
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020), pages 57–66
Barcelona, Spain (Online), December 13, 2020

57

From LFG To UD: A Combined Approach

Cheikh Bamba Dione
University of Bergen / Sydnesplassen 7, 5007 Bergen

dione.bamba@uib.no

Abstract

This paper reports on a systematic approach for deriving Universal Dependencies from LFG
structures. The conversion starts with a step-wise transformation of the c-structure, combining
part-of-speech (POS) information and the embedding path to determine the true head of depen-
dency structures. The paper discusses several issues faced by existing algorithms when applied
on Wolof and presents the strategies used to account for these issues. An experimental evaluation
indicated that our approach was able to generate the correct output in more than 90% of the cases,
leading to a substantial improvement in conversion accuracy compared to the previous models.

1 Introduction

This paper describes a methodology to automatically convert Lexical-Functional Grammar (LFG) (Ka-
plan and Bresnan, 1982) into Universal Dependencies (UD) structures (Nivre et al., 2016). Previous
studies in this field (Øvrelid et al., 2009; Çetinoğlu et al., 2010; Meurer, 2017; Przepiórkowski and Pate-
juk, 2018) show disagreement regarding the structure to start from for the conversion. Meurer (2017)
proposed a lifting algorithm which performs a step-wise transformation of the c-(onstituent) struc-
ture into a dependency tree. In contrast, the P&P algorithm (for lack of a better name) proposed by
Przepiórkowski and Patejuk (2018) takes f-(unctional) structure as the basis for constructing dependency
structures. These algorithms faced several issues when applied to Wolof (see section 3). Accordingly,
this paper presents a new approach (discussed in section 4) that combines and extends previous methods.

In LFG, c-structure characterizes the phrase structure tree configurations and f-structure encodes gram-
matical relations (e.g. subject, object) and features (e.g. person, number). For instance, the Wolof LFG
grammar (Dione, 2014) coupled with the Xerox Linguistic Environment (XLE) (Crouch et al., 2019)
assigns to the sentence in (1) the c- and simplified f-structure in Figures 1 and 2.

(1) Sofoor
driver

bi
the

taal
start

na
3SG

traktër
tractor

bi.
the

‘The driver starts the tractor.’

Fig. 1: C-structure of (1)

Fig. 2: F-structure of (1)

The f-structure states that the main predicate of (1) is taal ‘start’ and it has two arguments: a subject
(SUBJ) and an object (OBJ). Each of these arguments has its own semantic predicate (e.g. sofoor ‘driver’
for SUBJ) and a DET feature embedded under SPEC introduced by the determiner bi.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.



58

Nonterminal nodes in c-structure are mapped to particular substructures in f-structure via the φ (phi)
function. Thus, in the c-structure in Fig. 1, the leftmost nodes DP, NP, N and D all map to the substructure
with index 13 (the value of SUBJ) in the corresponding f-structure. Likewise, the rightmost nodes DP,
NP, N and D all map to the substructure with index 5 (i.e., the value of OBJ). All the other nonterminals,
including IP, S, VP, V’ and Cl map to the entire f-structure with index 0.

A crucial concept is the functional head (FH) (Bresnan, 2001). In LFG, a ‘head’ of a phrase shares its
features with its mother. A solid line between a mother node and its daughter node (DN) in c-structure
indicates that DN is a FH of its mother, i.e. they project to the same f-structure.

2 From LFG to dependency structures

Our approach is based on modified versions of both the lifting (Meurer, 2017) and the P&P algorithms
(Patejuk and Przepiórkowski, 2018), which are briefly presented in sections 2.1 and 2.2, respectively.

2.1 The lifting algorithm (Meurer, 2017)
This algorithm recursively replaces each non-terminal node X by its functional head (FH) using the
following rules. The step-wise derivation of (2) is shown below.
• 1a: If X has no FH, it is replaced by its daughter nodes as direct children of the parent Z of X . Then,

the algorithm proceeds as before.
• 1b: If X has more than one FH, the node with shortest or empty embedding path is selected to

replace X , taking the remaining nodes as its dependents.
• 1c: As a last resort, if there is still more than one such node, the first (i.e. leftmost) of them is

selected as the replacement.
• 2: The edge between node X and daughter node Y is labeled with the minimal f-structure path from

φ(X) to φ(Y ), concatenated with the embedding path of Y .

