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Abstract

This paper describes the Helsinki–Ljubljana contribution to the VarDial shared task on social
media variety geolocation. Our solutions are based on the BERT Transformer models, the con-
strained versions of our models reaching 1st place in two subtasks and 3rd place in one sub-
task, while our unconstrained models outperform all the constrained systems by a large margin.
We show in our analyses that Transformer-based models outperform traditional models by far,
and that improvements obtained by pre-training models on large quantities of (mostly standard)
text are significant, but not drastic, with single-language models also outperforming multilin-
gual models. Our manual analysis shows that two types of signals are the most crucial for a
(mis)prediction: named entities and dialectal features, both of which are handled well by our
models.

1 Introduction

Until 2019, all VarDial evaluation campaigns have focused on classification tasks where the number of
linguistic varieties was defined beforehand by the task organizers. The 2020 SMG task breaks with this
tradition and asks the participants to predict latitude-longitude coordinates, i.e., two output values on a
continuous scale. The SMG task is divided in three subtasks focusing on different linguistic areas: the
Bosnian-Croatian-Montenegrin-Serbian (BCMS) language area, the German-speaking area of Germany
and Austria (DEAT), and German-speaking Switzerland (CH). All three datasets are based on social
media data, Twitter in the case of BCMS and Jodel in the case of DEAT and CH.

This paper describes the HeLju (Helsinki–Ljubljana) submission to the SMG task. Our motivation was
to investigate how existing classification and regression approaches can be adapted to a double regression
task. Most of our work is based on the BERT sentence classification architecture in both constrained and
unconstrained settings. We experiment with various pre-trained models, different types of coordinate
encoding and other hyperparameters. Finally, we manually analyze the development set predictions
made with our best-performing models.

2 Related work

One of the first works focusing on predicting geolocation from social media text is Han et al. (2012).
The authors investigate feature (token) selection methods for location prediction, showing that traditional
predictive algorithms yield significantly better results if feature selection is performed.

There has been already a shared task on geolocation prediction at WNUT 2016 (Han et al., 2016). The
task focused not only on predicting geolocation from text, but also from various user metadata. The best
performing systems were combining the available information via feedforward networks or ensembles.

Thomas and Hennig (2018) report significant improvements over the winner of the WNUT-16 shared
task by learning separately text and metadata embeddings via different neural network architectures

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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BCMS DEAT CH

Training instances 320 042 336 983 22 600
Development instances 39 750 46 582 3 068
Test instances 39 723 48 239 3 097

Median instance length 12 45 47
Maximum instance length 44 272 129

Table 1: Data characteristics. Instance length statistics are computed on space-separated token count of
the training sets.

(LSTM, feedforward), merging those embeddings and performing the final classification via a softmax
layer.

To the best of our knowledge, large pre-trained language models such as BERT have not yet been
applied to the problem of geolocation prediction, but just to language identification (Bernier-Colborne et
al., 2019).

3 Data

The VarDial evaluation campaign provides training, development and test data for the three subtasks.
Table 1 gives an overview of the data. It can be seen that the BCMS and DEAT datasets are roughly
equivalent in size, whereas the CH dataset is more than one order of magnitude smaller. The instances
from the Twitter dataset (BCMS) correspond to single tweets, while the instances from the Jodel datasets
correspond to entire conversations and are thus much longer on average.

The task organizers also provide a simple baseline for the geolocation task. They compute the centroid
(“average location”) of all instances in the training data and then predict the coordinates of this centroid
for all development or test instances (see Table 2, first row).

4 Experiments

The geolocation task takes text as input and produces two real-valued outputs, the predicted latitude and
longitude. The two outputs can be produced by independently trained models or by a single model that
benefits from some form of parameter sharing.

