
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, pages 150–157
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

150

Lexicon-Enhancement of Embedding-based Approaches                              
Towards the Detection of Abusive Language 

 
Anna Koufakou, Jason Scott 

Florida Gulf Coast University 
Fort Myers, Florida, USA 

akoufakou@fgcu.edu 

Abstract 
Detecting abusive language is a significant research topic, which has received a lot of attention recently. Our work focuses on detecting 
personal attacks in online conversations. As previous research on this task has largely used deep learning based on embeddings, we 
explore the use of lexicons to enhance embedding-based methods in an effort to see how these methods apply in the particular task of 
detecting personal attacks. The methods implemented and experimented with in this paper are quite different from each other, not only 
in the type of lexicons they use (sentiment or semantic), but also in the way they use the knowledge from the lexicons, in order to 
construct or to change embeddings that are ultimately fed into the learning model. The sentiment lexicon approaches focus on integrating 
sentiment information (in the form of sentiment embeddings) into the learning model. The semantic lexicon approaches focus on 
transforming the original word embeddings so that they better represent relationships extracted from a semantic lexicon. Based on our 
experimental results, semantic lexicon methods are superior to the rest of the methods in this paper, with at least 4% macro-averaged F1 
improvement over the baseline. 
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1. Introduction 
The pervasiveness of social media and the increase in online 
interactions in recent years has also led to a surge of online 
abusive behavior, which can be exhibited in different forms: 
toxic comments, aggression, hate speech, trolling, 
cyberbullying, etc. Online abuse influences individuals and 
communities in many ways, from leading users to quit a 
particular online site, to move away from their home, or to 
even commit suicide. Governments as well as social media 
platforms are under pressure to detect and remove abusive 
posts and users. On the other hand, online communities 
thrive on free speech and would be damaged by flagging and 
removing innocent users. Many efforts have been made for 
these tasks, including automated systems as well as 
employing human moderators.  
At a first glance, NLP models can learn linguistic patterns in 
conversations and detect offensive speech using features 
such as swear words or racial/sexist slurs. This becomes a 
difficult research problem as online conversational text 
contains casual language, abbreviations, misspellings, slang, 
etc. Additionally, there are gray areas which make it hard to 
determine if a comment is actually offensive or abusive. 
Methods employing word or character embeddings have 
been used successfully in many NLP tasks such as sentiment 
analysis or classification. A great part of the current research 
in the field of abuse detection in online conversations is 
based on deep learning with embeddings; for example, see 
(Gamback and Sikdar, 2017; Pavlopoulos et al., 2017; 
Gunasekara and Nejadgholi, 2018; Mishra et al., 2018;  
Zhang et al., 2018) among others.  
In this study, we explore different ways of using lexicons to 
enhance deep learning methods that use embeddings and 
how they apply to the task of detecting abusive language. 
Specifically, we apply Convolutional Neural Networks to 
automatically identify comments which contain personal 
attacks (Wulczyn et al., 2017). Our research follows two 
very different ways in the literature to employ lexicons.  
 

 
First, we look at the use of sentiment lexicons, a form of 
sentiment dictionary associating words with sentiments. We 
choose to follow the work by (Shin et al., 2017) which uses 
sentiment lexicon-based embeddings alongside word 
embeddings and integrates them in its convolutional model 
in different ways. Second, we explore semantic lexicons, 
which contain semantic relationships between words (for 
example, synonyms or antonyms). These methods 
essentially transform the word embeddings themselves so 
that they better reflect the semantic relationships of the 
words, based on the semantic lexicon. To the best of our 
knowledge, none of these ideas or the specific methods we 
use in this paper have been applied towards the detection of 
abusive language or related tasks. Our experiments show 
that the semantic lexicon based methods outperform the 
baseline CNN, while the sentiment lexicon methods perform 
the same or lower than the baseline. Additionally, the 
semantic lexicon methods offer an efficient and flexible 
approach to enhance embeddings (as also discussed in Vulić 
et al., 2018).  
The following sections give an overview of related work, 
describe our corpus and the different approaches 
implemented and applied in this paper, and present our 
experimentation and results, followed by concluding 
remarks. 

