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Abstract 

We present our work on automatically detecting isnads, the chains of authorities for a report that 

serve as citations in hadith and other classical Arabic texts. We experiment with both sequence 

labeling methods for identifying isnads in a single pass and a hybrid “retrieve-and-tag” 

approach, in which a retrieval model first identifies portions of the text that are likely to contain 

start points for isnads, then a sequence labeling model identifies the exact starting locations 

within these much smaller retrieved text chunks. We find that the usefulness of full-document 

sequence to sequence models is limited due to memory limitations and the ineffectiveness of 

such models at modeling very long documents. We conclude by sketching future improvements 

on the tagging task and more in-depth analysis of the people and relationships involved in the 

social network that influenced the evolution of the written tradition over time. 

1 Introduction 

In classical Arabic texts, lists of the names of authorities that transmitted a piece of information (isnads) 

are often attached to a statement or report (the matn) to confirm its reliability. The study of isnads is an 

integral part of the study of hadith and the history of the Arabic written tradition in general. With the 

increasing availability of digitized texts, new methods are required to automatically locate and analyze 

isnads at scale in a wider variety of text than the canonical hadith collections used in smaller-scale 

studies (Harrag et al, 2014; Maraoui et al, 2019, Altammami et al, 2019). Isnads are often seamlessly 

integrated into running text, and are therefore difficult to distinguish from the surrounding text based on 

visual layout or punctuation information alone. The textual content of the isnad itself must therefore be 

used to determine its location. For instance, in the example hadith below, the names and transmissive 

terms indicate that the underlined section in the beginning of the text is the isnad, while the remainder 
is the matn.  

 

قال   :وسلم  عليه  الله  صلى  النبي  أن  سمرة،  عن  الحسن  عن  قتادة،  عن  هشام،  حدثنا:  قال  داود  أبو  حدثنا 
 خصيناه خصاه ومن جدعناه  جدعه ومن قتلناه عبده قتل من

 
“Abū Dāwūd transmitted to us, he said, ‘Hishām transmitted to us, from Qatādah, from 

al-Ḥasan, from Samurah that the Prophet, may the peace and blessing of God be on him, 

said, ‘Whoever kills his slave, we will kill; and whoever mutilates, we will mutilate 

him; and whoever emasculates, we will emasculate him.’” (Sulaymān, 204AH) 

 

In theory, one could also extract the body of the hadith, but there are fewer significant linguistic cues 

that set a matn apart from the background text than there are for its corresponding isnad. Once one has 
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amassed a large collection of isnads, one could begin to extract the relationships between individual 

transmitters, as well as infer the exact identities of transmitters given the relationship network’s structure 

and the variety of names used for the same individual. This would allow humanists to draw a larger scale 

picture of the evolution of the Arabic written tradition than has previously been possible by analyzing 

the social network involved in both the creation of individual texts and the corpus as a whole.  

Long documents often contain passages in an embedded genre, distinct from the surrounding text. We 

can locate certain kinds of embedded texts using visual layout information to segment the text into 

smaller units, like articles in a newspaper, which could then be classified using any number of text 

classification methods (Lee et al, 2020), or using formatting and punctuation cues to locate poetic 

passages embedded in prose works (Lorang et al., 2015; Foley, 2019). If one does not have the ability 

to divide the text up into sufficiently granular units, or the embedded genre of interest is not easily 

separable from the surrounding background text using layout cues alone (e.g., indented lines of poetry), 

these approaches are not possible. However, isnads tend to have linguistic cues that indicate their 

presence, like the presence of a large number of names or particular transmissive terms in a small region 

of the text. In this paper we will follow a two-step approach to solving the problem of identifying isnads 

in long documents by first applying a retrieval model to find sections of a document likely to contain 

start points of isnads, then training a sequence tagging model on the retrieved sections to identify where 

within those spans the isnads begin. Upcoming work will involve inferring the endpoints of the isnads 

given the start points identified by the tagging model using a span prediction model. 

This paper is organized as follows; in section 2 we present an overview of related work. Section 3 

provides a deeper discussion of the data sources we use for our experiments. In section 4, we present the 

results of an inter-annotator agreement study done as part of the process of creating training data as a 

benchmark for human performance on the task. Section 5 discusses the models used in our experiments, 

as well as hyperparameters and training processes. Section 6 presents the results of our evaluation. 

Section 7 presents possible avenues of future work. 

