training and evaluation.

Sentence Dropout We randomly dropout 20% of the words given to the word-level encoder during
training. The positions of the dropped out words are preserved, and their embedding vectors wi are
replaced with zeros. This was observed to lead to better generalization in some cases.

3.3.2 D3 Training
This model is not trained from scratch, but uses the weights of the encoders and character embeddings
learned from D2. Those weights are kept frozen and only the decoder and classifier are trained.

Ramp-up of Teacher-forcing Signal We pass the ground truth of p% of the previous-character diacrit-
ics as input to the decoder at the current time-step. This value is ramped up from p = 0% (all characters
receive previous diacritics as zeros; i.e. no signal) to p = 100% (all characters receive ground truth of
previous diacritic as signal). This is done over a period of n = 10 epochs in increments of 10%. Then the
model is left to converge using the same stopping criteria as in D2. We found this to be the best approach
as otherwise the model overfits early on the teacher forcing signal given from the previous time-step.

3.3.3 Source Code
The code is made open source and is available on GitHub2. We also provide an accompanying web
application to demo the proposed models which can be found at this web address3. The system uses
PyTorch for implementing the neural training and inference components (Paszke et al., 2019). The
PyTorch LSTM cell implementation used is due to (ElNokrashy, 2020).

3.4 Results
We use the script provided by (Fadel et al., 2019a) to evaluate our results. To be consistent with prior
work, we report our results in terms of both word error-rate (WER) and diacritic error-rate (DER), with
and without case-endings, as well as including and excluding characters with no diacritics. Table 3 shows
our results on the Tashkeela benchmark in comparison with the more recent works. We outperform state-
of-the-art by 30.56% relative (2.35% absolute) error reduction on “WER with case-ending”.

2https://github.com/bkhmsi/deep-diacritization
3https://deep-diacritization.herokuapp.com
4Results from (Fadel et al., 2019a).

https://github.com/bkhmsi/deep-diacritization
https://deep-diacritization.herokuapp.com

43

DER/WER
Including ‘no diacritic’ Excluding ‘no diacritic’

w/ case ending w/o case ending w/ case ending w/o case ending
(Barqawi, 2017)4 3.73% / 11.19% 2.88% / 6.53% 4.36% / 10.89% 3.33% / 6.37%
(Fadel et al., 2019b) 2.60% / 7.69% 2.11% / 4.57% 3.00% / 7.39% 2.42% / 4.44%
(Abbad and Xiong, 2020) 3.39% / 9.94% 2.61% / 5.83% 3.34% / 7.98% 2.43% / 3.98%
D2 (Ours) 1.85% / 5.53% 1.49% / 3.27% 2.11% / 5.26% 1.71% / 3.15%
D3 (Ours) (@0% hints) 1.83% / 5.34% 1.48% / 3.11% 2.09% / 5.08% 1.69% / 3.00%

Table 3: Results on the Tashkeela benchmark

Method #Params T/epoch Convergence Inference Full DER/WER
D2 – {Attn} 13.369M 28 mins 17 epochs 34,996 wps 1.94% / 5.80%
Flat 13.304M 121 mins 13 epochs 2,466 wps 2.20% / 6.39%

Table 4: Speed Comparison5

Table 4 compares our plain 2-level hierarchy design (without Attention) with a “Flat" model in task and
runtime performance. The Flat model comprises a 4-layer stacked Bi-LSTM with similar implementation
details as described in 3.3.1 for D2, including Sentence Dropout and the Voting mechanism. The Flat
model sees each sentence as one sequence of characters.

Partially Diacritized Text Figure 2 shows the results of DER including ‘no diacritic’ with and without
case ending when the model is supplied with partially diacritized text as input. For each character in the
sentence, with some probability, we may replace the predicted output of the previous time-step with the
ground truth as input to the decoder in the current step. The reported output of the previous time-step
is masked to force the provided hint to be the model’s “prediction” even if the inferred were different
(see Figure 2b)—in contrast to Figure 2a where the final predictions are the model’s unmodified outputs.
The results are averaged across five runs with different seeds (i.e. injecting the ground truth signal at
different characters in the sentence). Error bars represent standard deviation. Many Arabic texts already
come with some hints that can improve model performance. Here we show how a neural model could be
trained to leverage that.

(a) DER vs Percentage of Injected Hints (actual output) (b) DER vs Percentage of Injected Hints (hints covering output)

Figure 2: Error Rate of Partially Diacritized Text

5All models use the same custom LSTM implementation and are run on a single Nvidia GeForce RTX 2080 Ti.

