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Abstract

Neural Machine Translation (NMT) models are typically trained by considering humans as end-
users and maximizing human-oriented objectives. However, in some scenarios, their output is
consumed by automatic NLP components rather than by humans. In these scenarios, transla-
tions’ quality is measured in terms of their “fitness for purpose” (i.e. maximizing performance
of external NLP tools) rather than in terms of standard human fluency/adequacy criteria. Re-
cently, reinforcement learning techniques exploiting the feedback from downstream NLP tools
have been proposed for “machine-oriented” NMT adaptation. In this work, we tackle the prob-
lem in a multilingual setting where a single NMT model translates from multiple languages for
downstream automatic processing in the target language. Knowledge sharing across close and
distant languages allows to apply our machine-oriented approach in the zero-shot setting where
no labeled data for the test language is seen at training time. Moreover, we incorporate multi-
lingual BERT in the source side of our NMT system to benefit from the knowledge embedded
in this model. Our experiments show coherent performance gains, for different language direc-
tions over both i) “generic” NMT models (trained for human consumption), and ii) fine-tuned
multilingual BERT. This gain for zero-shot language directions (e.g. Spanish–English) is higher
when the models are fine-tuned on a closely-related source language (Italian) than a distant one
(German).

1 Introduction

With the rapid growth of cloud computing, there are plenty of online services for a variety of natural
language processing (NLP) tasks such as document classification, sentiment analysis, and spam detec-
tion. However, building them from scratch typically requires a massive amount of labeled data, which
is not always publicly available and, for many tasks, is limited to high-resource languages like English.
A possible solution to leverage these services in low-resource settings is using Neural Machine Transla-
tion (NMT) in the so-called “translation-based” approach, where a text in the low-resource language is
first translated into a high-resource one for which dedicated NLP tools exist. Then, the translated text is
processed by these downstream tools and, finally, the results are propagated back to the source language.

Although the translation-based approach shows promising results in low-resource settings (Conneau
et al., 2018), it still has drawbacks. First, the output quality of current NMT models is not perfect yet
(Koehn and Knowles, 2017). Second, even a good translation can alter some traits in the text, which
are essential for the downstream NLP tool. This, for instance, is typical for sentiment traits, whose loss
can result in final performance drops in sentiment classification tasks (Mohammad et al., 2016). Finally,
state-of-the-art NMT models are trained considering humans as end-users and hence optimized to maxi-
mize human-oriented objectives like fluency and semantic equivalence of the translation with respect to
the source sentence. However, these objectives are not necessarily the optimal ones to exploit an NLP
tool at its best. Machines, in fact, are still worse than humans in handling ambiguous or overly complex
sentences. This observation calls for strategies that are alternative to the human-oriented enhancement
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of NMT. Rather, models should be adapted in a machine-oriented way that is optimal for automatic
processing of their output.

Traditionally, NMT models are trained using parallel corpora, consisting of sentences in the source
language and their human translations in the target language. Recently, Tebbifakhr et al. (2019) proposed
Machine-Oriented Reinforce (MO-Reinforce), a method based on Reinforcement Learning to pursue
machine-oriented objectives for sentence-level classification tasks. In a nutshell: given the output of
the downstream classifier (i.e. a probability distribution over the labels), MO-Reinforce considers the
probability given to the true class as the collected reward from the downstream classifier. By maximizing
the expected value of the collected reward, MO-Reinforce adapts the NMT model’s behavior to generate
outputs that are easier to label by the downstream classifier.

Although NMT models adapted with MO-Reinforce show promising results compared to the “generic”
ones trained by only pursuing human-oriented objectives, they still need a small amount of labeled data
in the source language to compute the reward that may not be available for some languages. To address
this problem, we exploit multilingual NMT models (Johnson et al., 2017), the MO-Reinforce algorithm
and a small quantity of data in closely-related languages. Starting from a multilingual NMT system used
to translate texts from n low-resource languages into a resource-rich one, the MO-Reinforce algorithm
is run in three different conditions by using source data in: i) the same language of the test set (tuning
on Italian - testing on Italian); ii) a different language, but closely related to the one of the test set,
(Italian - Spanish), and iii) a different and distant language (German - Spanish). The main goal of these
experiments is to show that MO-Reinforce leveraging a multilingual NMT and data in a closely-related
language is able to overcome the lack of source labelled data in a specific task.