4.1 Traditional machine learning approaches

In dialect classification, one of the most popular and successful approaches relies on an SVM classifier
that is trained on character n-grams. It has also been shown beneficial to weight the n-gram frequencies,
e.g. using the TF-IDF weighting scheme (Jauhiainen et al., 2019; Martinc and Pollak, 2019). We adapted
this setup by substituting the SVM classifier by two independent SVR regression models, one for latitude
and one for longitude.1 As input features, we used TF-IDF-weighted n-grams of length 3 to 6 occurring
at least 5 times in the training corpus. For this and all other experiments presented in the paper, we train
and test our systems on lower-cased data, as we found no evidence that casing information would be
relevant for geolocation. No further pre-processing was applied to the data. Table 2 (second row) shows
that this approach easily beats the centroid baseline for all three subtasks.

4.2 Neural machine learning approaches

In recent years, pre-trained language representations have become very successful for various down-
stream tasks. BERT (Devlin et al., 2019) is currently one of the most popular pre-trained language
representation frameworks and is based on the Transformer neural network architecture (Vaswani et al.,
2017). Typically, a BERT model is created in two phases. In the pre-training phase, a Transformer is
trained from scratch using a masked language modeling task. This task only requires unlabeled data. A

1We used the MultiOutputRegressor class of the Scikit-Learn toolkit (Pedregosa et al., 2011) to combine the two models.
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Median distance (km)
Model BCMS DEAT CH

Centroid baseline 107.1 201.3 41.4
SVR with TF-IDF character n-grams 82.2 168.7 29.7
Constrained BERT 48.1 159.2 17.8
Multilingual BERT 44.9 150.7 16.6
Language-specific BERT 42.7 146.5 15.6

Table 2: Median distances (lower is better) of different models on the development set.

wide variety of pre-trained models have been made publicly available. Since the Transformer architec-
ture requires a fixed-size vocabulary, each pre-trained model also comes with a pre-trained tokenizer that
splits infrequent words into subword units. In the fine-tuning phase, a pre-trained model is adapted to a
particular downstream task. For example, in an instance classification task, the output representation of
the special [CLS] token is fed into a separate fully-connected layer that predicts the output class. In this
phase, training data with gold class labels are required. Bernier-Colborne et al. (2019) have successfully
used BERT for dialect identification. The fine-tuning step can be adapted easily from a classification
to a regression problem by removing the sigmoid function and choosing an appropriate loss function.
Likewise, double regression can be implemented by producing two-dimensional output vectors.2

We report three preliminary experiments with the BERT architecture here.3 In the first experiment, we
pre-train a BERT model from scratch on the VarDial SMG training data (without the coordinates),4 and
then fine-tune it on the regression task with the SMG training data (including the coordinates). Just like
the SVR setup, this is a constrained setup in the sense that no data sources other than the ones provided
by VarDial are used. The third row in Table 2 shows that BERT outperforms the SVR massively on all
three tasks despite using exactly the same data. In particular, the median distances are reduced by more
than 40% for the BCMS and CH tasks.

In the second experiment, we use the pre-trained bert-base-multilingual-uncased model5

and fine-tune it on the VarDial data; we use the provided tokenizer without any adaptation. This model
has been pre-trained on about 100 languages, including German, Croatian and Serbian. However, we do
not expect it to be particularly well adapted to our task for two reasons. First, massively multilingual
models are prone to capacity dilution: at constant model capacity, the part allocated to each language is
inversely proportional to the number of languages covered by the model (Conneau et al., 2020). Second,
its tokenizer is trained on all the languages it supports, yielding therefore suboptimal text splitting in
comparison to language-specific tokenizers. Despite these shortcomings, the distances (Table 2, fourth
row) are further reduced by 5–7% compared to the constrained setup. Note that in preliminary experi-
ments, we also tested the XLM-RoBERTa model (Conneau et al., 2020), but found no benefits compared
with the original multilingual BERT.

