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Abstract

Arabic, like other highly inflected languages, encodes a large amount of information in its mor-
phology and word structure. In this work, we propose two embedding strategies that modify
the tokenization phase of traditional word embedding models (Word2Vec) and contextual word
embedding models (BERT) to take into account Arabic’s relatively complex morphology. In
Word2Vec, we segment words into subwords during training time and then compose word-
level representations from the subwords during test time. We train our embeddings on Arabic
Wikipedia and show that they perform better than a Word2Vec model on multiple Arabic natu-
ral language processing datasets while being approximately 60% smaller in size. Moreover, we
showcase our embeddings’ ability to produce accurate representations of some out-of-vocabulary
words that were not encountered before. In BERT, we modify the tokenization layer of Google’s
pretrained multilingual BERT model by incorporating information on morphology. By doing so,
we achieve state of the art performance on two Arabic NLP datasets without pretraining.

1 Introduction

Word embeddings are one of the main building blocks of most natural language processing tasks. Many
word embedding techniques have been proposed (Mikolov et al., 2013b; Pennington et al., 2014; Bo-
janowski et al., 2016) that try to capture better word representations. Although most of the approaches
are language agnostic, they were historically designed to be used with English. Nonetheless, it was
shown that these techniques work well in other languages (Grave et al., 2018; Soliman et al., 2017).

One feature that is unique to Arabic, and other highly inflected languages, is the expressiveness of
its words. The fact that Arabic encodes a large amount of information in its word structure leads to
potential problems in learning embeddings due to the large number of forms for each word, the more
likely chances of out-of-vocabulary (OOV) instances, and the increase in model size.

In this work, we propose two embedding strategies for Arabic that take into consideration its rich
morphology by modifying the tokenization phase. The first technique concerns traditional embedding
models and the second a contextual one. Our experiments are done on Word2Vec (Mikolov et al., 2013a)
and BERT (Devlin et al., 2018) since they are the most popular traditional and contextual embedding
techniques, respectively. Nonetheless, the approaches we propose are embedding-agnostic and can be
applied to other embedding techniques. Figure 1 summarizes our two approaches and illustrates what
happens in the training and inferences stages of each approach.

In traditional embeddings, we analyze the effect of tokenizing words into subwords by splitting their
suffixes and prefixes before training an embedding model and then combining these subwords using an
algorithm we propose. We show that by doing so we get:

1. Better performance: our model outperforms Word2Vec in multiple tasks.

2. Smaller size: our model is 59.6% smaller than a Word2Vec model trained on the same corpus.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: The training and inference stages of our two proposed strategies.

3. Superior out-of-vocabulary handling: our model is able to handle some OOV instances unlike
Word2Vec.

In contextual embeddings, we investigate different tokenization schemes when using BERT without
needing any pretraining, in contrast to previous approaches such as Antoun et al. (2020). We simply
modify the tokenization part of Google’s pretrained multilingual BERT model (Devlin et al., 2018) re-
sulting in models that:

1. Achieve state of the art results on two Arabic NLP datasets.

2. Do not require pretraining and can work on top of existing models.

The rest of the paper is structured as follows: Section 2 introduces the background and explains some
of the fundamental ideas of word embeddings; Section 3 defines the process of gathering and cleaning our
data; Section 4 highlights the embedding approaches we are proposing; Section 5 details the experiments
and the results; Section 6 discusses related work; and Section 7 concludes by summarizing our findings
and pointing to potential directions for future work.

2 Background

Word embedding techniques rely on the distributional hypothesis (Harris, 1954) which suggests that
words that appear in similar contexts tend to have similar meanings. Mikolov et al. (2013a) popularized
word embeddings when they introduced Word2Vec and showed that it produces representations that
capture not only syntax but also words’ semantics. Many related techniques have been produced after
that (Mikolov et al., 2013b; Pennington et al., 2014; Bojanowski et al., 2016; Joulin et al., 2016). The
word vectors produced by such techniques capture interesting semantics; one popular example is how the
the vectors capture relationships between them. For example, if we subtract the vector for ‘man’ from
the vector of ‘king’, and then add the vector of ‘woman’ we get very close to the vector of ‘queen’.

