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Abstract
In this paper, we present a description of our experiments on country-level Arabic dialect identi-
fication. A comparison study between a set of classifiers has been carried out. The best results
were achieved using the Linear Support Vector Classification (LSVC) model by applying a Ran-
dom Over Sampling (ROS) process yielding an F1-score of 18.74% in the post-evaluation phase.
In the evaluation phase, our best submitted system has achieved an F1-score of 18.27%, very
close to the average F1-score (18.80%) obtained for all the submitted systems.

1 Introduction

Fine grained Arabic dialect identification is a very challenging topic due, in one hand, to the rarity of
dialectal resources, and in the other hand, to the inter-closeness of Arabic dialects spoken by twenty two
countries, as well as the intra-closeness of each sub-dialect spoken in many provinces of a country. One
of the most recent scientific events dedicated to Arabic fine grained dialect identification was organized in
the framework of the fourth workshop for Arabic natural language processing, MADAR’2019 (Bouamor
et al., 2019), where a couple of works have been proposed. Indeed, in Abu Kwaik and Saad (2019), the
authors proposed a system based on extracting and applying a feature union process on a set of features
(TF-IDF word n-grams, TF-IDF character n-grams, TF-IDF character with boundary n-grams and TF-
IDF skip n-grams) multiplied by a transformation weight. In fact, they applied empirical experiments
to find the best values of ”n” (n-grams) as well as the transformation weights. Other features have been
added, like sentence length ratio for every sentence in the data. To classify these features, the authors used
an ensemble hard voting classifier with three ML algorithms (Linear Support Vector Classifier “LSVC”,
Multinomial Naive Bayes “MNB” and Bernoulli Naive Bayes “BNB”). They obtained a macro F-score
of 67.32%. Based on the work done by (Salameh et al., 2018), (Ragab et al., 2019) have suggested an
ensemble of 5 classifiers (MNB, SVC, BNB, k-nearest-neighbours “KNN” and a weak dummy classifier
based on prior probabilities of each dialect), in addition to 96 language models on word and char-level
trained using KenLM (Heafield, 2011) from Moses, with default parameters. This setup has given an
F1-score of 66.7%. In a more refined experiment, (Abdul-Mageed et al., 2019) presented a very large
scale dataset covering 319 cities from all 21 Arab countries. They also introduced a hierarchical attention
multi-task learning (HA-MTL) approach for dialect identification exploiting the data at the city, state, and
country levels. They also evaluated the use of BERT on the three tasks, while comparing it to the MTL
approach. More recently, (Abdelali et al., 2020) built a new corpus and called it QADI (18 countries).
They experimented the AraBert model (Baly et al., 2020) on both QADI and MADAR corpus (25 cities
+ MSA). The score they achieved was 60.6% and 29% on QADI and MADAR, respectively.
In this paper, we present our contribution based on our system presented in (Lichouri et al., 2018) and
(Abbas et al., 2019) to solve the challenge introduced in the first subtask, i.e. identifying 21 Arabic
countries’ dialects. In section 2, a description of the used dataset is presented. The applied cleaning
steps and preprocessing are explained in section 3. In sections 4 and 5, we exposed the two adopted
approaches (both simple and oversampling-based classification), respectively. Finally, the findings and
discussion are presented in section 6.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Description of the Dataset

In this section, we describe the dataset used in our current (i.e., NADI) shared task (Abdul-Mageed et
al., 2020). This dataset is collected from 21 Arab countries from the Twitter domain, covering a total
of 100 provinces. The dataset is divided to three sets: train, dev and test, for which we addressed, in
table 1, some statistics after applying a simple punctuation removal. As can be noticed from table 1,

Train Dev Test Total
# sentences 21,000 5,000 5,000 31,000
# words 350,191 80,224 84,929 515,344
Max # word per sentence 228 248 249 -
Min # word per sentence 1 1 1 -
Max # char per sentence 488 673 535 -
Min # char per sentence 3 3 1 -

Table 1: NADI dataset statistics

the minimum number of words and characters per sentence in the training and development sets are 1
and 3, respectively. This information was useful to determine the number “n” of grams to be selected
in the features extraction phase. In figure 1, we note that the numbers of words for the 21 dialects are
differential in training dataset. As an example, we mention the case of Saudi Arabia versus Sudan or Iraq
versus Libya. We also note that the ratio of the numbers of words to the number of sentences is more
considerable for some dialects as Egyptian, Iraqi and Algeria.