For the third experiment, we looked for alternative pre-trained models that overcome the limitations
of multilingual BERT and specifically cover the languages of the three subtasks. For BCMS, we use the
crosloengual-bert model provided by Embeddia (Ulčar and Robnik-Šikonja, 2020).6 For DEAT,
we use the bert-base-german-dbmdz-uncased model provided by the Bavarian State Library.7

As we were not able to find a pre-trained model for Swiss German, we started with the German BERT

2For our experiments, we adapt the simpletransformers library (https://simpletransformers.ai/), which al-
ready supports single regression fine-tuning. This library is built on top of the HuggingFace Transformers library (Wolf et al.,
2019).

3For all BERT experiments reported in this section, we use the hyperparameters specified in Sections 4.3 and 4.4, but report
numbers from single runs.

4We pre-trained the models for 50 000 steps with a batch size of 32, for all three models. For each model, a WordPiece
tokenizer with vocabulary size 30 000 is trained on the same data.

5https://huggingface.co/bert-base-multilingual-uncased
6https://huggingface.co/EMBEDDIA/crosloengual-bert
7https://huggingface.co/dbmdz/bert-base-german-uncased
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and continued pre-training for another five epochs on the SwissCrawl corpus (Linder et al., 2020). For all
three tasks, we rely on the provided tokenizers without modifications. This third setup further improves
geolocation results (see last line of Table 2).

Our final submissions are based on the first BERT setup for the constrained setting, and on the third
BERT setup for the unconstrained setting.

4.3 Hyperparameter tuning

During our initial experiments, we found the BERT models to be quite sensitive to some hyperparameter
settings. We found that the optimal batch sizes for the fine-tuning step depended on the amount of
available training data. We obtained the best results with batch sizes of 64 for BCMS, 128 for DEAT,
and 32 for CH.

Although the pre-trained BERT models support maximum sequence lengths of up to 512 tokens, we
found a smaller maximum length of 128 tokens to work equally well for the BCMS and CH task, while
for DEAT the optimal maximum sequence length was 256 tokens, both of which reduced the GPU
memory requirements.8 The simpletransformers library also provides a sliding window option that splits
long instances into pieces instead of just cutting them off at the maximum length. We did not see any
beneficial effect of this option, which suggests that the beginning of each conversation is most indicative
of its geographic localization.9

During fine-tuning, intermediate models were saved every 2000 training steps and the savepoint with
the lowest median distance value measured on the development set was selected. The best models were
generally obtained around epoch 8 for BCMS, epoch 4 for DEAT, and epoch 50 for CH. All models
tended to overfit to the training data thereafter.

4.4 Coordinate encoding and loss functions

Fine-tuning a BERT model on a regression task requires the selection of an appropriate loss function.
This loss function should ideally correspond to the evaluation measure used in the task. The official
evaluation measure is median distance measured with the Haversine formula (which assumes that the
Earth is a perfect sphere with a radius of 6371 km). While it is possible to train models using the
Haversine loss function, we found it more promising to apply some conversions to the coordinates and
to use standard regression loss functions instead. We explored various configurations:

Coordinate projections The raw latitude and longitude coordinates have some properties that make
them potentially hard to learn: (1) one latitude degree does not amount to the same number of
kilometers than one longitude degree; (2) one longitude (East-West) degree corresponds to a larger
number of kilometers near the Equator than near the poles. We propose three alternative projections
that can be used in conjunction with standard loss functions:

• Cosine-adjusted longitude: All longitude values are multiplied by the cosine of their corre-
sponding latitude. The latitude values remain unchanged.10

• UTM projection: The latitude-longitude coordinates are converted to the UTM coordinate
system. This system is based on rectangular zones where each point is represented as the
metric distance from the origin of the zone. We chose zone 34T for BCMS, 32U for DEAT,
and 32T for CH.11

• Cartesian coordinate system: The latitude-longitude coordinates are converted into a triple
of X, Y and Z coordinates in a 3-dimensional space where the origin corresponds to the center
of the Earth.