(2) Awa
Awa

dem
went

ROOT

S

VP

V′

V

dem

NAMEP

NAME

Awa

ROOT

S

VP

V′

V

dem

Awa

ROOT

dem

Awa

dem

SUBJ

Awa

The embedding path indicates how deep the PRED value associated with a c-structure is embedded in
the corresponding f-structure. For instance, in Figure 1 the leftmost DP has two functional heads (i.e. NP
and D). The functional equation (3) states that the PRED value of the f-structure associated with the NP
node is the semantic form sofoor ‘driver’. Hence, the embedding path for N is empty, since the PRED
value is at the top level of the projected f-structure (eq. 3). In contrast, the path for the determiner bi is
non-trivial, i.e. it is deeper embedded along the path SPEC DET in the associated f-structure (eq. (4)).
Examples (3-4) contain LFG regular notations by which ↑ refers to the mother of the node in question.

(3) (↑ PRED)=‘sofoor’ (4) (↑ SPEC DET PRED)=‘bi’

2.2 The P&P Algorithm (Patejuk and Przepiórkowski, 2018)
Unlike Meurer (2017), the approach of the P&P algorithm follows the more standard observation that
f-structures provide the most natural basis for dependency relations. The idea is that, besides f-structures,
information encoded in terminal and pre-terminal nodes of the constituency tree, together with the stan-
dard correspondence between c-structure preterminals and f-structure components, is sufficient to per-
form the conversion. In other words, the actual constituency information may be completely ignored.

The P&P algorithm was used to derive UD structures from an LFG treebank of Polish. The conversion
process occurs in two main steps. First, the LFG structures are converted into ‘initial dependencies’, i.e.



59

LFG-like structures that maintain headedness information in c-structures and the names of dependencies
in f-structures. Then, the ‘initial dependencies’ are converted to ‘final UD representations’. The con-
version process involves many non-trivial issues, including finding the true heads (i.e. the heads of the
dependency structure). This is particularly challenging, as many c-structure tokens may map to several
f-structures. To find the true head, the P&P algorithm uses information based on POS tag (Patejuk and
Przepiórkowski, 2018, p. 123) as follows:
• If there is a verbal token among the co-heads, select it as the true head;
• otherwise, if there is a nominal or adjectival token, it is the true head;
• otherwise, if there is an explicit conjunction, it is the head;
• otherwise, if there is a complementiser of the semantic kind, select it as the true head;
• otherwise select the final comma as the true head in case there are at most two commas in the

co-head set, or the penultimate comma in case there are more than two commas in the co-head set.

3 Issues with existing algorithms

When applied on the Wolof data, the existing algorithms faced various issues as discussed below.

3.1 Recovering PRED from f-structures and Issue with Verb inflectional markers

The lifting algorithm heavily relies on the concept of embedding path, but retrieving such a path requires
information encoded in f-structure in terms of PRED values. Crucially, in many cases, there is absolutely
no obvious way to recover the surface form from a PRED value. This is particularly true for morpho-
logically rich languages like Wolof (Ka, 1994; Ndiaye, 1995). For instance, in (5), the verbal root of
the surface form (feccikuwaatoon) is fas “to tie”. The inversive suffix i triggered (i) consonant mutation
(s→ c), (ii) gemination (c→ cc), and (iii) vowel mutation (a→ e), yielding the stem fecci “to untie”.
The inversive derivation is followed by the middle derivation (as indicated by -ku which is an allomorph
of the -u mediopassive (MEDP) marker). In addition, the verbal derivation is also expressed iteratively
(w is a glide insertion (GI)) in the past conjugation. The morphological analysis produced by the Wolof
Morphological Analyzer (WoMA) (Dione, 2012) for the form feccikuwaatoon in (5) is given in (6).

(5) Buum
rope

gi
the

fecc-i-ku-w-aat-oon
tie-INV-MEDP-GI-ITER-PST

na.
3SG.

“The rope untied itself again.”

(6) feccikuwaatoon↔ fas+Verb+Invers+MEDP+Iter+PST

The c-structure and f-structure associated with (5) are shown in Figure 3. The PRED of the top f-
structure is fas “to tie”. As this example illustrates, reconstructing the PRED value (fas) from the surface
token feccikuwaatoon is far from obvious. The inversive and iterative derivation are indicated as lexical
semantic features LEX-SEM. Moreover, the f-structure specifies information regarding the mediopassive
voice which subsumes the meaning of the middle voice.