Moreover, recently, multilingual BERT (Devlin et al., 2019) has shown good performance when fine-
tuned for downstream tasks. Multilingual BERT is a pre-trained model built on the union of unlabeled
data for more than 100 languages. The availability of unlabeled text in significant quantities in different
languages helps this model to extract valuable knowledge about the languages resulting in good per-
formance for different tasks. To strengthen the capability of the NMT system to represent the source
sentence, we try different approaches to incorporate multilingual BERT in the NMT system’s encoder.
Our goal, in this case, is to show that BERT-based NMT systems can benefit from the knowledge em-
bedded in BERT, particularly in zero-shot language directions.

We focus on a 4-class sentence classification task (news classification), which is harder compared to
the binary task (polarity detection) chosen in (Tebbifakhr et al., 2019). We evaluate the translation-based
approach from German, Italian, and Spanish (simulating low-resource language settings) into English.
It is important to remark that, although our source languages are not low-resource ones, their choice is
motivated by the availability of standard benchmark for a comparative evaluation in a simulated low-
resource scenario. The results show that:

• Closely-related languages can help to cope with the lack of annotated data for specific NLP tasks
(in this case for document classification into four domains).

• MO-Reinforce is able to take advantage of these data to outperform the classification performance
of the generic NMT system and Multilingual BERT.

• Although the addition of Multilingual BERT does not yield improvements in translation quality, its
capability of generating good source-sentence representations helps MO-Reinforce to achieve better
performance.

2 Related Works

Reinforcement Learning methods have been mainly proposed to address the exposure bias problem
inside sequence-to-sequence models, which refers to the discrepancy between training and inference
time in NMT systems. During training, in fact, the model is exposed to the reference translations, while
at inference time the model generates the translation based on its own (typically sub-optimal) predictions,
at the risk of cumulative errors at each step. In (Ranzato et al., 2016), the authors proposed a gradual
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shifting from token-level maximum likelihood to sentence-level BLEU score to expose the model to
its prediction instead of the reference translation. Shen et al. (2016) extended this idea by adopting
minimum risk training (Goel and Byrne, 2000) to directly optimize task-specific metrics like BLEU or
TER in NMT. Bahdanau et al. (2017) optimized the policy using the actor-critic algorithm. In another
line of research, in situations where the reference translation is not available, (Kreutzer et al., 2017)
proposed bandit structured prediction, which describes a stochastic optimization framework to leverage
“weak” feedbacks collected from the user (e.g. Likert scores about output quality). A common trait of all
the above-mentioned works is that they all consider humans as the end-users of NMT system’s output,
which should hence adhere to the human criteria of fluency and adequacy. Tebbifakhr et al. (2019)
recently proposed a paradigm shift by considering machines as the final consumers on machine-translated
text, which should hence maximize “fitness for purpose” criteria (i.e. providing easy-to-process input to
downstream NLP components). To this aim, they adopted the REINFORCE (Williams, 1992) approach
to leverage the feedback from a downstream task (e.g. classification accuracy in a polarity detection task)
to update the agent’s policy (the probability of taking a certain action α when in state s). This approach
was extended in (Tebbifakhr et al., 2020) to address different NLP tasks in parallel, with a single NMT
engine using the same policy. Both works showed that leveraging the downstream classifier’s feedback
adapts the NMT system to output translations that are easier to be classified by the downstream tool.
None of them, however, explored the application of the approach in zero-shot settings, nor focused on
how language closeness/distance affects final performance as done in this paper.
Pre-training a neural network or parts of it with existing models is a common approach in several NLP
tasks and it allows developers to speed up the training, to leverage different types of training data and to
improve the overall performance of the learning system. Among various solutions, word2vec (Mikolov
et al., 2013) and its variants (Pennington et al., 2014; Levy and Goldberg, 2014) have been the first
resources used to pre-training the embeddings in an NMT system. They provide embedded vectors of
individual words and have been widely used in NLP.