8Note that this sequence length is computed after tokenization. While the median instance length before tokenization lies
between 12 and 47 (see Table 1), the median instance length after tokenization varies between 24 and 78. The chosen threshold
lies thus still well above the median.

9This may also be an artifact of the collection method for DEAT and CH, where each conversation is assigned the coordinate
of its first message.

10See https://stackoverflow.com/a/1664836.
11See https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.
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Average median distances (↓) Average relative distance
BCMS DEAT CH reduction to baseline (↑)

Projection Lat-Lon 49.86 149.30 15.92 46.9%
Cos-adj. Lat 50.57 150.80 15.93 46.5%
UTM 49.61 149.95 15.86 47.0%
Cartesian 49.41 149.63 15.90 47.0%

Loss function MSE 56.36 151.84 16.04 44.4%
MAE 43.36 148.00 15.76 49.3%

Scaling Independent 49.72 150.18 15.87 46.9%
Joint 50.00 149.65 15.93 46.8%

Table 3: Results of parameter search experiments. The rightmost column represents averages over the
three tasks in the form of relative distance reduction percentages, i.e. higher values are better.

Loss functions We experiment with two commonly used regression loss functions, mean absolute er-
ror (MAE/L1) and mean square error (MSE/L2). The former corresponds to Manhattan distance,
whereas the latter corresponds to Euclidean distance. While both loss functions apply equally well
to multi-dimensional regression, we expect Euclidean distance to be more appropriate for geo-
graphic space.

Loss reduction Commonly, the individual losses of a batch are reduced to a single value by taking their
mean or sum. Since the official evaluation measure is based on the median, we tried a median re-
duction as well, but with consistently poor results. We therefore continue to use the mean reduction.

Centering and scaling Neural networks tend not to converge well if the output values are large or not
well distributed. A common solution for this problem consists in standardizing the values by cen-
tering (i.e., subtracting the mean of the training data) and scaling (i.e., dividing by the standard
deviation of the training data). Since our data is two-dimensional, standardizing the values of both
dimensions independently may lead to distortion, as (assuming both value distributions are normal)
the coordinates are being forced into a square even though the original space is not square-shaped.
To prevent this, we propose joint standardization, where the mean is computed independently for
each dimension, but the standard deviation is computed jointly on all (mean-removed) values.

Leaving aside the median reductions, which underperformed in preliminary experiments, we trained a
total of 48 models (3 tasks × 4 projections × 2 loss functions × 2 scalings) and evaluated each on the
respective development set.

The first three columns of Table 3 show average median distances taken over all models of a task,
keeping one of the parameters fixed. The last column shows an average over the three tasks; in order
to make the numbers comparable, we convert the median distances to distance reduction percentages
relative to the task-specific baseline and report the mean reduction percentages over the three tasks.

In terms of projection, we find that the cosine-adjusted latitude encoding performs worse than the other
three, even though it satisfies the same requirements as UTM, for example. Surprisingly, raw latitude and
longitude do not perform worse than the metric coordinate systems. In terms of loss function, the results
show a clear and consistent advantage for MAE loss. We currently do not have an explanation for this
result, as the MSE loss should capture geographic distances better.12 Finally, the two scaling methods are
indistinguishable. We also tested for interactions between parameters using a mixed-effects regression
model, but did not obtain any statistically significant effects. For our final models (both constrained and
unconstrained), we opted for raw latitude-longitude, MAE loss and joint scaling.

These findings seem to contradict several intuitions of geographic modelling: (1) some amount of
distortion in the coordinate space does not seem to be an issue, since distortion-free projections such as

12Note that the same advantage for MAE obtains when evaluated on mean distance instead of median distance.
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Median distance (km)
System name Constrained Rankings BCMS DEAT CH

HeLju 1 no 1,2,2 41.54 143.85 15.72
HeLju 2 no 2,1,1 41.61 143.30 15.45
HeLju 3 yes 1,1,3 48.99 159.59 17.97

Table 4: Final results of our submitted three runs in median distances (lower is better).

