
Proceedings of the Fifth Arabic Natural Language Processing Workshop, pages 243–249
Barcelona, Spain (Online), December 12, 2020

243

Voting Classifier vs Deep learning method in Arabic Dialect Identification

Dhaou Ghoul
STIH Lab, Sorbonne University

dhaou.ghoul@sorbonne-universite.fr

Gael Lejeune
STIH Lab, Sorbonne University

gael.lejeune@sorbonne-universite.fr

Abstract
In this paper, we present three methods developed by the SORBONNE Team for the NADI shared
task on Arabic Dialect Identification for tweets. The first and the second method use respectively
a machine learning model based on a Voting Classifier with words and character level features
and a deep learning model at the word level. The third method uses only character-level features.
We explored different text representation such as TF-IDF (first model) and word embeddings
(second model). The Voting Classifier was the most powerful prediction model, achieving the
best macro-average F1 score of 18.8% and an accuracy of 36.54% on the official test. Our model
ranked 9 on the challenge and in conclusion we propose some ideas to improve its results.

1 Introduction

The Arabic language is one of the most widely spoken language in the world, currently considered as the
fifth language (Chung, 2008) with more than 330 million Arabic speakers. It is the official language of
more than 22 countries. In its written form, commonly referred as Literary Arabic, it usually is divided
into two categories: Classical Arabic and Modern Standard Arabic (MSA). However, in their daily life
Arabic speakers mostly use dialects which are a linguistic variant of classical Arabic with their own
features, varying with respect to the country or the region. One can say that MSA is only used for written
and official communication while dialects are used for oral communication as well as for many device
mediated communication forms: email, SMS, chat or blogs. Therefore, Arabic dialect identification
(DID) has become a very important data preparation step that attracts many attention in NLP research.
Indeed, the knowledge about the dialect of an input text is useful in several NLP tasks such as sentiment
analysis (Al-Twairesh et al., 2016), machine translation or document classification. This paper describes
our submission to the NADI shared task on Arabic fine-grained dialect identification cover a total of 100
provinces from all 21 Arab countries (Abdul-Mageed et al., 2020). Two subtasks were proposed:

• Subtask 1: Country-level dialect identification: 21,000 tweets covering 21 Arab countries.

• Subtask 2: Province-level dialect identification: the same tweets but with province label.

Our submission is dealing with the first subtask. In Section 2, we describe the dataset and in Section 3
we present our three methods. In Section 4, we detail our results and give future directions in Section 5.

2 Dataset

Arabic has a widely varying collection of dialects. Many of these dialects remain understudied due to
rarity of resources. The dataset used in this work is made up of a collection of tweets shared by users
in different Arab countries. This dataset is collected from 21 countries which are Algeria, Bahrain,
Djibouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine, Qatar,
Saudi-Arabia, Somalia, Sudan, Syria, Tunisia, United-Arab-Emirates, Yemen. The dataset for the shared
task contains 25,957 tweets divided in training, development and test set as shown in Table 1.

The distribution of tweets among countries is very unbalanced. The Egyptian dialect is best repre-
sented in te dataset as shown in Figure 1. Around 21% (5543 tweets) of the tweets belong to Egypt while
only 0.8% belong to Bahrain (218 tweets) and Djibouti (220 tweets).
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

244

Datasets Train Dev Test
lines 21,000 4,957 5,000
words 269,644 60,467 64,211
characters 2,798,691 633,134 667,597

Table 1: Size of the Train, Dev and Test sets

Figure 1: The distribution of the 21 Arabic dialects in NADI Twitter dataset (logarithmic scale)

3 Data Preparation and Classification Methods

3.1 Pre-processing

It is intended to help the classifiers to generalize and to remove potential biases. Our pre-processing
is limited to a few steps of cleaning up, applied to each tweet. After several tests, we have kept this
cleaning process in the following order: removing punctuation signs, digits, non Arabic words, repeated
characters and finally emoticons.

Often, pre-processing also involves removing Arabic stop-words, diacritics and normalizing (Ayedh et
al., 2016). It is known that for language identification tasks stop-words are very useful (McNamee, 2005)
but we also noticed that removing diacritics and normalizing text reduces the identification as well.

3.2 Models

3.2.1 Run1: Voting Classifier
Our first model is based on a traditional machine learning approach. To build and train the model, we
use FeatureUnion in SCIKIT-LEARN (Pedregosa et al., 2011) which allows to combine easily different
n-gram representations at the word level and the character level as shown in Figure 2. To train this model,
we concatenate three vectors with the following features (weigthed with TF-IDF): word n-grams (1 to
5-grams), character n-grams (1 to 4-grams) and character n-grams (1 to 5-grams) with word boundaries
explicitly marked with a space.