0



PRED ‘fas<[1:buum]’

SUBJ

1


PRED ‘buum’

SPEC

3

DET

4

PRED ‘gi’
DET-TYPE def,
DEIXIS proximal





TNS-ASP
5

[
TENSE past, PERF + , MOOD indicative

]
LEX-SEM

2

[
INVERSIVE +, ITERATIVE +

]
MEDIO-PASSIVE +
GLOSS tie



Fig. 3: C-structure and simplified f-structure of (5)

A second issue concerns the treatment of verbal inflectional markers. In imperfective sentences like



60

(7), the inflectional marker precedes the main verb, but follows it in perfectives sentences like (1).

(7) Sofoor
driver

bi
the.SG

dina
IPFV.3SG

taal
start

traktër
tractor

bi.
the.SG

“The driver will start the tractor.”

Figure 4 shows the LFG structures associated with (7). The inflectional marker (dina) and the main
verb (taal) are mapped to the main feature structure (with index 38). Now, a question that existing algo-
rithms need to address is which of these co-heads is the true head.

Fig. 4: C-and f-structure of (7)

When trying to answer this question, the lifting algorithm assigns an empty embedding path to both
the lexical verb and the inflectional marker. As a consequence, Rule 1b (see section 2.1) cannot settle the
matter, since both constituents are associated with an embedding path of the same length. Thus, Rule 1c
will select the first node as the true head, yielding incorrect analyses for constructions like (7) where the
inflectional marker precedes the main verb. As Figure 5 shows, the auxiliary dina is wrongly identified
as the head of the clause, taking the lexical verb taal and the subject sofoor bi as its dependents.

Fig. 5: Dependency of (7) acc. the lifting algo. Fig. 6: Dependency of (1) acc. the lifting algo.

In contrast, the lifting algorithm produces the correct dependency structure for constructions like (1)
where the inflectional marker follows the main verb, as Figure 6 shows. This seems to be an indication
that the attachment errors produced by the lifting algorithm when building the dependency structure in
Figure 5 stems from an incorrect application of Rule 1c (section 2.1). Both tokens were assigned an
empty embedding path and, thus, Rule 1c selected the wrong head based on linear order.

3.2 Free relatives
Another issue concerns the analysis of Wolof free relatives (see the underlined clause in (8)). The relative
pronoun ñi refers to a nominal that does not appear in the corresponding main clause.

(8) Xam
know

naa
1SG

ñi
PRON

taal
start

traktër
tractor

bi
the.SG

(ñépp).
QUANT

“I know ((all) the people) who started the tractor.”

Figure 7 shows the c- and simplified f-structure associated with (8). The free relative bears the OBJ
function of the main clause. As SUBJ and TOPIC-REL of the embedded verb, the relative pronoun has
a pronoun form (PRON-FORM) and type (PRON-TYPE) feature (not displayed here). Note that the c-
structure suggests that none of the daughter nodes of NP (i.e. PRON and IPsub) is a functional head.



61

Fig. 7: C- and F-structure of (8)

The quantifier ñépp (“all”) may surface on the far right edge of the entire free relative clause, in which
case it agrees in noun class (e.g. ñ) with the free relative pronoun (ñi). This constitutes an evidence that
free relatives in Wolof, as in English (Butt et al., 1999), behave like nominal phrases and are treated as
such in the Wolof UD Treebank (Dione, 2019). The pronoun is analyzed as the head of the free relative,
the main verb inside the relative clause being its dependent through the acl:relcl relation (see Fig. 8).

Xam naa ñi taal traktër bi ñépp .
VERB AUX PRON VERB NOUN DET DET PUNCT

obj

aux

punct

acl:relcl
obj

det

det

root

Fig. 8: Final UD representation of (8)

Unlike in LFG, in UD, the relativizer functions as the head of the structure (taking the verb as its
dependent). This difference in approach is problematic for the lifting algorithm, because Rule 1c will
match and incorrectly choose the verb as the head of the structure. Likewise, for the P&P algorithm, the
main verb and the relative pronoun will not immediately enter in competition at the first stage, as they do
not directly share the same co-head set. However, at a later stage, when dependencies are added to other
co-heads, the verb will compete with and win over the pronoun, leading to an inaccurate UD analysis.