UTM or Cartesian do not perform better than raw latitude-longitude, and (2) Manhattan distance seems
more appropriate than Euclidean distance. We conclude from this that the geolocation task does not
require a geographically faithful modelling of the output space. This suggests that the models do not
infer the dialect landscape as a continuum that spreads in two dimensions, but rather as a set of distinct
zones (presumably urban areas) whose exact geographic relationships to each other are to some extent
arbitrary. We will come back to this hypothesis in Section 5.

4.5 Test-time adaptations

It is well known that neural-network-based models can be sensitive to weight initialization. Therefore,
we trained four identical models per task with different random seeds and selected the one with the lowest
development set distance for producing the test output.

Furthermore, given that the development sets are rather generous in size, we hypothesized that the
information contained therein might be more useful for training than for validation. Therefore, we pro-
duced an alternative data split in which the development set is reduced to 3000 (BCMS), 6000 (DEAT)
and 1000 (CH) instances respectively, and the remainder is added to the training set. We again train four
models per task with this extended data split.

4.6 Results

We submitted three systems per track: an unconstrained system with the default data split (HeLju 1), an
unconstrained system with the extended data split (HeLju 2), and a constrained system with the default
data split (HeLju 3).

The results of our three submitted systems, with their ranking among all submitted systems, are given
in Table 4. Our first observation is that the overall results are very close to the results obtained on
dev data, which shows that the dev and test data are quite probably coming from the same distribution.
The two unconstrained systems (the only two of their kind among the submitted systems) outperform the
constrained version significantly, with the two unconstrained systems performing very similarly, showing
that extending the training data with parts of the dev data did not give the extra push that we were hoping
for.

The constrained system obtained best results in two out of three subtasks, yielding only third place in
the CH subtask that had one order of magnitude less training data than the two other tasks, which also
gives the most probable reason for its not-superior performance. In the two tasks where our constrained
system won, we we outperformed the second ranked system by an absolute difference in median distance
of 8.25 kilometers for the BCMS subtask and 24.4 kilometers for the DEAT subtask. In the CH subtask,
the winning system outperformed ours with an absolute difference of 2.04 kilometers.

5 Error analysis

Figure 1 shows the spatial distribution of the development set instances of the three tasks. The plots
on the left show the predicted locations, with the color indicating the distance to the true locations. In
all three plots, high-accuracy zones can be distinguished (colored in red), which correspond to urban
areas. Furthermore, instances that are hard to classify are put into a “default” zone close to the centroid
location, in order to minimize distances.

The plots on the right show the true locations, with the color indicating the distance to the predicted
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Figure 1: Visualization of development set predictions. Left: instances are placed at their predicted
place, the color shows the distance to the true place. Right: instances are placed at their true place, the
color shows the distance to the predicted place. Red color stands for small distances, blue color for large
distances.

locations. For the DEAT task, red and blue dots occur simultaneously in the same areas. For BCMS, the
major urban areas can again be distinguished easily.

We manually analyzed a subset of development set instances for each task. To this end, we chose two
areas per task that can be delimited easily and that lie outside of the “default area”. We then selected
at most 50 “good” and 50 “bad” predictions, on the basis of a task-specific threshold set according to
a natural break occurring in the data. We then counted how many of these instances contain dialectal
features and named entities (mostly place names, but also names of well known locations, people, in-
stitutions or businesses), and whether these features were used consistently (e.g. an instance located in
Berlin mentions Berlin) or inconsistently (e.g. an instance located in Berlin mentions Köln). Table 5 lists
some consistent and inconsistent dialectal features, whereas Table 6 shows the results of this analysis.