44

4 Discussion

4.1 Ablation Study

We conduct an ablation study to measure the effect of components proposed for the final model. We
train and evaluate the D2 model previously detailed but with the component(s) specified removed. Table
5 shows the results after removing the sentence dropout and cross-level attention module.

DER/WER
Including ‘no-diacritic’ Excluding ‘no-diacritic’

w/ case ending w/o case ending w/ case ending w/o case ending
(Fadel et al., 2019b) 2.60% / 7.69% 2.11% / 4.57% 3.00% / 7.39% 2.42% / 4.44%
D3 (@0% hints) 1.83% / 5.34% 1.48% / 3.11% 2.09% / 5.08% 1.69% / 3.00%
D2 1.85% / 5.53% 1.49% / 3.27% 2.11% / 5.26% 1.71% / 3.15%
D2 − {Attention 3.2.2} 1.94% / 5.80% 1.58% / 3.44% 2.23% / 5.52% 1.80% / 3.31%
D2 − {SDO 3.3.1} 1.91% / 5.71% 1.54% / 3.36% 2.18% / 5.43% 1.75% / 3.23%
D2 − {Attn, SDO} 1.93% / 5.78% 1.57% / 3.45% 2.21% / 5.49% 1.79% / 3.32%

Table 5: Ablation Study

4.2 Attention Analysis

The cross-level attention module allows us to gauge the contribution of each word to each output diacritic.
Here we examine some examples to see whether the model was able to learn such Arabic grammar rules
as a human expert would use when annotating case endings. The examples presented in this section
reflect patterns we have found repeated during our analysis.

(a) Ex. of case agreement by h. arf-atf (b) Ex. of CE of ism-majrūr depending on h. arf-jarr

Figure 3: Attention visualization of words correctly attending to grammatical parents.

The pattern in Figure 3a is related to the h. arf-atf6 rule (generally prepositions), which states that the
word coming after it gets the same case as the main word of the phrase it is related to—the grammatical
parent. We see indeed that the word coming after the (“w”) h. arf-atf attends the most on the word that
comes before it. This is similar to what an expert would do; look at the main word in the phrase preceding
the “w” in order to determine the case and case-ending of what follows.

(a) Self attends on a local word with similar effect on Self (b) Self attends on a local word with similar role to Self

Figure 4: Attention visualization of confusion of grammatical parents.

6 	
­¢«

	
¬Qk

45

Figure 3b shows another prevalent example where the word in question attends the most on the h. arf-
jarr7 preceding it. However, in other cases where the same rule appears twice in a segment, we found
that the model may choose to attend equally or more on the components of the first occurrence rather
than the occurrence the current word is actually affected by—the grammatical parent. Figure 4a shows
one example of this where the word (“zmylth”) attends equally to two words that would affect it the
same (“<lY” and “mE”), but only the second should be affecting it. In Figure 4b we see that the second
maf’ool-bih8 (roughly an object of a verb) (“AlrmAyp”) attends heavily on the first occurrence of a
mf’ool-bih in the segment (“Altjdyf”), rather than the verb that should be affecting it (“tmArs”). This
behavior of attending on a previous word with a similar role suggests that the attention mechanism is
aware of grammatical rules; it is able to group words with the same role together.

Generally, we found that not all sentences yield interpretable attention weights. We leave the task of
comprehensively studying the extent of agreement of the learned weights with Arabic grammatical rules
to future work.

4.3 Error Analysis

(a) Confusion Matrix for Case Endings (Errors Only) (b) Confusion Matrix for Core Word Diacritics (Errors Only)

Figure 5: Error Confusion Matrix for CE and Core Diacritics

Figures 5a and 5b show the the confusion matrices (for visualization clarity we show errors only)
of case ending and core words diacritics respectively. Many confusions are between the dammah and
kasrah, and between dammah and fath. ah, and the confusion goes both ways. We analyze the errors
between kasrah and dammah for case endings and try to correlate them with grammar rules.

The first error example is related to the start of a new sentence in Arabic grammar. The word “wa”
composed of one letter can either mark a conjunction (e.g. in an enumeration), or mark the start of a
new sentence, based on context. An example with such confusion is in the following sentence, with
the ground truth: “wa yarud∼u Ealayohi >an∼a faAqida AlT∼ahuwrayoni wa naHowahu layosa lahu
SalaApN <l∼aA <*aA DaAqa Alowaqotu” 9 . We see one confusion example where “wa naHowah” was
predicted as “wa naHowih”. Grammatically, the “wa” relates the next word to a “sentence starter” word
(“faAqida”) in a case that would make a the correct diacritic. Instead, we observe it follows the word
immediately before the “wa” (“AlT∼ahuwrayoni”), which is indeed in a grammatical case that would
make i the correct diacritic for “naHow{a/i}h”, were it the correct grammatical parent of this “wa”.