Contextual word embeddings were proposed (Devlin et al., 2018; Peters et al., 2018; Liu et al., 2019)
to tackle the issues that arise from words have multiple senses and meanings. In traditional embeddings
such as Word2Vec, each word is encoded in a vector, which is a fixed representation. This may cause
problems with homographs and words that have multiple senses depending on the context. For example
the wear ‘bear’ means two very different things in the following sentences: “The right of the people to
keep and bear arms shall not be infringed.” and “A wild bear was seen in the city.” Yet, traditional
embeddings will only capture one fixed representation. Contextual word embeddings aim to solve this
issue by modeling embeddings where the context of the word will affect its generated representation.



121

الماء

هو

مادة

شفافة

الماء هو مادة شفافة عديمة اللون والرائحة … 
almāʾ hū mādat shfāfat allūn walrāʾḥat 

…

almāʾ

hū

mādat

shfāfat

ال

ماء

هو

ماد

ة

شفاف

ال ماء هو ماد ة شفاف ة عديم ة ال لون و ال رائح ة … 
al māʾ hū mād at shfāf at al lūn w al rāʾḥ at 

…

al

mā

hū

mād

at

shfāf

After processing:Before processing:

Figure 2: The effect of word segmentation on the resulting vectors. In the top we have representations of
words and in the bottom we have representations of subwords.
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Table 1: Verb forms in English and Arabic.

3 Data

In this section, we describe the process of gathering and preparing the data used for training the embed-
dings. We do not require any training data for contextual embeddings since we do not require pretraining:
we use Google’s multilingual BERT model (Devlin et al., 2018), which supports 104 languages (includ-
ing Arabic) and was trained on their respective Wikipedia dumps. For traditional embeddings, we use
Arabic Wikipedia as a corpus. We downloaded the Wikipedia dump from January 2018 and then cleaned
it by using WikiExtractor1, which is a utility that generates plain text from an XML formatted Wikipedia
dump. We then use a custom set of regexes to filter out all non-Arabic words, such as English words and
numbers, and remove all diacritics and kashidas resulting in over 86 million tokens.

4 Approach

One example of Arabic’s morphological complexity is in the number of verb forms it possesses which is
much higher than in English as we can see in Table 1. While traditionally, this aspect of Arabic has been
challenging to the natural language processing and computational linguistics communities (Farghaly and
Shaalan, 2009; Al-Ayyoub et al., 2018), we asked whether we may benefit from this characteristic. Can
we tokenize text differently for Arabic than we do for English, and would that result in better performance
on NLP tasks? We experimented with two approaches; one applied to traditional embedding models
(Word2Vec) and the other on contextual models (BERT).

4.1 Traditional Embedding Models

Traditional word embedding models are trained on a large corpus of text. The main difference in our
approach is that we preprocess the text before feeding it into the embedding algorithm by splitting every
word into subwords, which are its prefix(es), stem, and suffix(es) using Farasa, an Arabic segmenter,

1https://github.com/attardi/wikiextractor
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Figure 3: The increase in the size of the vocabulary when using words and subwords. The x-axis shows
the number of words processed in the Arabic Wikipedia. The y-axis indicates the size of the vocabulary.

(Abdelali et al., 2016). The effect of using the Farasa segmenter can be seen in Figure 22, where each
row of squares represents a vector. Then we train the resulting corpus using Word2Vec, though we note
that our approach is embedding agnostic and may be used with any embedding model. Notice that our
vocabulary, and the resulting vectors, will be completely different now as shown in Figure 2. It may seem
at first glance that our vocabulary is increasing, but in fact it decreases as we keep adding more words
as shown in Figure 3, which depicts the sizes of the vocabularies in the first million words in Arabic
Wikipedia.

One question that comes to mind is how do we generate embeddings for words that were split into
subwords because in most cases we want embeddings at the word level and not at the subword level. We
propose the following technique for getting the embeddings of all types of words, including those with
multiple subwords. For words with only one component, we just return the embeddings learnt by the
model. For words with multiple components (subwords), we get the embedding of the longest subword,
and the average of the embeddings of the remaining subwords. We then take a weighted average of the
two values which results in our embedding as Equations 1 and 2 show.

l = argmax
x∈S

(|x|) (1)

v = α ∗ (M [l]) + (1− α) ∗ (
∑

x∈S\{l}

M [x]

n− 1
) (2)

where S is the set containing all the subwords contained in the word, M is the learnt model that contains
embeddings for all subwords, and α is a parameter that decides the weights between the longest subword
and the other subwords. Algorithm 1 illustrates the algorithm used in determining embeddings for all
cases.

