
Applying Graph Neural Networks for Vietnamese Dependency Parsing

NGUYEN Duc Thien NGUYEN Thi Thu Trang∗
Hanoi University of Science and Technology

Hanoi, Vietnam
ndthien98@gmail.com trangntt@soict.hust.edu.vn

TRUONG Dang Quang
Óbuda University

Budapest, Hungary
dangquangtruong98@gmail.com

Abstract

This paper presents a state-of-the-art model to
solve the Vietnamese dependency parsing task
(HA My Linh, 2020) in VLSP 20201 Evalu-
ation Campaign. In this model, the Bidirec-
tional Long Short-Term Memory (BiLSTM)
network is used to extract the contextual in-
formation, while the graph neural network
captures high-order information. Some pre-
processing for Vietnamese raw texts are in-
cluded for the training, such as word segmen-
tation, part-of-speech (POS) tagging for the
model.

We modified the network with suitable word
embedding mechanisms, i.e., fastText, to rep-
resent the semantic information of words more
accurately. Therefore, Vietnamese words that
are marked as unknown tokens now can have
the right embedding; thus, they will be well
modeled in dependency parsing.

Experiments on the raw text dataset show that
the model achieved an average of 72.85% of
unlabeled attachment score (UAS) and 64.35%
of labeled attachment score (LAS). With the
Segmentation and POS tagging dataset, we
achieved a higher average of 81.71% (UAS)
and 73.19% (LAS).

1 Introduction

In recent years, dependency parsing is a fascinating
research topic and has a large number of applica-
tions in natural language processing. This task is
to automatically identify the relationship between
words in a sentence and label the relationship be-
tween the head and the dependency word, and thus,
establish the grammatical structure of the sentence.
Traditional graph-based dependency parsing only
extracts the parent-child relationship and ignores
deeper relationships. Hence, we decided to exper-
iment with the idea of extracting deeper relation-

∗*Corresponding author
1Vietnamese Language and Speech Processing

ships of the neighbor nodes, which is extensively
covered in the paper Ji et al. (2019).

This state-of-the-art model achieved good per-
formance due to its ability to represent incorrect
Out-Of-Vocabulary (OOV) words in the input layer
for Vietnamese. Normally, words that are not found
in the vocabulary will be marked as unknown to-
kens before feeding to the embedding layer. This
caused the model to embed OOV words incorrectly;
therefore, it created the loss of information in cal-
culating attention distribution. In this paper, we
modified the pre-trained layer of word embedding
for the graph neural networks with a more suit-
able embedding mechanism for Vietnamese, which
solved the issue well.

The rest of this paper is organized as follows:
Section 2 presents the architecture and its compo-
nents of graph neural networks. The experiments
are shown in Section 3. Finally, Section 4 con-
cludes the paper and gives some perspectives for
the work.

2 Methodology

Normally, Graph-based dependency parser search
through the space of possible trees for a given sen-
tence encoded as directed graphs and use methods
from graph theory (Maximum Spanning Tree or
greedy algorithm) for the optimal solutions. How-
ever, in the Graph Neural Network (GNN) model,
the dependency parser utilizes the neural network
to assign a weight to each edge, then construct a
MST from the edge weight (Dozat et al., 2017).
For maximum accuracy, we need to analyze the
surface form and the deep structure of the graph.
There are three main components in the model: En-
coder extracts the surface form and the contextual
information and turns them into the nodes (words)
representations for the next components; The graph
attention network (a subset of GNN, using the struc-
ture from Veličković et al. (2017)) layers then ex-
tract the deep structure and high-order information

mailto:ndthien98@gmail.com
mailto:trangntt@soict.hust.edu.vn
mailto:dangquangtruong98@gmail.com

to illustrate the head-dependent relationships of the
nodes; the final component is the decoder, used to
create the dependency tree from the output of the
GNN. We will discuss the details in the following
sections.