We use a set of classifiers based on a voting technique using the SCIKIT LEARN implementation of
VotingClassifier in order to build an ensemble voting classifier with hard voting, where it uses predicted

245

Figure 2: Model of Run1

class labels for majority rule voting. This ensemble is a combination of the following classfiers:

- SGDClassifier with alpha = 0.00001 and penalty = ‘l2’
- LinearSVC with penalty = ‘l2’ and Tolerance for stopping set to 0.001
- Multinomial Naive Bayes with alpha = 0.01
- Bernoulli Naive Bayes with alpha = 0.01
- Ridge Classifier with alpha = 1

The results for the dev and test set with pre-processing are reported in Table 2.

Trained on Tested on Precision Recall Accuracy Macro avg F-score
Train Set Dev Set 22.82 17.02 36.33 17.69
Train Set Test Set 22 15.9 31.9 16.06
Train+Dev Test Set 24.87 18.05 36.54 18.8

Table 2: Results with pre-processing for Run1 with different training configurations

3.2.2 Run2: Deep Learning approach
To build the deep learning model for Run2, we used two pre-trained word embedding models:

• Aravec: proposed by Soliman et al, it is composed of three models trained trained with Word2Vec
skip-gram and CBOW (Mikolov et al., 2013) on three datasets in Arabic: tweets, web pages and
Wikipedia articles (Soliman et al., 2017). We used the 100-dimensional Twitter N-Grams model.

• Unlabelled-tweetsVec: Word2Vec skip-gram (300-dimensions) trained on NADI unlabelled tweets

In addition to this, we added features specific to tweets in the input layer of our neural network. When
analyzing the train set, we found that there some features where useful to differentiate the dialects :
user mentions and words specific to Twitter data. For instance, people tagging the user @Mowafaglibya
mostly use Lybian dialect, so here the user mention is decisive. Some words as ”ñ

	
J

�
�”(chnowa), ” A

�
�

�QK.”
(barcha) to identify the Tunisia dialect. These words are specific for the Tunisian dialect, they respec-
tively mean ‘what’ and ‘many’.

246

The deep neural network developed for this run is composed as follows: the input layer, an embedding
layer, two LSTM layers and two Dense layers. To prevent over-fitting we add a dropout layer after each
LSTM layer and the first dense layer. We use two word embeddings representation : AraVec and our own
model trained on 10M unlabelled tweets. The final output is passed into one hidden layer and followed
by a softmax output layer. To train these two models, we used the ”NADI” train corpus with 10 epochs
and evaluate it by ”NADI” development corpus and. The results are reported in Table 3. We can see that,
contrary to Run1, this model suffers from over-fitting when trained on both train and dev set.

Word Embedding Trained on Tested on Precision Recall Macro avg F-score Accuracy
AraVec Train Set Dev Set 21.99 16.24 16.68 35

Train Set Test Set 22.54 16.13 16.18 32.56
Train+Dev Test Set 20.4 15.03 14.94 33.7

Unlabled-tweetsVec Train Set Dev Set 14.92 14.26 14.2 29.03
Train Set Test Set 13.98 14.76 13.96 27.98

Train+Dev Test Set 17.22 15.28 15.06 29.94

Table 3: Results with pre-processing for Run2

3.2.3 Run3: character n-grams
This run uses MICHAEL the method developed for the 2019 MADAR challenge (Ghoul and Lejeune,
2019), this method does not use any pre-processing in order to act as a simple baseline. It is a character
n-gram model with various range of n-gram size. The rationale behind this kind of model is to get
a simplified representation without having to tackle the problem of tokenization, which is particularly
difficult for languages like Arabic. The best configuration for this baseline was a Logistic Regression
classifier with character 5-grams as features. For this baseline, the dataset has been used as it is without
any pre-processing.

4 Results and Discussion

The results obtained by our different models for the test set with and without pre-processing are presented
in table 4. In reality, there are similar dialects or with a minor difference. In other words, a short sentence
can belong to several dialects because it is constructed with a reduced number of words. That is why,
it is also impossible for Arabic speakers to detect the dialect from a very short sentence with 100%
accuracy. Before analyzing our results, we wanted to briefly check for annotation errors. We focused
on the 750 tweets annotated as Tunisian, divided into four provinces (Sousse: 212 tweets, Mahdia: 212
tweets, Ariana: 212 tweets and Kairaoun: 114 tweets). After this verification, we found out that the 212
tweets labeled as Mahdia are wrongly labelled. The majority of them belong to the Libyan dialect and
the rest are Sudan tweets. For instance, this tweet (Train-4235): ”�ºJ
Ê

	
®
�
J�

	
K ½ÊK
Qå

�
�
	
� ú

æ
.

�
K É¾K.