2 Related Work 

This work is closely related to the problem of named entity recognition. Most named entity recognition 

models are evaluated using datasets like the CoNLL 2003 dataset (Tjong and de Meulder, 2003). In 

contrast to our data, the target entities in such datasets are at most a few words long, the training and test 

documents are much smaller than the whole texts we are working with, and almost all documents contain 

named entities. Neural models such as the BiLSTM and BiLSTM-CRF, as used by (Lample et al, 2016) 

have been shown to perform well on a performing named entity recognition in multiple languages. 

Additionally, a great deal of effort has been expended to improve the performance of named entity 

recognition on short documents like those found on social media sites like Twitter (e.g., Ritter, 2011). 

We seek to do the opposite, and explore performance on longer documents. While we could have 

approached the tasks described above as named entity recognition tasks, looking for names in isnads in 

particular, downstream tasks like information extraction or network inference would likely benefit from 

the additional structure present in the text around the names.  

Unlike prior work on automatic ḥadith tagging, we focus exclusively on trying to identify isnads, 

rather than also trying to simultaneously extract the corresponding matn for each chain (Harrag et al, 

2014; Maraoui et al, 2019, Altammami et al, 2019) or extract information from the identified isnads 

(Siddiqui et al, 2014), as others have done. We are working with a much larger and correspondingly 

more diverse collection of texts, rather than limiting our analysis to hadith collections. Finally, much of 

the existing work, like that cited above, focuses on using rule-based systems to identify isnads and the 

individual transmitters within them which limits the generalizability of these models to previously 

unseen texts. 

3 Data and Preprocessing 

The data for these experiments comes the Open Islamicate Texts Initiative (OpenITI) corpus (Romanov 

and Seydi, 2019,) a collection of 4,285 transcribed texts in classical Arabic collected from digital 

libraries by scholars from the University of Vienna and University of Leipzig totaling 1.5 billion words. 

The individual documents in the OpenITI corpus are complete texts and are often quite long, with the 

longest single text containing over 112 million words. The texts in the corpus are largely unpunctuated, 
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and what punctuation there is is a modern editorial intervention, so we have removed punctuation from 

the texts when it exists. 2  Additionally, training any models on punctuated text would harm the 

performance on the model on the unpunctuated texts that make up the majority of the corpus. Since most 

of the corpus is unpunctuated, it is difficult to break the texts down into smaller units than complete 

texts. We have also performed orthographic normalization to remove different variants of the same 

character so that the model is not influenced by the orthographic choices of any particular author.  

The training dataset we have created consist of data from fifty labeled texts, with 163 distinct tagged 

regions of text. While isnads are most common in hadith collections, they are also commonly used in 

historical writing, exegesis (tafsir), geographies, and literature. The specific texts were chosen over the 

course of several rounds of annotation, in which a CRF was trained and tested on existing training data, 

then the resultant tags in were analyzed by scholars to see where the model tended to fail to properly 

label isnads. When a weakness was found, new texts were selected that, in the experts’ opinion, contain 

examples that could be used to give the model an understanding of how to avoid such failures in the 

future. In total, the tagged text consists of 907,110 tokens containing 3,071 isnads. The average length 

of the isnads in the tagged data is 31.9 tokens.  

4 Inter-Annotator Agreement Study 

To create training data for this task, we have used an iterative process of human-in-the-loop model 

training. Working in conjunction with experts in the fields of Islamic history and religious studies with 

a strong command of classical Arabic, we began by annotating a single text. Using these initial 

annotations, a CRF with token features (see section 5) was trained and used to automatically annotate 

other texts, which were then corrected by the annotators, creating additional training data while being 

able to use the automatic tags as a starting point. This not only makes annotation easier, as it presents 

the annotators with the task of modifying pre-existing tags created by the model rather than inserting 

tags from scratch, but also can be used to create training data that specifically addresses failures by the 

previous version of the model. As an illustrative example, one version of the model would often mislabel 

lists of students in a scholar’s biography as chains of transmission, likely due to the presence of a high 

number of names in those regions of the text and a lack of examples to the contrary which would 

encourage the model not to label such sections as chains of transmission. This annotation process 

allowed the annotators to recognize that particular kind of language as a failure point of the model and 

create new training data which the model can use as evidence that those sorts of linguistic constructs are 

not chains of transmission. If the human annotators did not perform this process with the initial output 

from the model, it is possible that their annotations would not catch these sorts of cases, resulting in a 

less useful training dataset. By specifically providing examples of the kinds of data that confuse the 

model, we end up with a model whose judgements more closely resemble those of humans over several 

iterations, both as a result of the increased training data and the careful selection of the new text to 

annotate. 