3.3 Constituent dislocation
In LFG, there is structure sharing that arises from discourse functions like FOCUS and TOPIC. For
instance, in (9), the free relative constituent (as underlined) bears both the TOPIC and OBJ functions
of the verb jël “to take”. The object clitic ko is used here as a resumptive pronoun. As the associated
f-structure in Figure 10 shows, the topic constituent and the object pronoun share the same index 17.

(9) Lu
what

des
remain

ci
of

xaalis
money

bi,
the

gune
child

yi
the

jël
take

ko.
it

“whatever remains from the money, the children took it.”

In principle, this structure sharing can be modeled by means of secondary edges (Meurer, 2017), as is
done in some variants of Dependency Grammar to e.g. code functionally bound arguments of the sub-
ordinate verb in control constructions. Crucially, the lifting algorithm does not yet implement secondary
edges, and therefore typically generates incorrect analyses for structure sharing involving discourse func-
tions: two different arguments are linked to a verb through the same dependency relation, which should
be unique. As Figure 11 shows, the main verb jël “take” has two direct object arguments (dobj), instead of
one. Similarly, the P&P algorithm does not include a method that explicitly handles discourse functions,
and therefore produces the same error.



62

Fig. 9: C-structure of (9) Fig. 10: F-structure of (9)

Fig. 11: Analysis of (9) acc. the lifting algo.

Lu des ci xaalis bi , gune yi jël ko .
PRON VERB ADP NOUN DET PUNCT NOUN DET VERB PRON PUNCT

acl:relcl detcase

obl

dislocated

nsubj

det

punct

obj

root

punct

Fig. 12: Correct UD representation of (9)

Following the UD guidelines, the correct dependency relation for the free relative in (9) is dislocated
(rather than obj), which is appropriate for fronted or postposed elements that do not fullfil the usual core
grammatical relations of a sentence. The correct UD representation for (9) is displayed in Figure 12.

4 The Combined Approach

Our approach is based on a modified and extended version of existing algorithms. First, the c-structure is
transformed step-wise by recursively replacing each non-terminal node by its functional head(s). Then,
both the embedding path (as suggested by the lifting algorithm) and the head selection procedure (as
suggested by the P&P algorithm) are used to determine the true head. The underlying assumptions of
these algorithms were modified where necessary to account for the issues outlined in section 3.

4.1 Selecting the true head
The true head of a structure is selected by combining the strategies suggested by the lifting and P&P
algorithms, using their agreement as a validation mechanism. In case of divergence, a decision is made
about which one should apply, integrating information from the current configuration and POS tags.

The lifting algorithm assigns an empty path to the c-structure co-heads without a corresponding PRED
in the f-structure. As this turned out to be problematic for cases involving the lexical verb and the inflec-
tional markers, we did not follow that strategy. Instead, we try to find the path to the PRED for each FH
that enters in competition, and consider the path to be null (but not empty!) if the PRED is not found.
Thus, we distinguish between null, empty and non-trivial path.

For instance, if the two functional heads FH1 and FH2 enter in competition, we combine a redefined
version of the procedure proposed by the P&P algorithm with the path to the PRED for both FH1 and
FH2 to determine the true head. Accordingly, we identify three scenarios. If the FHs have both a null path,
then the head selection is solely based on POS information. Otherwise, if FH1 has a null embedding path,
and FH2 has an empty one (as illustrated in (1)), the latter is selected as the true head, taking the former as
its dependent. Finally, if FH1 has an empty path, and FH2 has a non-trivial one (as is the case with DPs),
we follow the lifting algorithm by selecting the FH node with shortest or empty embedding path as the
true head and treat the other FH as its dependents. We use the P&P POS-tag based selection procedure
to validate our choice, and find that the two algorithms almost always produce the same selection.

4.2 Modified lifting algorithm
The modified version of the lifting algorithm proposed in this paper processes one node at a time referred
to as the current nonterminal node (henceforth CNN, highlighted with a box around it in the figures).



63

For the CNN, we first check two parameters: (1) the number of the functional heads (FHs), and (2) the
number of daughter nodes (DNs).