Recently, pre-trained Language Models (LM) showed better performance when fine-tuned for down-
stream tasks. ELMo (Peters et al., 2018) is among the first pre-trained LMs, which is based on Bi-
LSTM architecture trained on monolingual data. The authors showed that combining the representa-
tions from different layers obtains contextual-aware word representations that can be used for other NLP
tasks. Right after ELMo, BERT (Devlin et al., 2019) was proposed based on the encoder of Transformer
(Vaswani et al., 2017). This model was trained on unlabeled data using two loss functions: i) Masked
Language Model (MLM) and ii) Next Sentence Prediction (NPS). This pre-trained model showed out-
standing performance when fine-tuned for a variety of NLP tasks. There are many variants of BERT
proposed after, among them: Conneau and Lample (2019) add cross-lingual data and only use MLM
loss function, and Yang et al. (2019) train the model on the permuted data.

Specifically for NMT, different attempts have been done to integrate pre-trained LMs in the sequence-
to-sequence model. Among others, ELMo was used for initializing the embedding layer in the NMT
system (Edunov et al., 2019). Clinchant et al. (2019) used BERT for initializing the encoder or embed-
ding layer of the NMT systems. Then the BERT models are fixed or fine-tuned along with other variables
of the model. In (Zhu et al., 2020), a method was proposed to fuse the representations obtained from
BERT with each layer of the encoder and decoder in the NMT model through attention mechanisms.
We take a similar approach to (Clinchant et al., 2019) in initializing source embedding or the encoder
of the NMT system while training a generic NMT systems. Here, this is done for the first time in a
machine-oriented setting and in zero-shot conditions.

3 Background and Methodology

3.1 Neural Machine Translation

State-of-the-art NMT models are based on the encoder-decoder architecture (Bahdanau et al., 2015;
Vaswani et al., 2017). In this architecture, the encoder encodes the sentence in the source language into
vector representations. Then, the decoder autoregressively decodes these representations into a sentence
in the target language, emitting a token at each time step until the end-of-sentence token is generated.
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More formally, at time step i the NMT model generates a probability distribution pθ(.|y{0..i−1},x) based
on the source sentence x and the already generated translation prefix y{0..i−1}, where θ is the model’s
parameter set. So, for a given translation pair (x,y) the probability of generating reference translation y
for the given source sentence x can be computed as follows:

P (y|x) =
N∏
i=1

pθ(yi|y{0..i−1},x) (1)

where N is the length of y. These models are usually trained by maximizing the likelihood of a given
parallel corpus containing S translation pairs {xs,ys}Ss=1. The Maximum Likelihood Estimation (MLE)
objective function can be written as follows:

LMLE =
S∑
s=1

logP (ys|xs)

=
S∑
s=1

Ns∑
i=1

log pθ(y
s
i |ys{0..i−1},x)

(2)

The parameters of the model can be optimized by applying stochastic gradient descent to maximize
MLE objective function. As mentioned in §1, this approach indirectly maximizes the human-oriented
translation criteria embedded in the parallel corpora used for training.

3.2 Multilingual Machine-Oriented REINFORCE

Tebbifakhr et al. (2019) proposed an approach based on Reinforce (Williams, 1992) that, instead of
maximizing the likelihood of the training data, maximizes the expected value of the reward on the output
of the NMT system. Formally, the NMT model defines an agent that chooses an action, i.e. generating
a translation candidate ŷ, and gets a reward ∆(ŷ) according to the action taken. This reward is external
to the NMT system and can be collected either from humans (Ranzato et al., 2016; Kreutzer et al., 2017)
or, as in MO-Reinforce, from a downstream NLP tool (Tebbifakhr et al., 2019). This objective function
can be written as follows:

LRL =
S∑
s=1

Eŷ∼P (.|x(s))∆(ŷ)

=
S∑
s=1

∑
ŷ∈Y

P (ŷ|x(s))∆(ŷ)