To get some understanding of how difficult the task of labeling isnads actually is for humans, we 

performed an inter-annotator agreement study using data from five of the annotators involved, each of 

whom annotated the same text, totaling 2000 lines of text across different sections of one work. Token 

level agreement between individual annotators is reported in Figure 1a, while the variance in the 

locations of start and end points of overlapping labeled spans is shown in Figure 1b. Overall, we see 

high agreement at the token level, which indicates that the task is not overly difficult for expert 

annotators, with Krippendorf’s α of 0.84 indicating very strong agreement across all raters. Additionally, 

when multiple annotators marked overlapping spans, they all agreed on the starting point of the span 

seventy percent of the time, while the location of the endpoints varied more often, with complete 

agreement among the annotators occurring only fifty-three percent of the time. However, the vast 

majority of the disagreements were very small. The outliers in figure 1b were found to be mostly cases 

where annotators merged two adjacent isnads. This is a rare occurrence in the training data, with around 

three percent of identified isnads beginning right after the end of an isnad. There are two main points to 

take from this annotation when evaluating the results of any model attempting to solve this task. First, 

 
2 Similar to how Latin was largely unpunctuated prior to the introduction of printing, with verbs acting as sentence end 

markers, in classical Arabic certain words or phrases indicate transitions between sentences and clauses in lieu of punctuation. 

For more information, see https://www.britannica.com/topic/punctuation/Punctuation-in-Asian-and-African-languages  

https://www.britannica.com/topic/punctuation/Punctuation-in-Asian-and-African-languages
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that identifying the end points is more difficult then identifying the start points for this particular task, 

and second, that properly segmenting adjacent spans is difficult even for human annotators. 

 
 

Figure 1. Inter-annotator agreement (1a, at left) and variance (1b, at right, in tokens) statistics 

5 Experiments 

5.1 Sequence Tagging Models 

We initially experimented with solving this task by sequence labeling alone. These models tag every 

token in an input document as either the beginning of an isnad (“B”), inside an isnad (“I”) or outside an 

isnad (“O”), as would be done for tasks like named entity recognition. As a baseline for comparison, we 

train CRF models (Lafferty et al., 2001) using counts within a fixed-size window on either side of the 

word to be tagged as well as the token to be tagged itself as features for the model. Thus, if the word 

“the” occurred twice before the token being tagged, the feature “the_before” would be created with the 

value 2. We also investigated using unsupported features (features for words that do not occur), but this 

created a large number of features that made model training too memory-intensive. The intuition behind 

these features is that the spans of text we seek to identify share common language that these features 

will enable the model to learn. Additionally, this form of model is able to use negative examples provided 

by the annotation to learn how the context of a word affects its likelihood of membership in a target 

span. Using information about the words around the word it is trying to tag, the model is able to learn 

how the context of a word affects its meaning, and not naively assume that all instances of the same 

word should be treated equally. One might try to solve this problem by training a pair of language models 

using example isnads to train an isnad-specific model and a general background model. Using these two 

models, one could attempt to label entire spans using the ratio of log odds between the two models to 

decide how to segment a text into isnad and background sections using a Viterbi-like inference method 

rather than making decisions at the level of individual tokens. However, such a model’s inability to 

understand context would result in a model with no ability to determine when common words in the 

embedded genre should and should not be treated as part of one, giving many false positives as single 

words common in the embedded genre would often be labeled as part of one, regardless of their context. 

We also train CRFs using 200-dimensional GloVe embeddings trained on the complete OpenITI 

corpus using the default parameters (Pennington et al, 2014) as features, concatenating the embeddings 

of the words within a window around the token to be tagged and using that as input to the model. Since 

different authors have different styles of citation, using different terms to indicate transmission, and draw 

from different sources, thus including different names in their chains, the unseen texts in the test set will 

contain chains that have a distinct vocabulary from those seen by the model in training. For the surface 

level token features described above, such mismatches in vocabulary are tokens that the model has no 

ability to understand the meaning of, as it never encountered them in training. Using the distributed 

representation provided by the GloVe embeddings, the model can leverage information about tokens 

with similar distributional semantics (i.e. other names or transmissive terms with similar embeddings) 

and gain some understanding of the meaning of an unknown token through its similarity to previously-

seen ones, improving the generalizability of the model to previously unseen texts.  