3 Data Cleaning and Preprocessing

Dealing with texts collected from Twitter necessitates a cleaning process before doing analysis and pro-
cessing. Hence we have applied two simple cleaning steps:

1. Emoji removal: We removed the emoticons, symbols & pictographs, transport & map symbols and
flags (iOS).

2. Arabic and Latin punctuation removal: We removed a list of Arabic punctuation symbol that we
prepared manually, whereas we used the Latin punctuation symbol list provided by the string library
(string.punctuation).

For preprocessing, we explored the following steps: punctuation removal, normalization of Arabic let-
ters, stop words removal, lemmatization, stemming, and part of speech tagging. For the lemmatization
process we used Farasa1 developed by (Abdelali et al., 2016), whereas for stemming and part of speech
tagging, we used ISRI Arabic Stemmer and PosTagger of NLTK2 (Bird et al., 2009). To investigate the
impact of these six text functionalities, we combined them in different ways (see tables 2 and 3). We used
different combinations of n-grams as features which resulted in 200 experiments. Nevertheless, we kept
those which yielded the best performance, namely: 3-grams word, 5-grams word, 3-grams char, 5-grams
char, 3-grams char wb, 5-grams char wb (see tables 2 and 3). These features have been transformed
using the sklearn tfidf vectorizer (Pedregosa et al., 2011) as presented in (Abbas et al., 2019).

4 Simple Classification Model

This classification model is simply based on three linear classifiers, namely: Linear Support Vector
Classification (LSVC), Ridge Classifier (RDG) and Stochastic Gradient Descent (SGD). The parameters
we used for these classifiers are as follows: Linear SVC (C=0.01, penalty=”l1”, dual=False), Ridge
Classifier (tol=1e-4, solver=”sag”) and SGD (alpha=.0001, max iter=100, penalty=’l2’). So as to avoid
overfitting, we have applied a K-Fold Cross Validation (K=10) by using the Stratified K-Folds cross-
validator (Pedregosa et al., 2011).

1http://alt.qcri.org/farasa/
2https://www.nltk.org/index.html
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Figure 1: Dataset distribution: # sentences and words per country
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Figure 2: Classification system architecture of Arabic dialects.

5 Oversampling Based Classification

Since the dataset used in this task is imbalanced, as can be noticed clearly in figure 1, we used oversam-
pling techniques to solve this problem (Lemaı̂tre et al., 2017). In the following, we briefly describe three
different techniques that we used for oversampling:

Random Over-Sampler (ROS): This can be achieved by simply duplicating random examples from the
minority class in the training dataset prior to fitting a model. This can balance the class distribution
but does not provide any additional information to the model (Brownlee, 2020).

Synthetic Minority Oversampling Technique (SMOTE): It works by selecting examples that are
close in the feature space, drawing a line between the examples in the feature space and draw-
ing a new sample at a point along that line. Specifically, a random example from the minority class
is first chosen. Then k of the nearest neighbors for that example are found (default k=5). A ran-
domly selected neighbor is chosen and a synthetic example is created at a randomly selected point
between the two examples in feature space (Brownlee, 2020).
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Adaptive Synthetic (ADASYN): It is based on the idea of adaptively generating minority data samples
according to their distributions using K nearest neighbors. The algorithm adaptively updates the
distribution and there are no assumptions made for the underlying distribution of the data. The
algorithm uses Euclidean distance for KNN Algorithm (Walimbe, 2017).