4.2.1 Case 1: One DN, zero FH
In the first case, the CNN has only one DN, but that one is not a FH (see the conjunctive adverbial phrase
CONJadvP in Figure 13). In this case, the single DN (e.g. CONJadv) is trivially promoted as functional
head and lifted up to replace CNN.

(10) Kon,
thus

Awa
Awa

dem
went

ROOT

ROOTconj

S

VP

V′

V

dem

NAMEP

NAME

Awa

COMMA

,

CONJadvP

CONJadv

Kon

ROOT

ROOTconj

S

VP

V′

V

dem

NAMEP

NAME

Awa

COMMA

,

Kon

Fig. 13: CONJadvP has only 1 DN, and zero FH

4.2.2 Case 2: Many DNs, zero FH
In the second case, the CNN has two or more DNs, and none of them is a FH, as illustrated by the free
relative NP (NPrel) in (11) and its associated c-structure in Figure 14.

(11) Li
what

des
remain

ci
of

xaalis
money

bi
the

...

...
“what remains from the money ...”

NPrel

IP

S

VP

PP

DP

D

bi

NP

N

xaalis

P

ci

V ′

V

des

PRON

Li

Fig. 14: NPrel has 2 DNs, but none of them is FH

In this case, the true head is selected based on the procedure described in section 4.1, which gives the
following configuration. First, the noun xaalis wins the competition over the determiner bi and then over
the preposition ci. Next, the verb des wins over that noun. When, the NPrel is processed as CNN, the
two daughter nodes in competition are the verb and the free relative pronoun li. Finally, we search in the
f-structure attributes to check whether the pronoun type is a free relative. If it is the case, we select it as
the head and turn the verb into its dependent via the acl:relcl relation. Otherwise, the verb wins over the
pronoun and is selected as the true head. Accordingly, the head node is lifted up to replace CNN. The
step just described is crucial, as it allows to generate the correct analysis for free relatives in section 3.2.

4.2.3 Case 3: Many DNs, one FH
The CNN has two or more DNs, but only one of them is a FH. Instances of this case include coordi-
nation (12) and prepositional phrases (e.g. the PP in Figure 14). For instance, the nominal coordination
(NOMCoord) in Figure 15 has many DNs, but only the conjunction is a FH.

Given this configuration, we first check the type of the phrase, distinguishing four sub-cases. If the
structure is a coordination, then we assume the first conjunct to be the true head and append all the other
DNs that are not conjunction as its dependents. These dependents are processed in a linear order. For
each DN, we check in the node’s POS tag whether it is a conjunction, and accordingly, first retrieve the
next element of the daughter nodes list to create a dependency relation between that element and the



64

most recent conjunction using the cc relation. Otherwise, we connect the first conjunct and that DN via
the conj relation. Finally, the first conjunct is lifted up to replace the CNN.

Otherwise if the structure is a PP, we then append the FH (i.e. the preposition) as a dependent of one
of the other DNs that is selected as the true head based on POS tags (see section 4.1). Otherwise if the
structure is a NAMEP, then we inverse the head-dependent relation. In all other cases, we treat the FH as
the true head. We turn all but the FH into dependents, and, replace the CNN with the FH.

(12) Mag
old.people

ak
and

gune
young.people

“Old and young people”

NOMCoord

NP

N

gune

CONJ

ak

NP

N

Mag

Mag ak gune
NOUN CCONJ NOUN

conj

cc

Fig. 15: Handling coordination

4.2.4 Case 4: Many DNs, many FHs
In some cases, the CNN may have up to 5 FHs. For instance, in Figure 16, the ROOT node has four
FHs: CONJadvP, COMMA, ROOTconj and PERIOD. Likewise, in Figure 17, all the three conjunctions
are FHs of NOMCoord. In this case, we first check whether the structure is a coordination, and, accord-
ingly, apply the coordination rules as explained above. Otherwise, we take the set of FHs and apply the
procedure described in section 4.1.

(13) Kon,
Thus,

ñaari
two

xale
child

ya
the.pl

agsi.
arrive

“So, the two children arrive.”

ROOT

PERIOD

.