134

Additionally, we train a BiLSTM (Hochreiter and Schmidhuber, 1997; Graves, 2005) with a hidden 

layer size of 100 using 200-dimensional word embeddings fitted to each of the corpora, as discussed 

above. To speed up training, make processing long documents feasible, and avoid the known issues 

LSTMs have when modeling long documents, we split the documents in the OpenITI corpus into chunks 

of no more than 1000 words which are then used to train the model. After training, the results for the 

chunks are then concatenated to get results for the complete document. While this may cause issues 

when the chunking process splits the target spans into two pieces, the length of the chunks can be chosen 

such that the risk of that occurring is minimized. Furthermore, the chunks from within a document are 

padded with special symbols distinct from those used at the beginning and end of a document, allowing 

the model to learn that certain chunk beginnings are more likely to be part of the embedded genre, despite 

the lack of starting context provided by the beginning of the span. Although such splits are not impossible 

to recover from with sufficient training, they still present a nontrivial issue. This issue, in conjunction 

with memory limitations related to tagging very long texts in caused us to shift focus and move from 

trying to detect the spans with a single model to a two-step retrieve-and-tag approach to only detect start 

points, eliminating both the computational expense of modeling very long texts using these sequence to 

sequence models and the possibility of missing an isnad due to splitting it across chunks. 

5.2 Retrieval-Tagging Models 

If we are going to split the documents into chunks, it is worth noting that only 30% of the 100-token 

chunks contain starting points of isnads. Consequently, it may be beneficial to first filter out chunks that 

are unlikely to contain isnad starting points. The first step in the process of finding the starting points of 

is that of document retrieval. The two-stage retrieval-tagging models are trained as follows. First, the 

corpus is divided into training, validation, and test sets, where the retrieved test documents will 

ultimately be used to evaluate performance on the start point labeling task. In order to train the retrieval 

model, for which we use a bag-of-words logistic regression model, the test documents are divided into 

two halves at random and each document in both halves is divided into chunks of at most some fixed 

size, we experiment with the sizes {25, 50, 75, 100}. The chunks in each half of the training set are used 

to train a retrieval model to retrieve documents containing isnad start points which is used to retrieve 

documents in the other half of the training set. The union of these two sets of retrieved documents are 

used as training data for the tagging model. The whole training dataset is then used to train a retrieval 

model to retrieve chunks from the test data.  Using the complete set of retrieved chunks from the training 

data and the retrieved chunks from the test data, we then train a single layer LSTM with hidden layer 

size of 100 to tag tokens as beginning an isnad or not using 200-dimensional GloVe embeddings as our 

starting token representations. 

For the retrieval model, we experiment with a variety of different parameter settings to obtain a high 

upper bound on the recall of the overall model, which we measure through an oracle experiment in which 

all retrieved chunks are tagged perfectly. Table 1 below presents an overview of the different feature sets 

and chunk sizes used. We experiment with unigram, bigram, and trigram features, as well as choosing 

to weight the features by TFIDF scores or not. As we can see, longer documents tend to be easier to 

retrieve, while bigrams tend to give the best performance, and TFIDF scoring significantly improves 

performance. It is possible that informative trigram features generalize less well across texts and between 

authors due to variations in the sources, and thus in the names that occur in isnads, resulting in lower 
retrieval performance. 
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Features Chunk Size Recall  Features Chunk Size Recall 

Unigram 25 .767  Unigram, TFIDF 25 .854 

Unigram 50 .848  Unigram, TFIDF 50 .886 

Unigram 75 .872  Unigram, TFIDF 75 .896 

Unigram 100 .860  Unigram, TFIDF 100 .941 

Bigram 25 .802  Bigram, TFIDF 25 .913 

Bigram 50 .857  Bigram, TFIDF 50 .915 

Bigram 75 .887  Bigram, TFIDF 75 .959 

Bigram 100 .849  Bigram, TFIDF 100 .935 

Trigram 25 .784  Trigram, TFIDF 25 .896 

Trigram 50 .802  Trigram, TFIDF 50 .943 

Trigram 75 .864  Trigram, TFIDF 75 .954 

Trigram 100 .874  Trigram, TFIDF 100 .939 

 
Table 1. Recall scores for retrieval models using various feature sets and chunk sizes with an oracle 

tagger. 