2.1 Pre-processing

First, we used the VNCoreNLP - suggested by Vu
et al. (2018) - to segment and perform the POS
tagging on the raw text. VNCoreNLP used a trans-
formation rule-based learning model for the seg-
mentation of the Vietnamese document, thus, ob-
tained faster and better accuracy than all previous
segmentation tools, as the model accounted for the
fact that Vietnamese words are created from sylla-
bles including the space character (Nguyen et al.,
2017). The VNCoreNLP performed the task of
labeling words with POS tag Vu et al. (2018) via
MarMot (a CRF framework), state of the art POS
and morphological tagger (Müller et al., 2013)

Word embedding is the most popular represen-
tation method for words in a document because it
captures the context of words, semantic and syntac-
tic similarity, relation with other words, etc. Using
word embedding makes it easier to represent words
with less memory than using a one-hot vector while
also showing the relationship between words.

With a huge training corpus (e.g., a total of
100 billion words with a 3-million-word vocab in
Google News), the pre-trained model can cover
much more context for word embedding than the
auto-updating mechanism of the word embedding
in the end-to-end abstractive summarization model
with its training corpus (e.g., a total of 240 million
words with a 50k-word vocab in Daily Mail/CNN)
(Anh and Trang, 2019).

In this paper, we adopted a suitable pre-trained
model for Vietnamese with 300-dimensional word
embeddings, i.e., fastText from Facebook (Joulin
et al., 2016), for the word embedding layer. The
fastText trained on the Wikipedia dataset with char-
acter n-grams of length 5 by CBOW2 method. fast-
Text is more suitable in our case as when the GNN
model meets unknown vocab, the fastText gener-
ates an embedding of the vocab with value 0, result-
ing in error reductions; meanwhile, the Word2Vec
and the GloVe does not do that. This method en-
ables fastText to handle OOV3 words by construct-
ing the vector for OOV words from its characters.

2Continuous Bag of Words
3Out-of-vocabulary

Figure 1: The architecture of Graph Neural Networks

Both GloVe and Word2Vec are unable to do so.

2.2 Encoder

According to Kiperwasser and Goldberg (2016),
we can apply BiLSTM model to create the depen-
dency tree as illustrated in Figure [1] Firstly, each
word is embedded using a vector combined from
three different vectors: randomly initialized word
embedding, pre-trained word embedding, and part-
of-speech embedding.

xi = e(wi)⊕ e′(wi)⊕ e(posi) (1)

As a result, the xi illustrated the sentence of the
word i in [2]. Given the position i of the word,
the BiLSTM model can compute state vectors −→ci
and←−ci where the −→ci is draw from the start of the
sentence to the position i and←−ci is from the end of
the sentence to i.

−→ci =
−−−−−−−→
LSTM(xi)⊕

←−−−−−−−
LSTM(xi) (2)

The two vectors −→ci and←−ci then concatenate to
become the context-dependent representation of
the word i. Thus we can use multilayers perceptron
(MLP) to define two-node representations of the
word i the probability of being the head role vector
and probability of being the dependent role vector
(Dozat et al., 2017):

hi =MLPh(ci),di =MLPd(ci) (3)

The score function is a SoftMax function, where
the representations of the word i and j is the input,
therefore complementing the analysis of the surface
form of the segmented sentence. As a result, the
output of the BiLSTM component is a complete
weight graph model. (Dozat et al., 2017)

σ(i, j) = Softmaxi(hTj Adj + bT1 hj + bT2 hj) (4)

2.3 GNN Layers

In the implementation, the GNN component can
utilize at most three layers, each layer consists of
4 graph neural network units as illustrated in Fig-
ure [1] - where the representation of the vectors
is calculated from the same representation in the
previous layer using this formula where g is the
LeakyReLU function, t is the layer, vi is the vector
representation of i, and aij is the edge weight of

Figure 2: Relations between nodes

vi and vj (i and j are forming the neighborhood)
(Wang and Chang, 2016):

vti = g

W ∑
j∈N (i)

αtijv
t−1
j +Bvt−1i

 (5)

We can apply the formula [5] to analyze the high
order information of the nodes which is represented
in three ways: grandparents, grandchildren, and
siblings (Figure [2]) (Eisner, 1997).