This method not only allows us to generate embeddings for all words in the original corpus, but also
increases its capacity to deal with out-of-vocabulary (OOV) words that the model has never seen before
as shown in Figure 4. For example, in Figure 4, we see how our model can produce a representation of
‘and their iPhone’ which is one word in Arabic. A traditional model trained on the Arabic Wikipedia
will fail to produce a representation of the word ‘and their iPhone’ because that word never appeared in
Wikipedia. In fact, since there are many forms for each word, no matter how large the training corpus is,
it is almost impossible for it to have seen occurrences of all possible forms of all words in it. Our model
can tackle this problem because it operates on a subword level and has seen all the three components
that make up the word: ‘and’, ‘their’ and ‘iPhone’ as shown in Figure 4. This procedure allows one to
expand a model’s vocabulary without retraining or requiring numerous examples of a given word. Of

2All transliterations in the paper follow the International Journal of Middle East Studies (IJMES) transliteration system.
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Algorithm 1 Generating embeddings of words from subwords

function GETEMBEDDING(word, α,model)
if word ∈ model then

return model[word]
else

S = get components(word)
for s ∈ S do

if s /∈ model then
return error

l = argmaxs∈S(|x|)
S = S − l
return α ∗ (model[l]) + (1− α) ∗ (sum([model[s] for s ∈ S])÷ |S|)

Proposed embeddings:
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OOV: Can’t be found.

Traditional embeddings:

Figure 4: Dealing with out-of-vocabulary words in both the traditional models and our proposed model.

course, not all out-of-vocabulary words will be found this way. Nonetheless, it’s a cheap way to generate
representations of new words that is not possible in classical approaches.

4.2 Contextual Embedding Models

Transformer-based (Vaswani et al., 2017) contextual embedding models, such as BERT (Devlin et al.,
2018), often require a tokenization step that solves problems such as the out-of-vocabulary issue. Byte-
pair encoding (BPE) (Sennrich et al., 2015; Gage, 1994), one of the most popular tokenization methods
relies on segmenting each word into the most frequent subwords. Shapiro and Duh (2018a) have shown
that byte-pair encoding does not perform well for Arabic compared to other languages. One possible ex-
planation of this is that byte-pair encoding does not include information derived from a given language’s
morphology. We did some experiments using BERT’s pretrained tokenizer and found instances where
the produced segments generated erroneous meanings. For example, the word mal\ab in most cases is
a noun that refers to a stadium or field. BERT tokenizes mal\ab by segmenting it to mal (milliliter) and
\ab (gulp or fill up), instead of the correct segmentation: ma (a prefix used to create nouns of place) and
l\ab (play). BERT’s segmentation seems to indicate that the word mal\ab is related to liquids and water
(milliliter/gulp/fill up). Keep in mind that both ma and l\ab are in BERT’s subword vocabulary.

We propose two methods that aim to incorporate a language’s structure via better segmentations, which



124

BERT

BERT 
Tokenizer (BT)

…

…

CharBERT MorphBERT

           (almāʾ huwa mādat shfāfat) الماء هو مادة شفافة            

Language segmenter

ال ##ماء 
al ##māʾ

هو 
huwa

ماد ##ة 
mād ##at

شفاف ##ة 
shfāf ##at

BT BT BT

ال ##ما ##ء 
al ##mā  ##ʾ

هو 
huwa

ما ##د ##ة 
mā ##d ##at

ش ##فاف ##ة 
sh ##fāf ##at

BERT

Character Tokenization

… هـ  
##و 
 hu

##wa

م ##ا ##د 
##ة 

 m ##ā ##d
##at

ش ##ف ##ا 
##ف ##ة 

 sh ##f ##ā ##f
##at

ا  ##ل ##م  
##ا  ##ء 

 a ##l ##m
##ā ##ʾ

…

BERT

BERT

BERT Tokenizer

الماء 
almāʾ

هـو 
huwa

ما ##دة 
mā ##dat

ش ##فاف ##ة 
sh ##fāf ##at

Figure 5: The different segmentation approaches: BERT (default tokenizer), CharBERT, and
MorphBERT.