 

Additionally, for each model, we select a retrieval threshold which optimizes the F2 (recall-weighted 

F-score) of the resultant model. The default threshold of 0.5 tended to have comparatively low recall at 

the chunk level, as can be seen in Figure 2, which presents an example precision-recall curve for a 

retrieval model with 2-gram, TFIDF-weighted features and a chunk size of 75. Note that chunk level 

recall (the fraction of chunks that contain isnad beginnings that are retrieved, rather than the fraction of 

isnad beginnings that are retrieved) is only around 0.2 with the default retrieval threshold of 0.5, while 

if a threshold around 0.15 were used, recall would be around 0.95 at the cost of only a small drop in 

precision. This has the added advantage of adding the “attractive distractors” that were mislabeled by 

the retrieval model to the training and test set for the tagging model, while those chunks that, from the 

retrieval model’s perspective, clearly do not contain the starting point of an isnad are excluded. This 

results in training and test sets that do not contain the very easy examples that the retrieval model can 

dismiss, focusing the training data on the more informative examples. Other parameter settings exhibit 

this same trend, albeit with different optimal operating points and upper bounds on recall. For the later 

experiments with isnad start labeling, we will use a bigram retrieval model with TFIDF scores and a 

chunk size of 75, as it gives the highest upper bound on recall in this corpus, with an optimal threshold 

of 0.14. 

 

 
 

Figure 2: Example precision-recall curve for an isnad beginning retrieval model 
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6 Evaluation 

6.1 Tagging Results 

The token-based CRF, in addition to detecting start points, also labels tokens as part of an isnad using 

the “I” tag, as noted above. As such, we can evaluate not just the ability of the model the find starting 

point, but at identifying entire isnads. It should be noted that all results are given for models using eighty 

percent of the data for training, and ten percent each as validation and test data. The results for this task 

can be seen in Table 2 below. 

 

Exact 

Precision 

Exact 

Recall 

Exact 

F1 

Partial 

Precision 

Partial 

Recall 

Partial 

F1 

.270 .241 .254 .873 .804 .835 

 

Table 2: Span Level Results for the Token-Based CRF Sequence Labeling Model 

 

The exact metrics report the precision, recall, and F1 when spans are considered correct if the model 

correctly identifies both the start and endpoints of an isnad, while the partial metrics give credit for an 

isnad if the model labels part of it as an isnad, even if the start and endpoints are incorrect.  

6.2 Retrieval Results 

We will focus on the results for the retrieve-and-tag approach to solving the problem of locating isnad 

start points, as seen in Table 3 below. As a baseline for comparison, we will compare our model to a 

naïve model which assumes that all instances of common isnad beginning terms, begin isnads.3 We also 

compare the hybrid retrieval-tagging model to a CRF with local token features (as described in section 

5.1) We report only the token level scores for the “Begin” tag, even though the model does solve the full 

problem of determining both where isnads begin and end. The retrieval portion of the combined model 

is, as stated above, a bigram bag of ngrams model trained on documents of 75 tokens in length using 

TFIDF scores as feature weights. All results shown are micro-averages across ten training/test splits at 

the document level (i.e. all the chunks of a tagged section of text are either all in the training set or all 

in the test set.) 

 
Model Precision Recall F1 

Naïve .188 .378 .219 

CRF (Tokens) .475 .422 .432 

Retrieval-LSTM .571 .442 .476 

 

Table 3: Results for Isnad Beginning Labeling 

 

While this model clearly outperforms both the naïve baseline and the CRF with token features at 

detecting isnad starting points, more will need to be done to improve its performance before moving on 

to the problem of finding the endpoint associated with a given starting point in the retrieve-and-tag 

framework. 

7 Future Work 

As noted above, the most immediate direction for future research is finishing the process of locating 

complete isnads in the hybrid model regime. Additional work will also be done to improve the 

performance of the isnad start point tagging model. It may be that additional features such as a gazetteer 

of common transmissive terms or the output of a named entity recognition system may improve the 

model’s ability to detect isnads. It might also be worthwhile to look into modifying the retrieval model 

used in the above experiments to use more generalizable document representations than simple bag of 

ngram representations, which may generalize better to unseen texts. 

 
3 This list of common starting terms was created in collaboration with a domain expert in the field of Islamic religious studies. 

Common beginning terms include سئل ,حدثنا ,حدثنيه, and قال. 
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Additionally, once we can reliably identify isnads in text at scale, several new research questions 

about the social networks these chains represent become feasible, since isnads can be thought of as 

textual descriptions of a social network of individuals involved in the dissemination of a given piece of 

information. A reasonable first step would be to take a single isnad and extract the names of the 

individuals involved and the relationship between them. With that accomplished, we could then attempt 

to infer the social network in which the information is spread by linking names to the individuals they 

represent using the evidence provided by multiple isnads to differentiate between individuals when, for 

instance, one name is shared by multiple people or different names are used to refer to the same 

individual, essentially creating a social map of the written tradition’s evolution over time. To this end, it 

will be useful to leverage information from biographical dictionaries and other sources of data about the 

relationships between individuals involved in transmitting the knowledge present in the corpus. 
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