�
�Ê«

	Q�
�Ó ú

�
G”

(Don’t get angry, do you want me to buy you a netflix) is annotated as Tunisian (region of Mahdia) but
is Libyan. Our verification was peformed by consulting the user profile in some cases and from the
lexicon used in the tweets in other cases. The last example contains words from the Libyan lexicon like
”É¾K.” and ”ú

æ
.

�
K”. The imbalances in the dataset obviously makes the task harder. The imbalance ratio,

defined as the ratio of the number of instances in the majority class to the number of examples in the
minority class (ratio=0.047 and ratio=0.007). The Egyptian dialect is more represented with 5543 tweets
(Train+Dev set). On the other hand, the Mauritania, Somalia, Sudan, Bahrain and Djibouti dialects are
less represented with 210 tweets and the Qatari dialect with 234 tweets. All this shows that this shared
task was very difficult.

There are dialects which are not easy to detect even by an Arabic speakers as they do not contain any
clue words, like Mauritania and Djibouti. These tweets are often written in standard Arabic. Figure 3
shows that our models are not able to correctly classify these tweets. Bahrain, Djibouti dialects were the
most difficult to detect : we had no True Positive (TP).

247

Pre-processing Features Trained on Precision Recall Accuracy Macro avg F-score

With pre-processing Union-features: TF-IDF Train set 22 15.9 31.9 16.06

Run1 Train+Dev set 24.87 18.05 36.54 18.8
Embedding: AraVec Train set 22.54 16.13 32.56 16.18

Run2 Train+Dev set 20.4 15.03 33.7 14.94

Without pre-processing Union-features: TF-IDF Train set 25.10 17.22 36.02 17.49

Run1 Train+Dev set 26.72 17.83 36.56 18.6

Embedding: AraVec Train set 18.78 14.69 32.6 14.89

Run2 Train+Dev set 19.38 14.28 33.8 14.28

Character 5-Grams Train set 19.13 14.24 32.38 14.2

Run3 Train+Dev set 18.56 14.81 32.7 14.59

Table 4: Results on the test set, models with and without pre-processing

Figure 3: Confusion Matrix for Run1 (Voting Classifier) on the dev set

The confusion matrix in Figure 3 shows the numbers of actual and predicate labels for each dialect.
There are some similar pairs of dialects for which the system made a lot of errors : (Iraq, Egypt) and
(Saudi-Arabia,Egypt). We can also see on the confusion matrix that 70 tweets from Lebanon were
classified as Egyptian. We manually checked the annotation of these 70 tweets: 63 of them are in fact
from Egypt and as such are not classification errors. For exemple, ” A

�	
K @ A

�
K
A

�
ªÓ

�
�Ó ��.” (But, not with

me) is annotated as Lebanon dialect but it is in reality Egypt dialect (after our verification). Our model
predict this tweet as an Egypt dialect because it contains words belongs to the Egyptian lexicon. The
table 5 presents some examples of tweets from the Train and Dev set and their transliteration. These
examples shows the annoataion errors of the Train + Dev set.

For the evaluation purpose, we use the Macro averaged F-score which is retained as the official metric
by the organizers of NADI shared task. In all the experiments, the best model is obtained for hard
voting classifier with the previously mentioned algorithms (SGDClassifier, Linear SVC, MNB, BNB
and RidgeClassifier) with Macro avg F-score of 18.8% on the test set (line 3 in table 2). From the
classification report which is produced from the dev set in Table 6, we find that some dialects were easier
to detect than others, for example, the dialects Egypt, Algeria and Iraq with a lower score f respectively
0.58 , 0.41 and 0.46 compared to others such as: Bahrain (0.0), Djibouti (0.0), Kuwait (0.02) and Qatar
(0.02).

248

Id-tweet Tweets Label Before verification Label After verification

Train-640 @
�
YºK. Õ

�
æ

	
m�

�
' 	

�ðQ
	
®Ó C

�
ª

	
¯ é

	
J�Ë@ ù

ëA

�
Ó

mAhy Alsnh fElA mfrwD txtm bkdA

Lebanon Egypt

Train-4280 Èñ£ ¨ é
�
J��. Ë

�
I

	
J» ú

�
Íñ£ B

�
ñË

lwlA Twly knt lbsth E Twl
Lebanon Egypt

Train-4842 é<
�
Ë @

	
àX

A
�
K. Z @ �QÔg

�
éJ

	
K A

�
Ô«

�
éÊJ
Ë

lylp EmAnyp HmrA’ b¡*n Allh
Lebanon Oman

Train-11283 É¾K. ú

æ

	
�A

�	
¯

�
�Ó ú

G
�
@
�
Y

�
JK.