we call MorphBERT (Morphology BERT) and CharBERT (Character BERT). In MorphBERT, a custom
tokenizer is used to replace the default tokenizer layer as seen in Figure 5. That custom tokenizer will use
a language specific segmenter, Farasa (Abdelali et al., 2016) in our case, to segment each word before
processing it. We then pass each word, after segmentation, to the original model’s tokenizer to make sure
that the produced segments are in the model’s vocabulary. Keep in mind that MorphBERT differs from
AraBERTv1 (Antoun et al., 2020), an Arabic BERT model that also utilizes Farasa, in that it does not
require pretraining. In addition to that, Antoun et al. (2020) preprocess the training corpus by segmenting
it using Farasa before training AraBERTv1 which is not the case with MorphBERT.

In CharBERT, we segment everything to characters as shown in Figure 5. The main idea behind
CharBERT is to let the network learn these language structures on its own. Both of these models do
not require training and can be used with any pretrained model as we see in Figure 5. This is important
due to the expensive — money-wise, time-wise, and environment-wise — process of training BERT and
other state of the art models. We believe that developing simpler, more sustainable, and more efficient
NLP models is of an utmost importance due to the many problems that arise from computationally heavy
models, (Strubell et al., 2019) which can take weeks to train on many TPUs/GPUs. Moreover, most
people, especially in less developed countries, do not have the resources to train these models, which
limits accessibility.

5 Experiments and Results

In this section we detail our experiments and highlight the results produced by the models we proposed.

5.1 Evaluation Datasets

For intrinsic evaluation of traditional embedding models we used the Arabic word analogy benchmark
created by Elrazzaz et al. (2017). This dataset consists of nine relations that each consist of over 100
word pairs. We use the following datasets to evaluate our models extrinsically:

1. APMD: The Arab poem meters dataset (Alyafeai, 2020) which consists of 55,440 poem verses with
each verse classified into one of the fourteen Arabic poetry meters. The data is split into training
and testing sets.
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Dimension 50 100 200

Skipgram
Base model 5.76% 8.33% 8.88%
Our model (α=0.3) 5.36% 8.15% 9.40%

CBOW
Base model 6.00% 8.72% 10.05%
Our model (α=0.3) 6.31% 8.92% 10.10%

Table 2: Top-1 accuracy in the word analogies test.

2. HARD: The Hotel Arabic Reviews Dataset (Elnagar et al., 2018) consists of 93,700 hotel reviews
that are classified into positive or negative according to their rating. Reviews with a rating of four
or five were assigned positive, and those with a rating of one or two were labeled negative. Reviews
with a rating of three were ignored. We split the data into 80% and 20% training and testing sets
respectively using the script provided by Antoun et al. (2020).

3. LABR: The Large-scale Arabic Book Reviews dataset (Aly and Atiya, 2013) consists of 63,000
book reviews rated between one and five. We use the unbalanced two-class dataset, where reviews
with a rating of one or two are labeled negative, and those with a rating on four or five are labeled
positive. The data is split into training and testing sets.

5.2 Traditional Embedding Models

5.2.1 Intrinsic evaluation
Word analogies, which consists of sets of pairs that share a common relationship, are often used to
evaluate different embedding techniques. For example, let’s say that we have the following pairs: (king,
queen), and (male, female). Both of these pairs contain a word that indicates masculinity and a second
word that indicates the feminine version of the first word. A perfect word embedding representation
should be able to capture this relationship, and the way to mathematically measure it is by calculating
the vector king−male+female. After that, we check to see whether the resulting vector is the closest to
the vector queen or not. We use the Arabic word analogy benchmark created by Elrazzaz et al. (2017) to
evaluate our approach. We used Gensim’s (Řehůřek and Sojka, 2010) word analogy evaluate function to
evaluate the models and set the ‘dummy4unknown’ flag on so that all tuples of pairs that contain a word
(or more) that are not in our vocabulary will get zero accuracy (instead of being skipped), similar to the
procedure adopted by Elrazzaz et al. (2017).