(3)

where Y is the set containing all the possible translations. Since the size of this set is exponentially large,
the expected value is usually estimated by sampling one or few candidates from Y. In (Ranzato et al.,
2016), the expected value is estimated by sampling only one candidate using multinomial sampling:

ˆLRL =

S∑
s=1

P (ŷ|xs)∆(ŷ), ŷ ∼ P (.|xs) (4)

In MO-Reinforce, the reward is computed as the probability given to the true class by the downstream
classifier. The maximum value of this reward is 1 when the downstream classifier assigns the correct
label to the translation candidate with total confidence. Also, to increase the contribution of the reward,
MO-Reinforce exploits a sampling strategy (Algorithm 1) where: i)K translation candidates are sampled
from the output probability distribution of the NMT system, ii) the reward is computed for each of them,
and iii) the one with the highest reward is chosen as final candidate. Although MO-Reinforce shows
promising results in adapting NMT models to pursue machine-oriented objectives, it still needs a small
amount of labeled data for computing the reward. These data, however, are not always available in
the low-resource settings for which it is proposed. To tackle this problem, we extend MO-Reinforce to
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Algorithm 1 Machine-Oriented Reinforce

1: Input: x(s) s-th source sentence in training data, K number of sampled candidates
2: Output: sampled candidate ŷ(s)

3: C = ∅ {Candidates set}
4: for k = 1 to K do
5: y0 = BOS {Beginning-Of-Sentence token}
6: i = 0
7: repeat
8: i = i+ 1
9: yi ∼ pθ(.|xs,y{0..i−1})

10: y{0..i} = y{0..i−1} + yi
11: until yi is EOS {End-Of-Sentence token}
12: y = y{1..i−1}
13: r = ∆(y) {Reward from the classifier}
14: C = C ∪ (y, r)
15: end for
16: ŷ(s) = maxr(C) {Candidate with maximum reward}

the multilingual setting. We train a multilingual NMT model (Ha et al., 2016), which translates from
different low-resource languages (S1, S2,...Sn) to a high-resource one (T ). This model is trained on the
union of (Si, T ) parallel corpora in which the source language differs. This unification of corpora results
in learning a language-agnostic representation on the encoder side and enables knowledge transfer from
language for which labeled data exist to the (zero-shot) language without labeled data (Eriguchi et al.,
2018). The fact that multilingual NMT results in a single model covering multiple languages (as opposed
to relying on dedicated models for each language pair) represents an architectural advantage that makes
it scalable, easy to maintain and, in turn, particularly appealing for real-world applications.

3.3 BERT-Based NMT
Recently, the pre-trained BERT has shown outstanding results when it is fine-tuned for a downstream
task. This superiority comes from the fact that this model has been trained on a huge amount of un-
labeled data, which helps it to learn valuable knowledge about the language. The multilingual version
of BERT has been trained on the union of the unlabeled data from more than 100 different languages.
This multilingual information motivated us in incorporating the multilingual BERT in our NMT system
to take advantage of its embedded knowledge. In our setting, where the NMT system serves the down-
stream tool having a better representation of the input can be beneficial to generate a better and more
useful translation, in particular in zero-shot languages.

We employ two different approaches to incorporating BERT in our NMT system based on Transformer
(Vaswani et al., 2017). In the standard Transformer, all the variables of the model are randomly initialized
and then trained. In our implementation of this model, we use Byte-Pair Encoding (BPE) (Sennrich et
al., 2016) to extract the vocabulary from the source and target side of the parallel data. The following
paragraphs explains the details of each BERT-based NMT implementations.

BERT Encoder The first approach to incorporating BERT in our NMT system is initializing the en-
coder of the NMT system using the weights of the multilingual BERT. In this approach instead of using
BPE, we tokenize the input sentence to sub-words using the BERT tokenizer and add special tokens
[CLS] and [SEP] to the beginning and the end of the sentence. Then the tokenized sentence is encoded
with multilingual BERT and the encoded representations are passed to the decoder of the NMT system.

BERT Embedding In the second approach, we use the output of multilingual BERT as contextualized
embeddings of the source sentence. Then these embeddings are passed to the encoder of the NMT system
to encode the source sentence. Finally, the output of the encoder is passed to the decoder of the NMT
system.
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The next Section will explain how the BERT-based NMT systems and MO-Reinforce are used in our
experiments to address the lack of source data in a specific language.