2. Related Work 
Related work has focused on many tasks in the field of abuse 
detection, for example, detecting hate speech (e.g., Saleem 
et al., 2017), abuse (e.g., Waseem et al., 2017), gender- or 
ethnic-based abuse (e.g., Basile et al., 2019), and aggression 
(e.g., Kumar et al., 2018), among others.  
There has been much work in literature with the Wikipedia 
Toxicity corpora used in our paper (see Section 3). The 
creators of these corpora, Wulczyn et al. (2017), explored 
character as well as n-gram based models with logistic 
regression and multi-layer perceptron models.  
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Gunasekara et al. (2018) used a related dataset from a 
Kaggle challenge1 targeting a multi-label classification task. 
Some papers (e.g. Brassard-Gourdeau et al., 2019) focused 
on the Toxicity corpus, not the Personal Attacks corpus, 
which we use. Similarly to our work, Brassard-Gourdeau et 
al. (2019) utilized sentiment lexicons. They used the sum of 
the sentiment score of each word in the comment, which is 
quite different from the sentiment lexicon approaches we 
employed in this paper. 
Recent research, such as (Pavlopoulos et al., 2017; Mishra et 
al., 2018; Kumar et al., 2019;  Bodapati et al., 2019), 
included experimental results with the Personal Attacks 
corpus. Pavlopoulos et al. (2017) used a Recursive Neural 
Network (RNN) along with an attention mechanism. Mishra 
et al. (2018) built on the previous work by using character n-
grams; their best algorithm achieved an F1 macro of 87.44 
on the Personal Attacks data. Bodapati et al. (2019) 
compared different methods such as fasttext, CNN, and 
BERT using various combinations of word, character, and 
subword units and reported that they achieved state-of-the-
art F1 macro (89.5) on the Personal Attacks data with BERT 
fine tuning. These papers either followed different 
preprocessing (for example, removed stop words or used 
bigrams) or a different experimentation setup (for example, 
artificially balanced the dataset or used a different split on 
the data), etc. Therefore, we cannot directly compare their 
results with ours. Ultimately, the goal of our paper is to 
explore the impact of using sentiment and semantic lexicons 
to enhance embedding-based methods, achieved by 
comparing these methods with our CNN baseline (see 
Section 4).  
To the best of our knowledge, none of the sentiment or 
semantic lexicon ideas in this work have been applied 
towards abuse detection. Note that an early draft of this work 
with preliminary results was shown in (Koufakou and Scott, 
2019). In the current paper, we present additional 
algorithms, extensive experimentation and results, and an in-
depth examination of the results and our observations.  
Beyond abusive language detection, one of the semantic 
lexicon approaches we used, retrofitting (Faruqui et al., 
2015), has been successfully applied to the classification of 
pathology reports by (Alawad et al., 2018). 

3. Corpus 
For this paper, we focus on data released from the Wikipedia 
Detox Project2 (Wulczyn et al., 2017). We obtain the data 
from figshare3. The three corpora included in the release are 
Personal Attacks, Aggression, and Toxicity; we focus on the 
Personal Attacks corpus. This contains more than a 100k 
comments from English Wikipedia labeled by 
approximately 10 annotators via Crowdflower on whether or 
not it contained a personal attack. The data also contains 
additional fields, such as the type of attack; we use only the 
comment text and whether it contained an attack or not 
(label). 
First, we apply basic preprocessing to the comment text, for 
example: force lowercase, remove multiple periods or 
spaces, but keep the main punctuation. We do not remove 
stop words or fix spelling errors. We then extract single 
                                                            
1 https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge 

tokens (unigrams). Finally, we remove any records that 
ended up empty after the preprocessing. The resulting 
dataset contains a total of 115,841 text comments, each with 
annotations by about 10 human workers which indicated 
whether or not each worker believed the comment contained 
a personal attack. A comment in our data is labeled as an 
attack if at least 5 annotators labeled it as an attack. As a 
result, the dataset has the record and label characteristics 
shown in Table 1. 

4. Approaches 
In this section, we describe our baseline model, the 
sentiment lexicon approaches, and the semantic lexicon 
approaches. Figure 1 displays diagrams for the two different 
approaches explored in this paper. 