For these three models, we adopted the default configuration except two parameters which are: ra-
tio=‘minority’ and random state=777. The full architecture of our system is presented in figure 2. It
should be noted that we first combined all the six aforementioned preprocessing steps to generate all the
possible textual presentations, after that we applied a second combination between n-grams (n=1,3,5)
and tokenizer (word, char, char with boundary, union of the three) to generate all the possible vector fea-
tures. Then we fed these features to our two proposed approaches: a simple classification model based
on three classifiers (LSVC, RDG, SGD) and an oversampling-based classification approach based on the
same three classifiers in addition to three oversampling procedures (ROS, SMOTE, ADASYN) which
were applied before training. Finally we have used an ensemble classifier which will take as input the
three predictions by the two approaches separately and apply a major voting rule to predict the dialect.

SimpleApproach

Page 1

Run Model Text PreProcessing Morpho Features
Simple CV=10

Dev Test Dev Test

1

LSVC RP - 19.01 17.90 18.42 18.29
RDG RP - 18.28 17.31 18.39 18.28
SGD RP - 18.91 17.95 18.83 18.01
Ensemble RP - 18.99 17.73 19.23 18.46

2

LSVC RP + Norm - 19.01 17.90 17.98 18.05
RDG RP + Norm - 18.28 17.31 18.35 17.71
SGD RP + Norm - 19.55 18.27 18.08 17.31
Ensemble RP + Norm - 19.02 17.63 18.08 17.70

3

LSVC RP + Norm + RSW - 17.99 17.54 18.63 18.48
RDG RP + Norm + RSW - 17.86 17.07 18.08 17.71
SGD RP + Norm + RSW - 18.14 17.04 17.71 17.40
Ensemble RP + Norm + RSW - 17.72 17.09 18.39 18.07

4

LSVC RP + Norm Stem 19.01 17.90 18.58 17.52
RDG RP + Norm Stem 18.28 17.31 18.61 17.20
SGD RP + Norm Stem 18.61 17.18 18.35 17.67
Ensemble RP + Norm Stem 18.83 17.33 18.49 17.64

5

LSVC RP + Norm Lem 19.01 17.90 17.76 16.61
RDG RP + Norm Lem 18.28 17.31 16.99 16.34
SGD RP + Norm Lem 19.36 18.24 16.64 15.51
Ensemble RP + Norm Lem 18.82 17.62 17.26 16.40

6

LSVC RP + Norm PosTag 19.01 17.90 15.62 15.47
RDG RP + Norm PosTag 18.28 17.31 14.58 13.68
SGD RP + Norm PosTag 18.20 17.39 13.90 13.80
Ensemble RP + Norm PosTag 18.64 17.44 15.34 14.83

7

LSVC RP + Norm Stem + Lem 19.01 17.90 - -
RDG RP + Norm Stem + Lem 18.28 17.31 - -
SGD RP + Norm Stem + Lem 19.75 18.00 - -
Ensemble RP + Norm Stem + Lem 18.95 17.64 - -

8

LSVC RP + Norm  + RLL Stem + Lem 18.67 17.76 - -
RDG RP + Norm  + RLL Stem + Lem 18.67 17.58 - -
SGD RP + Norm  + RLL Stem + Lem 18.72 17.80 - -
Ensemble RP + Norm  + RLL Stem + Lem 18.61 17.50 - -

Table 2: The obtained results (macro average F1-score) in dev and test set for the simple classification
model for the best 8 runs from the 200 run conducted.
RP: Removal of Punctuation, Norm: Arabic Letter Normalization, RSW: Removal of Stop Words, RLL:
Removal of Latin Letters, Stem: Stemmer, Lem: Lemmatizer, PosTag: PosTagger.