We train two models: a vanilla Word2Vec model (base model) and our proposed model on the Arabic
Wikipedia dataset mentioned in Section 3. For the base model, we set the window size to be five. Since
our model segments words before learning embeddings, we compute the average number of subwords per
word in our corpus and adjust the window size by that number. The average number of components per
word is around two (1.97); to account for that we set window size in our model to be be ten instead of five.
For both, we set the number of epochs to be equal to ten. We experimented with multiple α values for our
proposed model and found that setting it to 0.3 achieves the best results. Moreover, to avoid vocabulary
size discrepancies, we standardize the vocabulary size before the evaluation by ensuring that our model
has the same vocabulary as the base model. To do that, we create a new empty set and go through all
vocabulary in the base model and if the word exists in our model (words with only one subword) then we
add its representation to the set; otherwise, we decompose it and then add its representation according to
equation 2. The results are summarized in Table 2. Our method performs as well, if not better, than the
Word2Vec while being around 60% smaller in size. The difference in size come from the vocabulary size
which is 155K for our model compared to 383K for the base model. We also notice that CBOW performs
better than Skip-gram which is consistent with previous research findings (Elrazzaz et al., 2017).

5.2.2 OOV Handling
One important distinction that separates our model from the base model is its ability to accommodate
OOV words. To test the quality of these generated OOV vectors, we go through all the OOV words in
our analogy benchmark and generate vectors for the ones we can, i.e. the ones for which we have entries
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Accuracy (without OOV handling) Accuracy (with OOV handling)
FastText 8.05% 6.44%
Our model 10.10% 13.32%

Table 3: Performance of our model compared to fastText when generating vectors for OOV words.

APMD LABR HARD
Base model 29.95% 86.18% 92.99%
Our model 37.75% 86.21% 93.09%

Table 4: Performance (accuracy) of our model compared to the base model on the three datasets.

for all their respective subwords. The total number of OOV words is 127 and we are able to generate
representations for 70 of them covering 55.12% of all the OOV words. After that we follow a similar
procedure to the one we have done in the previous subsection and check how the accuracy has been
affected. We evaluated the performance of our best performing model (CBOW, dim=200) and found that
adding the OOV representations increased the accuracy from 10.10% to 13.32%. To compare our OOV
representations, we trained a fastText (Bojanowski et al., 2016) model, a popular embedding approach
that can handle OOV, and then calculated the accuracy before adding the OOV entities and after; keep in
mind that the vocabulary size in both, fastText and our model, will be the same. FastText achieves 8.05%
before adding the OOV entities and 6.44% after adding them as shown in Table 3. Not only did fastText
achieve worse gains than our model, it actually performs worse than before which calls to question the
accuracy of fastText’s OOV embeddings for Arabic.

5.2.3 Extrinsic Evaluation
We evaluate our approach on the three datasets mentioned above. We feed the embeddings of the words
to a bidirectional Gated Recurrent Units (GRU) (Cho et al., 2014) network to train it. After that, we
evaluate the network on the test set. Table 4 shows the performance of our model compared to the
base model. We can see that our model clearly outperforms the base model in one dataset (APMD) and
performs slightly better on the two other datasets (LABR and HARD).

5.3 Contextual Embedding Models

We fine-tune the three models: the base cased multilingual BERT, MorphBERT, and CharBERT; and
then compare their performances on the three datasets mentioned above. We follow the recommendations
from BERT’s paper (Devlin et al., 2018) in setting the fine-tuning hyperparameters. We run them all for
four epochs in batches of 32 or 16 depending on the lengths of input sequences to avoid memory issues
on the GPU. We optimize using the Adam algorithm with a learning rate of 2e−5, β1 = 0.9, and β2 =
0.999. We also compare our models to AraBERT (AraBERTv0.1 and AraBERTv1) which consists of
two monolingual BERT models trained on Arabic that were proposed by Antoun et al. (2020) and use the
results reported by them for LABR and HARD. For APMD, we downloaded their models and fine-tuned
them on the task. We also evaluate our models on the cleaned ANERcorp (Benajiba and Rosso, 2007;
Antoun et al., 2020) NER dataset. For ANERcorp, we used the script provided by Antoun et al. (2020)
in fine-tuning our models. Table 5 shows the performance of the five models on the downstream tasks.