4.1 Baseline 
As our baseline, we employ a convolutional neural network 
(CNN) (Kim, 2014). This choice was made to follow (Shin 
et al., 2017) discussed in the next section. Additionally, in 
early experiments, our CNN did better on our data than other 
models we tried (e.g. RNN or GRU).  
We first extract words from our corpus (as described in 
Section 3) and then create a word embedding matrix, which 
is the input to the model (see Section 5.1 for the embeddings 
we use in our experiments).  
Word embeddings are first passed through an embedding 
layer, kept static in our experiments, before being fed as 
input into the convolutional layers. The window sizes of the 
convolutional filters are 3, 4, and 5: using multiple filters 
enables us to extract multiple features. We use Rectified 
Linear Unit (ReLU) as the activation function.  
The feature maps generated by the convolutions are passed 
through a max pooling layer, which gives the maximum 
value from each feature map. The results are concatenated 
and passed to a soft-max fully connected layer to produce 
the classification. 

4.2 Sentiment Lexicon Approaches 
Sentiment lexicons generally associate each term in the 
lexicon with a positive or negative score. A term in the 
lexicon might be associated with a positive or negative label 
or it might be given an emotion (e.g. angry or happy) or it 
might have a continuous sentiment score. 
For this section, we experiment with techniques from the 
paper by Shin et al. (2017). Figure 1(a) shows an overview 
of the sentiment lexicon approaches. These ideas involve 
creating sentiment embeddings from sentiment lexicons and 
then integrating the sentiment embeddings to the model 
(CNN) in different ways. For each word w in the corpus, we 
search for w in each sentiment lexicon; then, we construct a 
sentiment lexicon embedding by concatenating all the 
lexicon values corresponding to w.  
 

 
Attack 14,205 12.3% 
Not Attack 101,636 87.7% 
Total 115,841 100.0% 

Table 1: The resulting Personal Attack dataset 

2 https://meta.wikimedia.org/wiki/Research:Detox/Data_Release  
3 https://figshare.com/projects/Wikipedia_Talk/16731  
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(a) Sentiment Lexicon (b) Semantic Lexicon 

Figure 1. Block diagrams of the sentiment lexicon approaches versus the semantic lexicon approaches. The dashed-line 
rectangle indicates difference from the baseline. Grayed out lines for (a) indicate that the embeddings are used in 

different ways by the model (e.g., embeddings are concatenated or they pass through separate convolutions) 
 

If w is not found in a lexicon, the value for that lexicon in 
the resulting embedding is 0. The lexicon embedding is a 
vector of dimensionality l, where l is the total number of 
sentiment lexicons. Finally, the word and sentiment lexicon 
embeddings are used by the model in different ways, 
described next. 
The three approaches with sentiment lexicons based on 
(Shin et al., 2017) are briefly introduced below – the reader 
is referred to the original paper for more details: 
Naive Concatenation (NC): This approach does not require 
any changes to the baseline model, as all of the modifications 
are on the embedding preparation stage. As described earlier, 
we extract sentiment lexicon entries for each word in our 
corpus. The entry from each lexicon is appended to the word 
embedding as an additional dimension before being fed into 
the embedding input layer. If l is the sentiment lexicon 
embedding dimensionality and m is the word embedding 
dimensionality, the resulting embedding for this approach is 
an (l+m)-dimensional combined embedding (word + 
sentiment). 
Separate Convolution (SC): This approach does change the 
network from the baseline by adding a second input layer, 
and a second, parallel set of convolutional layers for the 
lexicon embeddings. The network has two inputs: one for the 
word embeddings and one for the lexicon embeddings, while 
the data input to each is, as before, the encoded text 
comments. The matrix of word embeddings and matrix of 
lexicon information each separately pass through 
convolutional layers, then are concatenated before 
continuing through the softmax layer of the network, as 
before. 
Embedding Attention Vector (EAV): This approach 
utilizes the idea of attention. First, an attention matrix is 
constructed by performing multiple convolutions on the 
document matrix. Then, the attention vector is created by 
performing max pooling on each row of the attention matrix. 
The Embedding Attention Vector (EAV) is created by 
multiplying the transposed document matrix to the attention 
vector. EAVs are created for word and for lexicon 
embeddings. Finally, the resulting EAVs are appended to the 
penultimate  layer of  the  network to  serve as additional 
information for the softmax layer. 