4 Experiments

Experimental Settings We pre-train the two NMT systems described in § 3.3 and the standard Trans-
former using the Maximum-Likelihood Estimation on the parallel corpora for the human-oriented trans-
lation task. Their translation performance are evaluated in § 5.1. The outputs of these NMT systems are
then passed to the downstream classifier and its classification performance is evaluated in § 5.2. We com-
pare the performance of these approaches (different NMT + Downstream classifier) with the multilingual
BERT trained on English data. In this set of experiments, the NMT systems and the BERT classifier are
not tuned on any kind of source language classification training data (e.g. using the MO-Reinforce
algorithm for the NMT systems), so we consider this setting a zero-shot scenario.

For training the NMT systems using multilingual BERT, we freeze the variables of BERT. We use six
layers of the encoder (if any) and six layers of the decoder. We keep the hyper-parameters of the model
similar to the original settings (Vaswani et al., 2017). We train each model with the effective batch size
equal to 25K tokens.

We then consider the condition when a minimum amount of downstream labeled data is available
for a closely-related language to Spanish (Italian) and a distant one (German). We use these data to
adapt each NMT system using the Multilingual MO-Reinforce approach described in § 3.2. We evaluate
the downstream classifier’s performance on the output of each adapted NMT system. We compare the
Multilingual MO-Reinforce approach with the multilingual BERT fined-tuned for the downstream task
using the same limited amount of the labeled data (see § 5.3). Similar to (Tebbifakhr et al., 2020), we
adapt the NMT systems using MO-Reinforce by disabling and enabling the dropout while generating
the translation candidates. We keep the parameter K in MO-Reinforce equal to 5, and adapt each NMT
system for 50 epochs and choose the best checkpoint based on the performance on the development set.
For simulating the downstream classifier we use English BERT fine-tuned for the downstream task using
the English labeled data.

Data For pre-training the NMT systems, we use the parallel corpora reported in Table 1, and we eval-
uate the Spanish and Italian translation performance of the NMT systems on the Ubuntu parallel corpus
(Tiedemann, 2012). For the Transformer model, we tokenize and encode each side of the parallel corpora
with 32K byte-pair encoding rules. For the other Bert-based NMT systems, on the source side, we use
the BERT encoder setting to split the sentences to the tokens.

We evaluate our translation-based classification approaches on a multilingual document classification
task where Spanish and Italian news documents have to be automatically annotated with domain labels.
Our classification data consists of the first sentence of each document that, according to (Bell, 1991) is a
good proxy to determine the domain of news texts. The data used (Schwenk and Li, 2018) cover 4 do-
mains: Corporate/Industrial, Economics, Government/Social, and Markets. The training, development,
and test sets for each language respectively contain 10K, 1K, and 4K documents, equally distributed in
the 4 classes. For the English downstream classifier we use whole 10K documents while, to simulate the
low-resource setting, we sample 100 documents for each class from the Italian training set. In addition,
we collect the same amount of data also for German. This data is used to fine-tune the Spanish system
on a distant language and compare downstream performance results achieved by our approach in the two
fine-tuning conditions (close – Es-It – vs distant – Es-De – languages).

Evaluation metrics We evaluate the translation performance of the NMT systems using BLEU Score
(Papineni et al., 2002) and the classification performance with macro average F1 Score.

5 Results

5.1 The NMT systems’ translation performance
We start the evaluation by comparing the translation performance of the three different NMT systems.
The performance of the NMT systems in terms of BLEU score is reported in Table 2. As shown, BERT
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Europarl JRC Wikipedia ECB TED KDE News11 News Total

Es-En 2M 0.8M 1.8M 0.1M 0.2M 0.2M 0.3M 0.2M 5.6M
It-En 2M 0.8M 1M 0.2M 0.2M 0.3M 0.04M 0.02M 4.56M
De-En 2M 0.7M 2.5M 0.1M 0.1M 0.3M 0.2M 0.2M 6.1M

Table 1: Number of sentences in the parallel corpora used for training the generic NMT systems.