ROOTconj

S

VP

V′

V

agsi

MEASUREP

DP

D

ya

NP

N

xale

NUMBER

ñaari

COMMA

,

CONJadvP

CONJadv

Kon

Fig. 16: Example of a root node with four FHs

(14) Petu
meeting

ma
the.SG

ak
CONJ

yedd
lecture

ya
the.PL

ak
CONJ

xuloo
dispute

ba
the.SG

ak
CONJ

lépp
QUANT

“The secret meetings, the lectures, the dispute and all this”
Lit.: “The secret meetings and the lectures and the dispute and all this”

NOMCoord

PRON

PRON

lépp

CONJ

ak

DP

D

ba

NP

N

xuloo

CONJ

ak

DP

D

ya

NP

N

yedd

CONJ

ak

DP

D

ma

NP

N

Petu

Fig. 17: Coordination with many FHs

Petu ma ak yedd ya ak xuloo ba ak lépp
NOUN DET CCONJ NOUN DET CCONJ NOUN DET CCONJ PRON

det

conj

conj

conj

cc det cc det cc

Fig. 18: UD analysis of (14)

5 Evaluation

To develop our model, we used a relatively small Wolof corpus that contains 510 sentences: (i) 50 sen-
tences distributed within the ParGram group (Butt et al., 2002), and (ii) 460 sentences drawn from short
stories (Cissé, 1994; Garros, 1997). These data were annotated with the Wolof LFG grammar (Dione,



65

2020) and disambiguated using the LFG Parsebanker (Rosén et al., 2009). This tool supports disambigua-
tion based on discriminants (Carter, 1997). The disambiguated parses in Prolog format were converted
to a TigerXML (Brants et al., 2002) file used to generate the c-structure tree and the f-structure graph.

To test our model, we used a different set of 453 sentences extracted from the Wolof LFG treebank
(Dione, 2014). These sentences are then annotated semi-automatically in UD v.2 by means of UDPipe
(Straka and Straková, 2017). Subsequent to this, the annotations were corrected manually using UD
Annotatrix (Tyers et al., 2018) to ensure parsing quality. The final annotations provide the gold standard
set used to assess the performance of the combined approach compared to the lifting and P&P algorithms.

Table 1 gives accuracies gained by the different models on the gold standard test set. CLAS computes
the labeled score over all relations except relations that relate a function word to a content word (including
determiners (det), classifiers (clf ), adpositions (case), auxiliaries (aux,cop), and conjunctions (cc,mark))
as well as punctuations. The Diff column indicates the difference in LAS when excluding function words
and punctuations. The scores were computed using the CoNLL 2018 script. The results indicate that
the combined approach surpasses both the lifting and P&P algorithms on the Wolof data. The most
extreme case is the difference in LAS of ca. 25 percentage points between our model and the lifting
algorithm. Common mistakes made by the combined approach mostly involve some free relatives and
special constructions like ellipses (which are challenging for all the models).

UAS LAS CLAS Diff
Lifting algorithm 75.02 65.06 69.82 -4.76
P&P algorithm 82.08 74.75 76.78 -2.03
Our model 91.57 89.57 89.26 -0.31

Table 1: Evaluation scores for the Wolof test treebank

The lifting algorithm made an important number of attachment errors involving function words, in
particular verb inflectional markers (hence its low performance). This seems to be confirmed by the
relatively high difference value (-4.76) observed when comparing the LAS and CLAS scores. There are
also many cases involving content words where the algorithm fails to reverse the head-dependent relation.
This is particularly true for free relatives. Likewise, the P&P algorithm also committed some mistakes
related to function words (e.g. wrong attachment of punctuations). Compared to the lifting algorithm,
errors on functional relations have a less significant and differential impact on the score. The LAS score
decreases by only 2.03 when these relations are included. Major errors seem to be caused by wrong
attachment of content words, e.g. in structures involving free relatives and dislocation.

6 Conclusion

This paper has proposed a new approach to automatic conversion of LFG structures to dependency struc-
tures. This approach extends existing algorithms, using their inter-agreement as a validation mechanism.
It suggests careful reconsideration of the concept of embedding path to better account for c-structure
nodes that lack a PRED value at f-structure. This is particularly true for morphologically rich languages.
Likewise, adapting the POS based head selection procedure suggested by the P&P algorithm proved to
be essential for selecting the true dependency head. Using f-structure information is crucial for model-
ing language-specific phenomena (e.g. free relatives in Wolof) that are analyzed following a particular
choice of the language’s grammar. The combined approach also revisited the concept of structure sharing
to enable the analysis of dislocated constituents.

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER treebank.

In Proceedings of the workshop on treebanks and linguistic theories, volume 168.