4.3 Semantic Lexicon Approaches 
Semantic lexicons contain semantic relationships among the 
terms in the lexicon, for example synonyms. The main idea 
behind semantic lexicon-enhanced embeddings is that 
embeddings of words that are linked in the semantic lexicon 
should have similar vector representations (Faruqui et al., 
2015).  
The techniques presented in this section are quite different 
from the sentiment-lexicon approaches in the previous 
section: the techniques in this section use semantic 
knowledge to enhance (or transform) the word embeddings 
themselves rather than use the lexicon information in the 
learning process.  
The block diagram in Figure 1(b) illustrates the semantic 
lexicon methods. The figure only refers to the first method 
in this section (retrofitting) for simplicity: any of the other 
methods can substitute it in the diagram. As shown in the 
diagram, the word embeddings pass through a retrofitting 
algorithm, resulting in the transformed embeddings 
(Retrofitted Word Embeddings) that are then fed into the 
model. These methods do not change the model itself, only 
the embeddings. 
The three semantic lexicon approaches employed in this 
paper are briefly introduced below – the reader is referred to 
the original papers for more details: 
Retrofitting: The first method in this section focuses on 
enhancing the word embeddings by “retrofitting” them to a 
semantic lexicon, as proposed by Faruqui et al. (2015). This 
method extracts synonym relationships from a semantic 
lexicon and “retrofits” the word embeddings based on belief 
propagation so that the vectors for synonym words are closer 
together in the vector space.  
ATTRACT-REPEL (AR): While the Retrofitted embeddings 
focus on synonym relationships, more recent methods 
explore antonyms as well.  The second method we explore 
is ATTRACT-REPEL (AR) proposed by Mrkšić et al. (2017). 
The key idea of this work is a process to fine tune pre-trained 
word embeddings also based on semantic constraints 
extracted from semantic lexicons. Given the initial vector 
space and collections of ATTRACT (synonym) and REPEL 
(antonym) constraints, the model gradually modifies the 
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space to bring the designated word vectors closer together 
(synonyms) or further apart (antonyms).  
Post-Specialized: Another issue for the semantic lexicon 
approaches is that semantic lexicons cover a small portion of 
the words in the corpus. This means that part of the word 
vectors resulting from retrofitting or AR (see above) are 
unchanged compared to the original word vectors, as a 
fraction of the words in the vocabulary are not found in the 
semantic lexicon.  
This was addressed by the third method we explore, called 
Post-Specialized Word Embeddings, proposed by Vulić et 
al. (2018). This method extends the fine-tuning or 
specialization of embeddings to words not found in the 
external semantic lexicons. Essentially, it learns a mapping 
function based on the transformation of the “seen” words 
(e.g., the transformation from the original vectors into the 
AR vectors) and then applies this mapping to the vector 
space of the “unseen” words. The mapping is implemented 
as a deep feed-forward NN with non-linear activations.  

5. Experiments 

5.1 Experimental Setup 
For our implementation, we use TensorFlow executed on 
Google Cloud TPUs on the TensorFlow Research Cloud4, 
using a free trial of Cloud TPUs. We evaluate the network 
after 10,000 TPU steps of training with a randomly shuffled 
and batched training dataset, a learning rate of 0.001, 
dropout of 0.5, Adam optimizer, and 90-10 training-test 
split.  
For the sentiment lexicon approaches (see section 4.2), we 
use the code provided online by Shin5, though we had to 
make several modifications to adapt it to TPU-based code, 
handle old versions issues, etc.  
For the semantic lexicon approaches (see section 4.3), we 
first construct our word embeddings as described in the next 
section. Then, we run the code provided by the authors of 
the corresponding papers6 (with the parameters and lexical 
constraints/lexicons they provide) in order to “retrofit” or 
“specialize” our word embeddings as applicable. Finally, we 
use the resulting embeddings as input into the model. 

5.2 Embeddings 
We first pre-process the data, tokenize and generate word 
embeddings (see section 3 for our preprocessing and 
tokenization). Since the comments vary in length, we set the 
max document length to 400. Early on, we experimented 
with various types of embeddings (fasttext, pre-trained, etc.) 
and we saw that we obtain good results using gensim 
word2vec7 on all tokenized sentences of our corpus 
(minimum word occurrences and iterations is set to 5). For 
all of our experiments, we use dimensionality of 200 or 300 
(also used in the original papers) and report the best result.  
 