This small-scale analysis shows some striking differences between the tasks. For the CH task, good
prediction performance is mainly associated with the presence of consistent dialectal features, whereas
for the DEAT task, prediction almost exclusively relies on the presence of consistent named entities. The
BCMS task lies between those two, with both named entity and dialectal signal being present in good
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Task Region Consistent features Inconsistent features

BCMS Zagreb Kolindin ili Josipovicev fejk osmijeh Cao cao #svenasvetu
da uvik slikaju iste pičine

Belgrade letnji pljusak je okej volio bih da ti kazem
Ustala sam posle 3 meseca pre 4 sata Upravo sam saznao ovu pretužnu vijest

CH Wallis Und wier chännes miterläbu! Hahaha je confirme y a trop . . .
ich sägu minum botsch ästagsch öi h. Hans liebte Franz doch Franz . . .
Sust nu jemand moru en Statisterolla? Da isch en Aargaueri[n] uf de . . .

Chur leid tuats miar glich abitz Bisch demfau z frouefäud?
Wär muos am 3.7 nach Airolo irucka? Wulewu kuschee awek mua?
Liabi Lüüt fahrend doch eifach 50 wo konn men do heint fortgian?

DEAT Berlin dat isch
nüscht

Vienna spoats eichs bitte ma jt zu sagen –
Also is bei mir doch nicht so fad
eine ur schirche kartoffelnase

Table 5: Examples of consistent and inconsistent dialect features.

Task Region Criterion N Named entities Dialectal features
Consistent Inconsistent Consistent Inconsistent

BCMS Zagreb < 20 km 50 54% 0% 40% 4%
> 100 km 50 4% 10% 0% 16%

Belgrade < 20 km 50 24% 0% 48% 0%
> 100 km 50 4% 4% 0% 20%

CH Wallis < 20 km 12 8% 0% 100% 0%
> 50 km 11 27% 9% 73% 27%

Chur < 50 km 106 23% 6% 99% 5%
> 70 km 6 17% 17% 67% 50%

DEAT Berlin/ < 70 km 47 94% 11% 2% 0%
Potsdam > 400 km 50 8% 10% 4% 2%

Vienna < 70 km 13 92% 8% 23% 0%
> 600 km 50 0% 6% 4% 0%

Table 6: Presence of named entities and dialectal features in well and badly classified subsets of the
development set.
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predictions.
Bad performance is hard to predict for CH, but seems to be related to inconsistent usage of dialectal

features. For DEAT, bad performance seems to be due almost exclusively to the absence of named
entities. In the DEAT dataset, dialectal and regional features – consistent or not – are extremely rare.
In the BCMS dataset bad prediction performance is mostly to be followed back to lack of useful named
entity and dialectal signal, as well as a significant amount of misleading dialectal signal, which is to be
followed back to the fact that the two selected regions are the two largest cities in the whole area that are
surely visited or inhabited by speakers from around the area.

6 Conclusion

In this paper we have presented the first use of the popular Transformer-based BERT systems on geolo-
cation prediction that ensured a very strong first place in the unconstrained version of the VarDial 2020
SMG shared task and the first place in two out of three subtasks in the constrained version of the shared
task.

We have shown that pre-trained models perform drastically better than the usual traditional machine
learning approaches, even if both are based on the same significant amount of data available. Models
pre-trained on large amounts of text do outperform those pre-trained on the training data only, but not
with a drastic difference. This lack of a larger difference might probably be followed back to the lack of
dialectal features in the large pre-training data.

Language-specific pre-trained models do outperform multilingual models, but not as drastically as
one would expect. This lack of a larger difference can probably again be followed back to the lack of
dialectal features in the pre-training data. Finally, performing various target transformations from the
original (latitude, longitude) space does not improve results.

Our error analysis has shown that the three subtasks are quite different regarding the useful signal
available. While the DEAT decisions mostly rely on named entities, and the CH decisions on dialectal
features, the BCMS subtask lies somewhere in the middle, with both signals having similar importance.
By having such a diverse test bed, we believe that we have shown that the current state-of-the art natural
language models produce also the best results on this task, regardless of the type of the useful signal,
as long as a significant amount of data (around million instances) is available for pre-training and fine-
tuning.
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