Joan Bresnan. 2001. Lexical-functional syntax. Blackwell, Oxford.

Miriam Butt, Tracy Holloway King, Marı́a-Eugenia Niño, and Frédérique Segond. 1999. A grammar writer’s
cookbook. CSLI, Stanford, CA.



66

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian Rohrer. 2002. The paral-
lel grammar project. In Proceedings of the COLING02 Workshop on Grammar Engineering and Evaluation,
volume 15, pages 1–7. Association for Computational Linguistics.

David Carter. 1997. The TreeBanker: A tool for supervised training of parsed corpora. In Proceedings of the
Workshop on Computational Environments for Grammar Development and Linguistic Engineering, pages 9–
15.

Mamadou Cissé. 1994. Contes wolof modernes. L’harmattan.

Dick Crouch, Mary Dalrymple, Ron Kaplan, Tracy King, John Maxwell, and Paula Newman. 2019. XLE docu-
mentation. On-line documentation, Palo Alto Research Center (PARC).

Cheikh Bamba Dione. 2012. A morphological analyzer for Wolof using finite-state techniques. In Proceedings of
the 8th LREC. ELRA.

Cheikh Bamba Dione. 2014. LFG parse disambiguation for Wolof. Journal of Language Modelling, 2(1):105–
165.

Cheikh Bamba Dione. 2019. Developing universal dependencies for wolof. In Proceedings of the Third Workshop
on Universal Dependencies (UDW, SyntaxFest 2019), pages 12–23, Paris, France, 26 August. Association for
Computational Linguistics.

Cheikh M. Bamba Dione. 2020. Implementation and evaluation of an lfg-based parser for wolof. In Proceedings of
The 12th Language Resources and Evaluation Conference, pages 5128–5136, Marseille, France, May. European
Language Resources Association.

Nataali Dominik Garros, editor. 1997. Bukkeek ”perigam” bu xonq: teeñ yi. Dakar: SIL; Paris: EDICEF.

Omar Ka. 1994. Wolof phonology and morphology. University Press of America, Lanham, Maryland.

Ron Kaplan and Joan Bresnan. 1982. Lexical-functional grammar: A formal system for grammatical representa-
tion. In Joan Bresnan, editor, The mental representation of grammatical relations, pages 173–281. MIT Press,
Cambridge, MA.

Paul Meurer. 2017. From LFG structures to dependency relations. Bergen Language and Linguistics Studies,
8(1).

Moussa D. Ndiaye. 1995. Phonologie et morphologie des alternances en wolof. Ph.D. thesis, University of
Quebec.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Uni-
versal dependencies v1: A multilingual treebank collection. In Proceedings of LREC 2016. ELRA, may.

Agnieszka Patejuk and Adam Przepiórkowski. 2018. From lexical functional grammar to enhanced universal
dependencies. Polish Academy of Sciences, Institute of Computer Science.

Adam Przepiórkowski and Agnieszka Patejuk. 2018. From lexical functional grammar to enhanced universal
dependencies. Language Resources and Evaluation, pages 1–37.

Victoria Rosén, Paul Meurer, and Koenraad de Smedt. 2009. LFG parsebanker: A toolkit for building and search-
ing a treebank as a parsed corpus. In Frank Van Eynde, Anette Frank, Gertjan van Noord, and Koenraad
De Smedt, editors, Proceedings of the 7th International Workshop on Treebanks and Linguistic Theories (TLT7),
pages 127–133, Utrecht. LOT.

Milan Straka and Jana Straková. 2017. Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. In
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pages 88–99, Vancouver, Canada, August. Association for Computational Linguistics.

Francis M Tyers, Mariya Sheyanova, and Jonathan North Washington. 2018. UD Annotatrix: An annotation tool
for universal dependencies. In Proceedings of the 16th Conference on Treebanks and Linguistic Theories.

Özlem Çetinoğlu, Jennifer Foster, Joakim Nivre, Deirdre Hogan, Aoife Cahill, and Josef van Genabith. 2010. LFG
without c-structures. In Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories
(TLT 9), page 43–54, Tartu, Estonia.

Lilja Øvrelid, Jonas Kuhn, and Kathrin Spreyer. 2009. Cross-framework parser stacking for data-driven depen-
dency parsing. TAL, 50(3):109–138.