 

                                                            
4 https://www.tensorflow.org/tfrc  
5 https://github.com/emorynlp/doc-classify  
6 https://github.com/mfaruqui/ 
   https://github.com/nmrksic/attract-repel 
   https://github.com/cambridgeltl/post-specialisation  
7 https://radimrehurek.com/gensim/models/word2vec.html  

Lexicon Type Coverage
AFINN-96 Sentiment 3.3%
NRC Sentiment 11.1%
MSOL-June15-09 Sentiment 38.8%
Bing-Liu Sentiment 10.2%
PPDB-XL Semantic 67.5%

 
Table 2: The coverage for the vocabulary in our corpus by 

each lexicon we use 
 
 
Specifically for the Post-Specialized method (Vulić et al., 
2018), we are unable to run the code using our own word 
embeddings (trained on our corpus, as described above), so 
we utilize the SGNS-BOW2 embeddings as provided with the 
post-specialization code6 (Skip-Gram Negative Sampling, 
pre-trained on the Polyglot Wikipedia, 300-d). We see that 
this set of vectors covers about 90% of our vocabulary. 

5.3 Lexicons 
In this paper, we utilize the following sentiment lexicons for 
the sentiment lexicon methods (see section 4.2):  
 AFINN-968: The AFINN-96 sentiment lexicon 

(Nielsen, 2011) contains 3,382 words rated between -5 
(most negative) and 5 (most positive).   

 NRC9: The National Research Council Emotion 
Lexicon (Mohammad et al., 2013), commonly referred 
to as NRC EmoLex, contains 14,182 words labeled with 
eight emotions (anger, fear, etc.) and sentiment polarity 
(negative or positive).  

 MSOL-June15-0910: The Macquarie Semantic 
Orientation Lexicon, or MSOL, contains a total of 
76,400 entries either labeled as positive or negative 
(Mohammad, et al., 2009).  It has 51,208 single-word 
entries. 

 Bing-Liu11: The Bing-Liu Opinion contains 6,789 
positive or negative words. The list was originally 
compiled as part of a study on mining and summarizing 
customer reviews but subsequently grew into a larger 
lexicon (Hu and Liu, 2004). 

The sentiment lexicons above are preprocessed into lexicon 
embeddings using python code we wrote. Each lexicon is 
reduced to a key-value pairing of a word or phrase with its 
polarity value, which is -1 for negative polarity, 1 for 
positive polarity, or 0 for neutral. As described in section 4.2, 
every matching entry between our vocabulary and each 
sentiment lexicon is used to build the sentiment lexicon 
embeddings, following the work in the original paper by 
(Shin et al., 2017). 
For retrofitting (Faruqui et al., 2015), we utilize the PPDB-
XL12 lexicon, as it was shown to have superior performance 
in the original paper and it had the best performance in our 
early trials. This lexicon is based on the paraphrase database 
(Ganitkevitch et al., 2013) with more than 220 million 

8 https://github.com/fnielsen/afinn  
9 http://saifmohammad.com/WebPages/lexicons.html  
10 https://www.saifmohammad.com/Lexicons   
11 http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar  
12 http://paraphrase.org/#/download  
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paraphrase pairs of English; of these, 8 million are lexical 
(single word to single word) paraphrases. For the rest of the 
semantic lexicon approaches (AR and Post-Specialized, see 
section 4.3), we use the lexical constraints as they are 
provided with the code of the respective paper. 
We also provide the coverage of the vocabulary in our 
corpus by each lexicon we use (see Table 2). From the table, 
the coverage by the semantic lexicon is good, while for any 
sentiment lexicons, the word coverage is low. It is important 
to note that the sentiment lexicon percentages are similar to 
percentages in original paper for the related algorithms by 
(Shin et al., 2017).  
 

5.4 Experimental Results and Discussion 
Table 3 shows our results for the sentiment lexicon methods 
(see section 4.2) and the semantic lexicon methods (see 
section 4.3) versus our baseline (CNN, per the description in 
section 4.1).  
We present results averaged over 10 different runs and 
reported accuracy, precision, recall, F1-score, and macro 
averaged F1-score (or F1-macro). As our dataset is very 
imbalanced (see Table 1), accuracy is not a good metric for 
comparison. The F1-score is the harmonic mean of the 
precision and recall. The macro averaged F1-score is the 
average of the F1-score for each class, averaged without 
taking class distribution into consideration. The macro-
averaged F1 is better suited for showing the effectiveness of 
algorithms on smaller classes, which is important as we are 
interested in the small percentage of personal attacks in the 
data. 
Overall, the sentiment lexicon techniques from (Shin et al., 
2017) do not make a difference to the baseline or do worse 
than the baseline. For example, the baseline CNN with 
embeddings trained on our data has an F1-macro of 90.1 and 
all the sentiment lexicon methods have F1-macro from 85.7 
to 90. Even through the low coverage of the words in our 
corpus by the sentiment lexicons (see Table 2) might seem 