It is interesting that by just changing the tokenization method we can improve BERT’s performance
in Arabic without retraining. As we can see in Table 5, MorphBERT and CharBERT achieve state of
the art performance on LABR and APMD respectively. The previous state of the art model for LABR
is the MCE-CNN model proposed by Dahou et al. (2019) which achieves an accuracy of 87.48%. Our
models perform better than AraBERT in two tasks even though AraBERT was: 1) trained specifically
for Arabic, and 2) trained on a larger Arabic corpus: 24GB of data for AraBERT compared to 4.3GB
for the multilingual BERT. Although MultiBERT was trained on over a hundred languages, simply re-
placing tokenizations allowed us to add language specific information without requiring any training.
While normally byte pair encoding learns representations of subwords without paying attention to their
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metric MultiBERT MorphBERT CharBERT AraBERTv0.1 AraBERTv1
APMD accuracy 70.65% 71.03% 84.09% 70.02% 60.99%
LABR accuracy 85.85% 89.87% 85.89% 85.90% 86.70%
HARD accuracy 95.96% 95.86% 95.67% 96.20% 96.20%
ANERcorp macro-F1 78.4% 79.86% 71.76% 89.17% 88.67%

Table 5: Performance of MorphBERT and CharBERT compared to the multilingual BERT (MultiBERT),
AraBERTv0.1, and AraBERTv1

meaning, we can utilize this procedure of breaking words into chunks that make more sense as we saw
in the mal\ab example before. CharBERT in particular is interesting; one would expect that it will re-
quire more time to fine-tune since it only uses characters. Nevertheless, it achieves great performance
without requiring more epochs than the other methods. One potential issue with CharBERT is that it
results in very long sequences due to the character segmentation approach it follows which lead to more
frequent truncations than other models. One potential way to mitigate this is by using new models such
as Longformer (Beltagy et al., 2020) that allow longer sequences than BERT.

Previous research (Virtanen et al., 2019; Antoun et al., 2020; Vries et al., 2019; Martin et al., 2020)
has shown that a language specific BERT model performs better than a multilingual one. This is the first
work, according to our knowledge, that shows that by tweaking a multilingual BERT model one can beat
a BERT model trained on a specific language. Natural language processing entered a new era with the
advent of pretrained models that do not need to be trained from scratch for every task but can simply
be tweaked/fine-tuned instead. Our results shows that it may be possible to only have one multilingual
model that can be tweaked instead of learning a pretrained model for every language.

6 Related Work

Many works have noted how sensitivity to Arabic’s morphological complexity can result in better per-
formance in standard NLP tasks. However, we do not know of any previous work that has specifically
focused on the effect of tokenization on different Arabic embedding models. Antoun et al. (2020) trained
an Arabic specific BERT model. They also trained another Arabic BERT model in which they segment
the text before training the model and showed that it usually improves performance. Taylor and Brychcı́n
(2018) analyzed morphological relations in Arabic word embeddings. They noted that some morpholog-
ical features are captured in embeddings representations. Shapiro and Duh (2018b) proposed utilizing
subword information in training embeddings to enrich the representations and showed that it improves
the performance on word similarity tasks. Salama et al. (2018) investigated morphological-based embed-
dings and lemma-based embeddings. They utilized part-of-speech information to train their embeddings,
similar to Trask et al. (2015), and then build lemma-based embeddings from them by aggregating on dif-
ferent senses of each word first and them combining words that share the same lemma. El-Kishky et
al. (2019) tackled the problem of extracting roots of words and proposed an extension to fastText (Bo-
janowski et al., 2016) that utilize morphemes.

7 Conclusion

We show that tokenization that pays attention to Arabic’s morphology can create better traditional and
contextual embedding models. Breaking words into subwords in Word2Vec not only leads to an increase
in performance and reduction in the vocabulary size and hence the model size, but also provides a simple
way to produce good out-of-vocabulary representations. We also show the importance of tokenization
in BERT where we were able to achieve impressive performance without requiring any pretraining. One
possible future work would be to investigate tokenization’s effect in other morphologically rich languages
such as Hebrew and Turkish and see if our results can be generalized to other highly inflected languages.
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