The second example is related to the use of punctuation marks that signal an abrupt start of a new
sentence or an end of one with unique context that may not be easily learnt. In the following sentence
with the ground truth: “kaqaA}ilK : AloHar∼u >awo Alobarodu Al$∼adiydu” 10 was predicted as

7
Qk.

	
¬Qk

8
éK. Èñª

	
®Ó

9 ��
I

��
¯

�
ñ

�
Ë @

��
�A

�	
� @

�	
X @

B

��
@

��
èC

�
�

�
�
é
�
Ë

�
�

�
�

�
Ë

�
è
�

ñ
�
m�

�	
' �
ð 	á

�

�
K

�Pñ
�
ê

��
¢Ë@

�
Y

�
�̄ A

�	
¯

��	
à

�

@ é�

�
J

�
Ê
�
«

��
X �Q

�
K

�
ð

10
. . .

�
YK
Y�

��
�

�Ë@
�
X

�Q
�
�.

�
Ë @

�
ð

�

@

��Q
�
m

�
Ì'@ : É

�

K� A

��
®

�
»

46

“kaqaA}ilK : AloHar∼i >awo Alobarodi Al$∼adiydi...”. The mark “:” here denotes the start of a new
sentence, by convention, as we start a quotation. In speech, this would manifest as a brief pause or
change in tone. Without “:”, the word would be an ism-majrūr that takes the kasrah h. arakah (i) in this
position, which the model mistakenly outputs. But because it starts a new sentence, the correct diacritic
is a dammah h. arakah (u). Further, the predictions for the words following “>awo” behave grammatically
by following the case of the parent word (“AloHar∼i”) (according to “wa”), but are incorrect because
the error has propagated.

One other type of errors is related to inconsistencies in the corpus—the same word with the same role
in the sentence is not diacritized the same way across the dataset. For instance, the word “<lY”, which is
the second top word that causes a core word error as shown in Table 6, appears multiple times in different
forms: “<ilY”, “<lY”, and “<ilaY”—all correct. There are other examples that show the need to clean
the dataset (at least the test set) to evaluate the published models properly.

Top words / Rank 1 2 3 4 5 6 7 8 9 10
With wrong CE diacritics Q�

	
« 	á« É¿ 	áK.

�
IÊ

�
¯ É

�
JÓ Õç

�
' ÐñK
 ð 	áÓ

With wrong core diacritics é
�
<Ë @ úÍ@

Q»

	
X 	áÓ B@

ÕÎ« 	

à@

ÉJ.
�
¯ Õ

�
Î�ð éËñ

�
¯

Table 6: Top 10 Words with CE and Core Word Errors

Looking at the top words that yield confusions in both core words and case ending diacritics, we find
a notable intersection between Table 6 and the most frequent tokens in the Tashkeela corpus with an
average max-normalized frequency of 0.24 (0.24 as frequent as the most frequent word).

5 Conclusion

In this work, we presented a novel architecture that outperforms previously published results on the
Tashkeela Arabic diacritization benchmark. Future work may include:

• Replacing the word- and character- level Bi-LSTM encoders with transformer-based encoders.
• Using byte-pair-encoding (BPE) (Sennrich et al., 2016) to better handle suffixes and prefixes as

Arabic is a moderately fusional language.
• Investigating more efficient use of injected hints to improve performance.
• Training/Evaluating this design/model on Modern Standard Arabic and dialectical benchmarks.
• Cleaning the testset of Tashkeela to remove any inconsistencies as described in the error analysis.
• Finally, achieving more interpretable attention weights through multi-task training, training on

larger datasets, or otherwise.

Acknowledgements

We offer special thanks to Khaled Essam, as well as Mohamed Afify and Ahmed Tawfik of Microsoft
EGDC, for many helpful discussions, suggestions and comments on the paper.

References
Hamza Abbad and Shengwu Xiong. 2020. Multi-components system for automatic arabic diacritization. In

Joemon M. Jose, Emine Yilmaz, João Magalhães, Pablo Castells, Nicola Ferro, Mário J. Silva, and Flávio
Martins, editors, Advances in Information Retrieval, pages 341–355, Cham. Springer International Publishing.

Aqil Azmi. 2013. A survey of automatic arabic diacritization techniques. Natural Language Engineering, 21, 10.

Zerrouki Barqawi. 2017. Shakkala, Arabic text vocalization. https://github.com/Barqawiz/
Shakkala.