BERT Encoder BERT Embedding Transformer

Italian 20.19 21.88 25.56
German 17.18 19.04 21.86
Spanish 26.15 28.12 32.02

Table 2: Translation performance of the different NMT systems in terms of BLEU score.

Encoder has lower performance compared to Transformer (-5.37 in Italian, -4.68 in German, and -5.87 in
Spanish). This is due to the fact that the encoder of the NMT system is the fixed multilingual BERT and
only the weights on the decoder side (embeddings, decoder weights, and linear projection to vocabulary)
are trained in this setting. BERT Embedding outperforms BERT Encoder in translation task (+1.69 in
Italian, +1.86 in German, +1.97 in Spanish). This improvement was expected, because in this setting
the weights in the encoder are also trained along with the parameters on the decoder side. However,
the performance of this systems is still lower than Transformer (-3.68 in Italian, -2.82 in German, and
-3.90 in Spanish). This is because multilingual BERT is trained only on monolingual data. Compared
to Transformer, in which all the weights are trained on parallel data, its output representations are hence
less effective for translation tasks. These results are mainly in line with those reported in (Clinchant et
al., 2019) when using BERT as fixed encoder. However, while they showed improvements using BERT
as embedding matrix on the encoder side in some settings, this is not visible in our experiments.

5.2 The classification performance on the output of the NMT systems

We continue the evaluation, by using these three NMT systems in our translation-based classification
approach for the downstream task. All the NMT systems are not aware of the downstream task and
are not fine-tuned on any task-specific data in the source and target languages. For these reasons, we
consider these experiments as in zero-shot conditions. Table 3 shows the downstream classification task’s
performance using the different NMT systems. We also compare them with the multilingual BERT fine-
tuned for the downstream task using the English labeled data. As shown in the table, except for the
BERT Encoder in German (-0.9 F1 Score), the translation-based classification approach in all the other
settings has better performance in the zero-shot settings than the multilingual BERT. Among the BERT-
based NMT systems, except Spanish in which the results are similar (85.9 for BERT Encoder and 85.8
for BERT Embedding), BERT Embedding outperforms BERT Encoder in the other two languages (+0.8
in Italian and +2.8 in German). These results are in line with BERT-based NMT systems’ translation
performance reported in Table 2. However, when comparing the BERT-based NMT systems with the
Transformer, the translation gap showed in Table 2 in favour of Transformer is minimized for Italian and
German in terms of classification performance and overturned for Spanish (+1.6 F1 Score). This analysis
shows that the translation quality in terms of human-oriented scores (like the BLEU score) does not have
a high correlation with the performance of the downstream task in the translation-based classification
scenario.

5.3 MO-Reinforce adaptation

Table 4 reports the performance of Multilingual BERT and the three NMT systems when testing on
Italian and Spanish. The systems are fine-tuned using the Italian and German labeled data. This set
of experiments covers the conditions when the NMT system is fine-tuned by MO-Reinforce on the data
belonging to a) the same language of the test set (Italian - Italian, second column); b) a different language,
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Italian German Spanish

Multilingual BERT 70.2 87.0 80.6

BERT Encoder 74.5 86.1 85.9
BERT Embedding 75.3 88.9 85.8
Transformer 76.1 88.8 84.2

Table 3: Document classification performance in terms of F1 Score using only English labeled data.

Fine-tuned on labeled data in Italian Fine-tuned on labeled data in German

Italian Spanish Spanish

Multilingual BERT 82.9 80.7 73.2

BERT Encoder 76.7 85.3 83.3
BERT Embedding 76.8 86.7 86.3
Transformer 77.8 86.1 84.3

( enabled dropout )

BERT Encoder 83.6 83.4 76.8
BERT Embedding 84.0 82.7 76.0
Transformer 82.5 82.3 75.7

Table 4: Document classification performance in terms of F1 Score by fine-tuning on labeled data in
close and distant languages.

but closely-related (Italian - Spanish, third column) and c) a different and distant language (German -
Spanish, fourth column), the more extreme case. The NMT systems do not use the dropout during the
MO-Reinforce fine-tuning in the top part of the table, while it is enabled in the bottom experiments.