B
�
@

	
¬ ú

ÎJ
Ó

	Pð ù

�
®K
Y�

Sdyqy w zmyly f Al¡btdAŷ m$ fADy bkl

Tunisia Lybia

Dev-2672 ú

�
æ� ø

Qå

�
�Ë @ YJ
ªK.

bEyd Al$r y sty

Lebanon Egypt

Dev-3290 éÒëA
�	
¯

�
�Ó ú

Í@ ú

�
æ

	
K @ éK
 @ ÉÔ«@ é

�
ê
�
ê
�
ê
�
ê
�
ë

hhhhh AEml Ayh Anty Al y m$ fAhmh

Lebanon Egypt

Dev-4046 C
�
ª

	
¯ ÐX

�
�A

�
ëY

	
JªÓ �A

�	
K

	
¬ ©Ê£ @

�
X

dA TlE f nAs mEndhA$ dm fElAF

Lebanon Egypt

Table 5: Examples of annotation errors from Train and Dev Set

EGP
IR

Q
SAU

ALG
UAE

SYR
LIB OM

A
M

OR
YEM

TUN
LEB

Precision 0.45 0.43 0.28 0.36 0.34 0.24 0.12 0.17 0.14 0.35 0.29 0.29

Recall 0.80 0.49 0.36 0.46 0.19 0.16 0.05 0.10 0.10 0.15 0.21 0.11

F1-score 0.58 0.46 0.32 0.41 0.24 0.19 0.07 0.12 0.12 0.21 0.24 0.16

Support 1070 636 579 359 265 265 265 249 249 206 164 110

JO
R

QAT
PA

L
KUW

SUD
SOM

M
AU

DJI BAH
M

ac
ro

M
icr

o
Acc.

Precision 0.35 0.14 0.08 0.03 0.22 0.29 0.12 0.00 0.00 0.22 0.31

0.36
Recall 0.11 0.01 0.02 0.01 0.04 0.04 0.07 0.00 0.00 0.22 0.36

F1-score 0.16 0.02 0.03 0.02 0.07 0.07 0.09 0.00 0.00 0.17 0.32

Support 104 104 102 70 51 51 40 10 8 4957 4957

Table 6: Detailed classification report for the Voting Classifier on the Dev set

Finally, we think that the class imbalance in our data set had a direct influence on the prediction of the
less presented class in train data with a TP rate close to zero and FN rate close to 100% as shown in the
Figure 3 (”Sudan”, ”Somalia”, ”Qatar”, etc).

5 Conclusion

In this paper, we described our system submitted to NADI shared task on country level dialect identifi-
cation from Twitter data. We presented three methods for this shared task. Experimental results show
that Voting Classifier was the most powerful prediction model, achieving the best macro-average F1
score than other machine learning and deep learning models. Despite the fact that there was a substan-
tial amount of incorrectly annotated tweets in the dataset, we were still able to achieve an F1 score of
17.69% on the development set, 16.06% on the test set and 18.8% on the test set trained on the train
and the development set. It would be interesting to correct the errors in training data in order to see the
impact on the results. Another perspective would be to evaluate our model with other tokenizers like
”MADAMIRA” (Pasha et al., 2014) and to perform a deeper analysis of classification errors.

249

References
Muhammad Abdul-Mageed, Chiyu Zhang, Houda Bouamor, and Nizar Habash. 2020. NADI 2020: The First

Nuanced Arabic Dialect Identification Shared Task. In Proceedings of the Fifth Arabic Natural Language
Processing Workshop (WANLP 2020), Barcelona, Spain.

Nora Al-Twairesh, Hend Al-Khalifa, and Abdulmalik AlSalman. 2016. AraSenTi: Large-scale twitter-specific
Arabic sentiment lexicons. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 697–705, Berlin, Germany, August. Association for Computational
Linguistics.

Abdullah Ayedh, Guanzheng TAN, Khaled Alwesabi, and Hamdi Rajeh. 2016. The effect of preprocessing on
arabic document categorization. Algorithms, 9:27, 04.

Wingyan Chung. 2008. Web searching in a multilingual world. Commun. ACM, 51(5):32–40, May.

Dhaou Ghoul and Gaël Lejeune. 2019. MICHAEL: Mining character-level patterns for Arabic dialect identifica-
tion (MADAR challenge). In Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages
229–233, Florence, Italy, August. Association for Computational Linguistics.

Paul McNamee. 2005. Language identification: A solved problem suitable for undergraduate instruction. J.
Comput. Sci. Coll., 20(3):94–101, February.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab, Ahmed El Kholy, Ramy Eskander, Nizar Habash, Manoj
Pooleery, Owen Rambow, and Ryan Roth. 2014. MADAMIRA: A fast, comprehensive tool for morphological
analysis and disambiguation of Arabic. In Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), pages 1094–1101, Reykjavik, Iceland, May. European Language Resources
Association (ELRA).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R. El-Beltagy. 2017. Aravec: A set of arabic word embedding
models for use in arabic nlp. Procedia Computer Science, 117:256 – 265. Arabic Computational Linguistics.