Yonatan Belinkov and James Glass. 2015. Arabic diacritization with recurrent neural networks. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2281–2285, Lisbon,
Portugal, September. Association for Computational Linguistics.

https://github.com/Barqawiz/Shakkala
https://github.com/Barqawiz/Shakkala

47

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR, abs/1412.3555.

Kareem Darwish, Hamdy Mubarak, and Ahmed Abdelali. 2017. Arabic diacritization: Stats, rules, and hacks. In
Proceedings of the Third Arabic Natural Language Processing Workshop, pages 9–17, Valencia, Spain, April.
Association for Computational Linguistics.

Muhammad N. ElNokrashy. 2020. Extensible RNN cells for PyTorch. https://github.com/munael/
pt-rnn.

Moustafa Elshafei, Husni Al-Muhtaseb, and Mansour Alghamdi. 2006. Statistical methods for automatic diacriti-
zation of arabic text. The Saudi 18th National Computer Conference. Riyadh, 18:301–306, 01.

Ali Fadel, Ibraheem Tuffaha, Bara’ Al-Jawarneh, and Mahmoud Al-Ayyoub. 2019a. Arabic text diacritization
using deep neural networks. In 2019 2nd International Conference on Computer Applications Information
Security (ICCAIS), pages 1–7, May.

Ali Fadel, Ibraheem Tuffaha, Bara’ Al-Jawarneh, and Mahmoud Al-Ayyoub. 2019b. Neural Arabic text diacritiza-
tion: State of the art results and a novel approach for machine translation. In Proceedings of the 6th Workshop on
Asian Translation, pages 215–225, Hong Kong, China, November. Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoretically grounded application of dropout in recurrent neural
networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 1019–1027. Curran Associates, Inc.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. 2005. Bidirectional LSTM Networks for Improved
Phoneme Classification and Recognition. In Włodzisław Duch, Janusz Kacprzyk, Erkki Oja, and Sławomir
Zadrożny, editors, Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005, pages
799–804, Berlin, Heidelberg. Springer Berlin Heidelberg.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009. MADA+TOKAN: A toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS tagging, stemming and lemmatization. Proceedings of the
2nd International Conference on Arabic Language Resources and Tools (MEDAR), 01.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

Hamdy Mubarak, Ahmed Abdelali, Hassan Sajjad, Younes Samih, and Kareem Darwish. 2019. Highly effective
Arabic diacritization using sequence to sequence modeling. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 2390–2395, Minneapolis, Minnesota, June. Association for Computational
Linguistics.

Rani Nelken and Stuart M. Shieber. 2005. Arabic diacritization using weighted finite-state transducers. In Pro-
ceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages 79–86, Ann Arbor,
Michigan, June. Association for Computational Linguistics.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab, Ahmed El Kholy, Ramy Eskander, Nizar Habash, Manoj
Pooleery, Owen Rambow, and Ryan Roth. 2014. MADAMIRA: A fast, comprehensive tool for morphological
analysis and disambiguation of Arabic. In Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), pages 1094–1101, Reykjavik, Iceland, May. European Language Resources
Association (ELRA).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1715–1725, Berlin, Germany, August. Association for Computational Linguistics.

https://github.com/munael/pt-rnn
https://github.com/munael/pt-rnn

48

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–
1958.

Teresa Tinsley and Kathryn Board. 2013. Languages for the Future. British Council.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Nasser Zalmout and Nizar Habash. 2020. Joint diacritization, lemmatization, normalization, and fine-grained
morphological tagging. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pages 8297–8307, Online, July. Association for Computational Linguistics.

Taha Zerrouki and Amar Balla. 2017. Tashkeela: Novel corpus of arabic vocalized texts, data for auto-
diacritization systems. Data in Brief, 11:147 – 151.

Imed Zitouni and Ruhi Sarikaya. 2009. Arabic diacritic restoration approach based on maximum entropy models.
Computer Speech & Language, 23:257–276, 07.

Imed Zitouni, Jeffrey S. Sorensen, and Ruhi Sarikaya. 2006. Maximum entropy based restoration of Arabic
diacritics. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics, pages 577–584, Sydney, Australia, July. Association
for Computational Linguistics.

	Introduction
	Related Work
	Approach
	Datasets
	Architecture
	Two-Level (Hierarchical) Model
	Cross-level Attention Module
	Decoder
	Task Objective

	Experimental Setup
	Parameters, Hyper-parameters, and Regularization
	D3 Training
	Source Code

	Results

	Discussion
	Ablation Study
	Attention Analysis
	Error Analysis

	Conclusion