In the top part of Table 4, comparing the performance of all the systems tested on Spanish (third and
fourth columns), fine-tuning on Italian and German shows coherent performance gains when the systems
are trained on the closely-related language (Italian) over the distant language (German). The NMT
systems adapted using MO-Reinforce, except for BERT Encoder, have performance improvement over
the generic NMT systems (Table 3), showing that MO-Reinforce can alter the output of the translation
system to benefit more from the knowledge embedded in the downstream classifier. Also, MO-Reinforce
outperforms multilingual BERT in both cases (fine-tuning on close and distant languages), thanks to
the language-agnostic representation of the NMT encoder , which is not the case in multilingual BERT
trained only on monolingual data. The best result for Spanish is obtained when BERT Embedding is fine-
tuned on Italian labeled data. It confirms our hypothesis that the better representation of the language by
multilingual BERT trained on huge amount of data can be beneficial compared to Transformer, which
has seen only the limited parallel data. When testing on Italian, as expected, all the systems have an
increase in performance compared to the results in Table 3. The best result is obtained by multilingual
BERT (82.19 F1 Score) showing that it is able to better leverage the labeled data. Our intuition is that
the NMT systems without enabling the dropout during fine-tuning do not properly explore the searching
space. On one side, this allows the system to better transfer the source-language data knowledge to the
other languages, but, on the other, it limits the learning capability on the language for which the labelled
data is available.

To test this hypothesis and similar to (Tebbifakhr et al., 2020), we repeat the adaption of the NMT
systems using MO-Reinforce by enabling the dropout while generating the translation candidates. This
adds some noise to the translation outputs that helps the system to avoid possible local optima and favours
a deeper exploration of the probability space. The bottom part of Table 4 reports the performance of
the translation-based approaches for the downstream classification task for NMT systems adapted by
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MO-Reinforce on Italian and German labeled data using the dropout while generating the translation
candidates. The first noticeable change in the result is the boost in the Italian language’s performance.
This difference is higher for BERT Encoder and BERT Embedding (83.6 and 84.0 F1 score respectively)
outperforming the multilingual BERT (82.9 F1 Score). However, this improvement in Italian comes at
the cost of lower performance in Spanish (zero-shot language). This drop is smaller for the systems
fine-tuned on Italian confirming the advantage of using closely-related languages. Indeed, the more
the NMT system becomes specialized on German (distant language), the lower the performance are on
Spanish. However, even with this drop in performance on the zero-shot language, the performance of all
the systems are higher than the multilingual BERT. This observation confirms that NMT systems have
a more language-agnostic representation of the input text, which results in easier knowledge transfer
between languages, in particular the closer ones.

6 Conclusion

In this paper, we proposed a multilingual extension of the MO-Reinforce algorithm able to work in zero-
shot settings. Our solution takes advantage of a multilingual NMT model, which translates texts from
different low-resource languages into English. To mitigate the lack of data in zero-shot languages, we
also incorporated the multilingual BERT with different approaches in the NMT model. Our evaluation
shows that using generic NMT systems in the translation-based approach works better than the multi-
lingual BERT in zero-shot settings. Furthermore, the shared knowledge between the source languages
allows MO-Reinforce to leverage the labeled data in one language to adapt the NMT model to pursue
machine-oriented objectives in other languages, even in zero-shot settings. Our results show that data
in closely-related languages can help to cope with the lack of task-specific resources and confirm the
capability of MO-Reinforce to leverage and transfer information across languages. The best result in
zero-shot settings is obtained with the NMT system by incorporating multilingual BERT as embeddings
adapted on closely-related language. However, for the language with a small amount of data, the best ap-
proach uses the multilingual BERT as the embedding for the source side of the NMT system by enabling
the dropout while generating the translation candidates. Our future works will consider fine-tuning the
multilingual BERT variables along with other variables of the model in NMT systems, which can obtain
a language-agnostic representation in the BERT model and be helpful in zero-shot settings.
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