like the likely reason for this, we note that the lexicon 
coverage in our paper is similar to the one reported in the 
original paper for these methods (Shin et al., 2017). One 
thing that we thought might improve the performance of 
these methods was to introduce more sentiment lexicons; 
however, we do not see a difference in performance from 
using one lexicon to using all four, so we do not further 
pursue this line of work (see section 0 for the sentiment 
lexicons we use and their coverage for our corpus). 
Extending our work to hate lexicons such as Hatebase13 or 
HurtLex14 is a line of future work. 
On the other hand, all semantic lexicon approaches perform 
better than the baseline. The best performing semantic 
lexicon approach is the Post-Specialized Embeddings (Vulić 
et al., 2018) with a 95.1 F1-macro, followed closely by the 
other two semantic-based approaches (around 94 F1-macro) 
versus 90.1 for the baseline CNN with embeddings trained 
on our corpus. It is noteworthy that the Post-Specialized 
experiments in Table 3 use pre-trained embeddings (SGNS-
BOW2), while the other two methods (Retrofitted and AR) 
use the respective techniques on the embeddings trained on 
our corpus (see section 5.2 for more information on the 
embeddings we used in our experiments).  
A combination of the sentiment with the semantic lexicon 
approaches does not seem to yield better results: for 
example, applying first Naïve Concatenation (NC) of 
sentiment lexicon and word embeddings (see section 4.2) 
and then using the resulting embeddings in the Retrofitting 
approach (see section 4.3) shows no difference from the 
metrics shown in Table 3 for Retrofitted embeddings. 
From the semantic lexicon approaches, it is noteworthy that 
the Retrofitting approach is the simplest of the semantic 
lexicon approaches, still it performs quite well (see Table 2). 
In order to explore the transformation of the words from our 
corpus in the vector space, we look at different word vectors 
before and after they are retrofitted to the semantic lexicon 
(Faruqui et al., 2015). All the results in the following 
discussion are according to cosine similarity.  

 

Approach Embeddings Model Accuracy Precision Recall F1 F1-macro

Baseline Word Embeddings CNN 95.9 ± 0.2 85.3 ± 0.8 80.1 ± 0.7 82.6 ± 0.6 90.1 ± 0.3

Sentiment 
Lexicon 

Sentiment 
 +  
Word Embeddings  
(Shin et al., 2017) 

NC CNN 95.9 ± 0.1 87.6 ± 0.8 76.8 ± 1.1 82.4 ± 0.5 90.0 ± 0.3

SC CNN 95.1 ± 0.1 85.1 ± 0.9 73.3 ± 1.4 78.7 ± 0.5 88.0 ± 0.3

 EAV CNN 95.0 ± 0.1 83.9 ± 1.0 67.3 ± 1.6 75.5 ± 0.8 85.7 ± 0.4

Semantic 
Lexicon 

Retrofitted Word  
Embeddings (Faruqui et al., 2015) 

CNN 97.6 ± 0.1 93.8 ± 0.2 86.6 ± 1.0 90.0 ± 0.5 94.3 ± 0.3 

 ATTRACT-REPEL Word  
Embeddings (Mrkšić et al., 2017)  

CNN 97.4 ± 0.0 93.2 ± 0.4 85.9 ± 0.5 89.4 ± 0.1 94.0 ± 0.1 

 Post-Specialized (on SGNS-BOW2)  
Word Embeddings (Vulić et al., 2018)

CNN 98.0 ± 0.0 95.3 ± 0.2 87.7 ± 0.7 91.4 ± 0.4 95.1 ± 0.2 

Table 3: Results for our baseline, sentiment lexicon and semantic lexicon approaches (best results in bold) 