Specifically, the head representation of node i
should attend to the neighbors’ representation as
they are the parents of the i. Therefore the model
can calculate hi from the hj of the previous layer
t− 1 using the formula [5]:


hti = g

(
W1

∑
j∈N (i)

αtjih
t−1
j +B1h

t−1
i

)

dti = g

(
W2

∑
j∈N (i)

αtijd
t−1
j +B2d

t−1
i

)
(6)

The dependent node di’s computation operation
is the same as the head node’s one i. Thus the
equation [6] can assist to analyse the order of the
relationship of grandparents and grandchild.

To examine the sibling relationships, the head
representation of the node i check the neighbor-
hood where they are dependent on node i. Thus the
formula will update the hi in the following way:


hti = g

(
W1

∑
j∈N (i)

αtjid
t−1
j +B1h

t−1
i

)

dti = g

(
W2

∑
j∈N (i)

αtijh
t−1
j +B2d

t−1
i

)
(7)

Finally we combine the two equations [6] and
[7] above to update the grandparents, grandchild

Param Ji et al. (2019) Our paper
Word Embedding 300 dim 500 dim
POS Embedding 100 dim 100 dim
arc MLP size 500 dim 500 dim
rel MLP size 100 dim 100 dim
Dropout 0.33 0.33
Optimizer Adam Adam
Learning rate 0.002 0.002
Graph layers 2 2

Table 1: Hyper-parameter.

and siblings.



hti = g(W1
∑

j∈N (i)

(αtjih
t−1
j + αtjid

t−1
j)

+B1h
t−1
i)

dti = g(W2
∑

j∈N (i)

(αtijh
t−1
i + αtjid

t−1
j)

+B2d
t−1
i)

(8)
As the equations [8] illustrated, the edge weight

aij is the decisive element responsible for the up-
date of the relationship information. The edge
weight is figured with the following formula:

αtij =


Softmaxi (hTi Adj + bT1 hi + bT2 dj)

i ∈ N t
k(j)

0, otherwise
(9)

2.4 Decoder

After the high-order information is extracted from
the GNN and enhanced the nodes representations,
the node representation will be used to build the
dependency tree via Biaffine parser (the setting is
identical to Dozat et al. (2017))

3 Experiments

3.1 Dataset

The VLSP provided the datasets and separated
them into training datasets and raw text datasets.
The data for training was further divided into two
packages: the first package consists of 5070 sen-
tences, with a large domain from the social me-
dia comments on restaurants and hotels (100 sen-
tences), to the story of the Little Prince (1570 sen-
tences) and the VietTreeBank - VTB (3400 sen-
tences); the second package includes 3000 sen-
tences with diverse origins.

The raw text data for prediction includes the
two packages above, and 20 raw text files crawled
from VnExpress news articles. The VTB files and
the files with index 1,3,4,7,8,10,14 were accurately
tokenized and labeled.

The graph-based dependency parsing neural net-
work model has one important characteristic: the
raw text dataset’s sentences have to be tokenized for
the training to be carried out successfully. There-
fore the VNCoreNLP - an NLP pipeline used for
POS tagging, named entity recognition and depen-
dency parsing is useful here in this case [4]. This
tool is capable of providing highly accurate anno-
tation for the input sentences, therefore improving
the score of the training model.

3.2 Training

The training operation consists of two methods:
First, we have to decode the output of the final
layer of the GNN component (denoted by)

αtij = σt(i, j) = P t(i|j) (10)

which are the tree structures (computed by P (i|j))
and the dependency edge labels (measured by
P (r|i, j), which indicated the probability a tree
(i, j) holds a dependency relation r, using another
MLP from biaffine parser (Dozat et al., 2017), the
loss function of the classifier is computed with the
equation:

L0 = −
1

n

∑
(i,j,r)∈T

(logP τ (i|j) + logP (r|i, j))

(11)
Second, the model can supervise on P t(i|j)

from each layer of the GNN component, there-
fore the layer-wise loss will be computed with the
equation:

L′ =
τ∑
t=1

Lt =
τ∑
t=1

− 1

n

∑
(i,j,r)∈T

logP (r|i, j)

(12)
The main objective is to minimize the loss of

combination of them:

L = λ1L0 + λ2L′ (13)

3.3 Results

We have implemented and operated the model
on the AWS Server (AWS Deep Learning AMI

Dataset UAS LAS
Test from VTB 81.89 73.34
VNExpress 1 75.12 66.15
VNExpress 3 84.36 75.38
VNExpress 7 76.67 67.22
VNExpress 8 79.25 71.98
VNExpress 10 80.47 72.54
VNExpress 14 80.55 73.57
Total 81.71 73.19

Table 2: Test on labeled datasets.