6 Results and Discussion

After conducting more than 200 empirical experiments, in which we used different combinations of
n-grams, we have reported the outputs of our 8 best configurations, as mentioned in tables 2 and 3, per-
formed by the LSVC, RDG and SGD classifiers, in addition to the Ensemble classifier. Note that the
oversampling-based method outperformed the simple classification model (F1-score = 18.74%). The
impact of applying cross validation procedure k-CV (k=10) is also reported in tables 2 and 3. We should
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OverSamplingApproach

Page 2

Run Model Text PreProcessing Morpho Features OverSamp Methods
CV=10

Dev Test 

1

LSVC RP - ROS 18.26 18.74
RDG RP - SMOTE 18.47 18.27
SGD RP - ADASYN 17.28 17.66
Ensemble RP - - 18.30 18.23

2

LSVC RP + Norm - ROS 18.00 18.04
RDG RP + Norm - SMOTE 18.61 17.65
SGD RP + Norm - ADASYN 17.36 16.94
Ensemble RP + Norm - - 18.24 17.48

3

LSVC RP + Norm + RSW - ROS 18.32 18.60
RDG RP + Norm + RSW - SMOTE 18.06 17.77
SGD RP + Norm + RSW - ADASYN 16.91 17.23
Ensemble RP + Norm + RSW - - 18.12 18.25

4

LSVC RP + Norm Stem ROS 18.56 17.80
RDG RP + Norm Stem SMOTE 18.59 17.33
SGD RP + Norm Stem ADASYN 17.33 16.84
Ensemble RP + Norm Stem - 18.76 17.37

5

LSVC RP + Norm Stem ROS 17.84 16.58
RDG RP + Norm Stem SMOTE 17.01 16.02
SGD RP + Norm Stem ADASYN 16.40 15.80
Ensemble RP + Norm Stem - 17.21 16.62

6

LSVC RP + Norm PosTag ROS 15.85 15.94
RDG RP + Norm PosTag SMOTE 14.55 13.94
SGD RP + Norm PosTag ADASYN 13.17 13.46
Ensemble RP + Norm PosTag - 14.82 14.97

Table 3: Macro average F1-score for the oversampling classification approach -best 6 runs-.
RP: Removal of Punctuation, Norm: Arabic Letters Normalization, RSW: Removal of Stop Words,
RLL: Removal of Latin Letters, Stem: Stemmer, Lem: Lemmatizer, PosTag: PosTagger.

note that the TF-IDF features used in all the 8 experiments are the union of (5-grams word, 5-grams char
and 5-grams char with boundary). We summarize the results describing the best performance achieved
with the two proposed approaches ” simple classification (Table 2) and oversampling-based classification
(Table 3)” where the impact of preprocessing on the different experiments (runs) is clearly noticeable. Let
us first introduce the positive impact of punctuation removal and Arabic letter normalization. Indeed, one
can see the improvement achieved in the second run, with an F1-score of 19.55% in dev (18.27% in test),
while the stop words removal yielded the worst performance (table 2). In the the following runs (4-8), we
kept the stop words and we applied stemming, lemmatization and part of speech tagging separately. This
didn’t lead to an improvement compared to the first three runs. However, using stemming and lemma-
tization jointly, we obtained better results using the SGD classifier with an F1-score of 19.75% (dev)
and 18% (test). Ironically, when we removed the Latin letters in the last run, performance decreased,
which shows apparently that the Latin words are useful for identifying Arabic dialects. Furthermore,
we mention herein the results reported using the test set that outperformed our best submission system.
For the simple classification model, we recorded the following F1-socres: 18.28% (run 1-RDG), 18.29%
(run 1-LSVC), 18.46% (run 1-Ensemble) and 18.48% (run 3-LSVC). In the case of oversampling-based
approach, using 10-CV, we obtained the following results: 18.27% (run 1-Ensemble), 18.60% (run 3-
LSVC) and 18.74% (run 1-LSVC). These results have shown that the 10-CV is practical in the presence
of new data (test set).

7 Conclusion

In this paper, we presented a description of our system for identifying Arabic dialects from twitter col-
lected from 21 Arabic countries. We have performed an empirical comparison study where we conducted
200 experiments in which we used several combinations of features and preprocessing steps, as stem-
ming, lemmatization and part of speech tagging. We used a simple classification model comprising three
classifiers: LSVC, RDG and SGD, while we tried to resolve the problem of imbalanced data using the
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oversampling methods. As expected, using a small and imbalanced dataset didn’t help to get high scores,
however, this task can be seen as the first try to identify high number of dialects with few resources.
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