                                                            
13 https://hatebase.org  14 https://github.com/valeriobasile/hurtlex  



155

          (a) Original                (b) Retrofitted 

Figure 2. PCA projection of word embeddings (original vectors versus retrofitted vectors) for the fifteen closest words to 
the word ‘lie’ according to cosine similarity (300-d vectors) 

   

        (a) Original                (b) Retrofitted 

Figure 3. t-SNE projection of word embeddings (original vectors versus retrofitted vectors) for the fifteen closest words 
to the word ‘lie’ according to cosine similarity (300-d vectors, t-SNE perplexity=5, iterations=1500) 

 
The word ‘lie’ has the word ‘truth’ as its closest word in the 
original embeddings (similarity = 0.54), and the word ‘liar’ 
in the Retrofitted embeddings (similarity = 0.75). Also, the 
word ‘moron’ has the word ‘oxymoron’ as its closest word 
in the original embeddings (similarity = 0.73), and the word 
‘retard’ in the Retrofitted embeddings (similarity = 0.87). 
When we look at the twenty closest words of the word 
‘moron’ using Retrofitted embeddings, the word 
‘oxymoron’ is not in the list. When we pull the twenty 
closest words for the word ‘bye’, the results for the original 
embeddings include ‘wanker’, ‘sup’, ‘dickface’, and ‘slut’, 
while the results for the Retrofitted embeddings include no 
such words. Instead the Retrofitted results include 
‘farewell’, ‘goodbye’, ‘ciao’ and ‘adios’, which are not in 
the original embedding results. 
We additionally look at the same word-pairs with and 
without retrofitting. The similarity of ‘happy’ and 
‘delighted’ is 0.54 in the original embeddings and 0.78 in 
the Retrofitted embeddings. The similarity of ‘moron’ and 

‘idiot’ is 0.65 in the original embeddings and 0.84 in the 
Retrofitted embeddings.  
At the same time, the similarity of ‘user’ and ‘admin’ is 
almost identical with and without Retrofitting (we checked 
and both words are in the semantic lexicon, PPDB-XL, 
used for the retrofitting). These results show that vectors 
for semantically related words do become more similar 
after retrofitting, while vectors for unrelated words stay 
unchanged.  
Finally, we apply Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) 
(van der Maaten and Hinton, 2008). Given the word ‘lie’ 
and its fifteen closest words (based on cosine similarity; 
fifteen was chosen for better visualization), Figure 2 shows 
a PCA projection and Figure 3 shows the t-SNE plot.  
As shown in Figures 2 and 3, the fifteen closest words for 
the original embeddings contain close words such as 
‘accusation, ‘insult, ‘joke’, ‘claim’. At the same time,        
the closest  words  for the  Retrofitted embeddings  are more 
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similar to the word ‘lie’. In the t-SNE plot of the original 
embeddings (see Figure 3(a)), the work ‘lie’ is found close 
in the plot to ‘truth’, ‘reality’ or ‘fool’, while in the 
Retrofitted embeddings (see Figure 3(b)), it is close to 
‘liar’, ‘lies’, and ‘lying’.  

6. Conclusion 
In this paper, we explore the use of lexicons, semantic or 
sentiment, for embedding-based methods towards the 
detection of personal attacks in online conversations 
(Wulczyn et al., 2017). The two types of approaches we 
employ are quite different in the type of lexicons they 
employ (sentiment or sematic) as well as how they use the 
lexicons in the learning process.  
The sentiment lexicon approaches use the lexicons to create 
additional sentiment lexicon embeddings that are then used 
alongside the word embeddings in different ways 
(concatenation, separate convolutions or using attention 
mechanisms). The semantic lexicon methods use the 
original word embeddings and “enhance” them to better 
represent semantic relationships in the vector space, using 
the relationships extracted from the semantic lexicon.  
Our experiments provide evidence that enhancing word 
embeddings using semantic lexicons shows promise for the 
task of abusive language detection. Besides improving 
detection accuracy for our data (in the form of F1-macro), 
these methods are fast and flexible, for example, they do 
not alter or depend on the type of learning model.  
We plan to extend the approaches in this paper to enhance 
embeddings using hate speech lexicons, such as the ones 
presented in (Bassignana et al., 2018) and (Wiegand et al., 
2018). We also plan to explore BERT fine tuning as in 
(Bodapati et al., 2019) and to explore the applicability of 
these methods in different data and languages other than 
English. 
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