Dataset UAS LAS
Test from VTB 73.18 64.66
VNExpress 1 68.77 58.75
VNExpress 3 74.10 65.81
VNExpress 7 61.67 55.56
VNExpress 8 68.96 61.43
VNExpress 10 73.19 64.13
VNExpress 14 68.4 60.72
Total 72.85 64.35

Table 3: Test on raw-text datasets.

(Ubuntu 18.04) Version 34.0 installed in the EC2
Instance p3.2xlarge - GPU NVIDIA Tesla v100 16
GB, Memory 61 GB, SSD 100 GB, CPU 8 Virtual
Cores) successfully. The hyperparameters configu-
ration in Table [1] has slight modifications. For the
word embedding, we used fastText (Bojanowski
et al., 2016) with Vietnamese data as the primary
pre-trained model, which has 300 dimensions in-
stead of 100 dimensions of GloVe that Ji et al.
(2019) used. Then, we concatenate the pre-trained
word embedding with 200-dimension randomly ini-
tialize word embedding and 100-dimension part-of-
speech embedding. Randomly embedding vectors
obtained from binomial distribution. The training
operation took approximately one hour.

The main evaluators for the dependency parsing
problem are LAS and UAS. The results are coming
from the script evaluator 2018. For the labeled
data, the highest UAS is 81.89% from the VTB
package, meanwhile the package Test VNExpress
14 achieved the highest LAS 73.57%.

Table [2] shows results from VLSP 2020 private
tests for dependency parsing on labeled datasets,
meanwhile raw-text datasets’ results are shown on
Table [3].

4 Conclusion

To conclude, our experiment on using the graph
neural network for graph-based dependency pars-
ing suggests that understanding the deep structure
of the representations of words via nodes’ message
passing improved a slightly better accuracy and
efficiency than other traditional graph-based depen-
dency parsers. In future works, we are planning to
improve the performance of the model by applying
Conditional Random Fields in the labeling process
for the nodes before extracting the high-order in-
formation via graph neural network.

Acknowledgments

The authors wish to thank VLSP organizers for
their reviews and encouragement.

References
Dang Trung Anh and Nguyen Thi Thu Trang.

2019. Abstractive text summarization using pointer-
generator networks with pre-trained word embed-
ding. In Proceedings of the Tenth International Sym-
posium on Information and Communication Technol-
ogy, pages 473–478.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20–30, Vancouver, Canada. Association for
Computational Linguistics.

Jason Eisner. 1997. Three new probabilistic models for
dependency parsing: An exploration. arXiv preprint
cmp-lg/9706003.

VU Xuan Luong NGUYEN Thi Luong PHAN Thi
Hue LE Van Cuong HA My Linh, NGUYEN Thi
Minh Huyen. 2020. Vlsp 2020 shared task: Uni-
versal dependency parsing for vietnamese. In Pro-
ceedings of The seventh international workshop on
Vietnamese Language and Speech Processing (VLSP
2020), Hanoi, Vietnam.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based
dependency parsing with graph neural networks. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2475–
2485.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order crfs for morphological
tagging. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 322–332.

Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu,
Mark Dras, and Mark Johnson. 2017. A fast
and accurate vietnamese word segmenter. CoRR,
abs/1709.06307.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark
Dras, and Mark Johnson. 2018. VnCoreNLP: A
Vietnamese natural language processing toolkit. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations, pages 56–60,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2306–2315, Berlin, Germany.
Association for Computational Linguistics.

http://arxiv.org/abs/1709.06307
http://arxiv.org/abs/1709.06307
https://doi.org/10.18653/v1/N18-5012
https://doi.org/10.18653/v1/N18-5012
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218

