AlpinoGraph: A Graph-based Search Engine for Flexible and Efficient
Treebank Search

Peter Kleiweg Gertjan van Noord
University of Groningen University of Groningen
p.c.j.kleiweg@rug.nl g.j.m.van.noord@rug.nl
Abstract

AlpinoGraph is a graph-based search engine which provides treebank search using SQL database
technology coupled with the Cypher query language for graphs. In the paper, we show that
AlpinoGraph is a very powerful and very flexible approach towards treebank search. At the
same time, AlpinoGraph is efficient. Currently, AlpinoGraph is applicable for all standard Dutch
treebanks. We compare the Cypher queries in AlpinoGraph with the XPath queries used in
earlier treebank search applications for the same treebanks. We also present a pre-processing
technique which speeds up query processing dramatically in some cases, and is applicable beyond
AlpinoGraph.

1 Introduction

Traditionally, treebanks are, of course, collections of trees. Search engines for treebanks therefore often
exploit this tree-like nature. Early treebank search tools such as tgrep, tgrep2, 1path (Rohde, 2001;
Bird and Lai, 2010) provide a specialized query language over trees. For Dutch, similarly, current tools
(van Noord, 2009; Augustinus et al., 2012; van Noord et al., 2013; Odijk et al., 2017; Augustinus et al.,
2017; van Noord et al., 2020) are built with the XPath query language which is a standard query language
for XML documents. XML documents are, in essence, trees too.

Obviously, not all linguistic annotations fit the concept of trees, and in most treebanks there are ways
to encode, for instance, discontinuous constituents, secondary edges, enhanced dependencies etc. Also,
feature structures such as those that arise in constraint-based grammatical frameworks (LFG, HPSG,
...) are directed graphs, not trees. It can be argued, therefore, that graphs are a better representation for
linguistic annotation. And indeed, several treebank search systems have been based on graphs (Mirovsky,
2008; Proisl and Uhrig, 2012; Bonfante et al., 2018).

In this paper, we argue in addition that a graph-like representation is useful because it allows for a
straight-forward combination of different types of annotation and annotation layers. In the AlpinoGraph
application, four different annotation layers are combined (automatically), including two layers for Uni-
versal Dependencies (standard and enhanced) (Nivre et al., 2018), (Bouma and van Noord, 2017), the
original Lassy annotation layer (van Eynde, 2005; van Noord et al., 2019), and a simple layer of word
pairs inherited from PaQu (Odijk et al., 2017).

The representations used in AlpinoGraph are automatically derived from existing treebanks in the
Lassy XML format, a hybrid dependency format with some categorical information as well, originally
based on and developed as an alternative of the format used in the Tiger treebank (Brants et al., 2004)
and the Dutch Spoken Corpus (CGN)(Schuurman et al., 2003). In addition, information is derived from
the CoNLL-U format for Universal Dependencies. In fact, the UD treebanks for Dutch are automatically
derived from the treebanks in the Lassy XML format. It should be straightforward to map treebanks in
CoNLL-U format (including all UD treebanks) into AlpinoGraph.

In this paper, we do not consider the potential linguistic advantages of graph-based representations,
since the linguistic annotations are derived from existing resources, and no further manual annotation
efforts have been invested for AlpinoGraph.

AlpinoGraph is built on AgensGraph. AgensGraph provides database technology (PostgreSQL) with
the standard search language for graphs, Cypher. This combination provides, on the one hand, a very

powerful query language which allows to express very complex linguistic patterns. On the other hand, the
database tools ensure a very flexible tool which not only is capable of identifying relevant sentences, but
also provides a wealth of functionality for aggregating the information of relevant sentences, structures
or words.

In the next sections, we describe how treebanks are represented as graphs, and how we can formulate
simple queries over such treebanks. In the fourth section, we compare AlpinoGraph on the full set of
more than a hundred queries that are available in the SPOD extension of PaQu (van Noord et al., 2020).
This comparison illustrates not only that the tool provides the required expressive power, but also shows
that the tool is much faster for our purposes. In section 5, we present a search optimization technique
which improves speed for some queries enormously. The technique appears to be applicable for most
other treebank search systems.

2 Treebanks as Graphs

Graphs consist of vertices and edges. In AlpinoGraph, vertices can be words as well as constituents.
A vertex is written as (). A vertex of type word is written as (:word), and a vertex of a higher level
constituent, a "node", is written as (:node). We can use the notation (:nw) as an alias for a vertex that
could be either a word or a node.

If we want to provide further information of a vertex, we use attribute and values within curly brackets.
For instance, (:node{cat: 'np'}), denotes a noun phrase. If we need to refer to a particular vertex, we
can place a variable directly after the opening bracket: (v:node{cat:'np'}). Here, v functions as a
variable that we can refer to later.

Edges are represented in much the same way, except that square brackets are used. We use edges to
represent universal dependencies. Such dependencies are of type ud. For example, the direct object
universal dependency is written as [:ud{rel: 'obj'Z}].

We can use path expressions to combine vertices and edges. Such expressions look like:

O -00->0
O <-01- 0

Between brackets, we can specify further requirements. For instance, the following expression de-
scribes the direct object relation between a verb and some word n:

(:word{upos:'verb'}) -[:ud{rel:'obj'}]-> (n:word)

If this expression is used in a search, the variable n would be instantiated to (heads of) direct objects of
verbs.

Each sentence in AlpinoGraph is represented by a graph where the vertices are words and nodes,
and a single vertex of type :sentence. The attributes of the words are all the attributes available in
the standard Lassy annotation guidelines (van Eynde, 2005; van Noord et al., 2019), as well as all the
attributes in the UD representation. The attributes of nodes include the attribute cat and a few others
that we can ignore for now. Multi-word units also have attributes for word and lemma.

The edges come in four different types for the representation of dependencies: standard universal
dependencies :ud, enhanced universal dependencies :eud, Lassy dependencies :rel and simplified
Lassy dependencies :pair (inherited from the word-pair part of the PaQu search tool). A fifth type of
edge is :next which links each word to the next word in the sentence.

The Lassy-type dependencies look as follows:

:sentence) -[:rel{rel: 'top'}]-> (:node{cat: 'top'})
:node) -[:rel]-> (:node)

:node) -[:rell-> (:word)

:node) -[:rell-> (:nw)

N AN AN

The standard UD-type dependencies look as follows:

(:sentence) -[:ud{rel: 'root'}]-> (:word)
(:word) -[:ud]l-> (:word)

And words are connected by means of the :next edges:
(:word) -[:mext]-> (:word)

Paths can be longer than an edge connecting two vertices. This path identifies the root of the sentence
that has a subject:

(:sentence) -[:ud]-> () -[:ud{rel:'nsubj'}]1-> ()

3 AlpinoGraph by Example

Simple AlpinoGraph queries can be built using the path expressions of the previous section. For example:

match (:word{lemma:'drinken'l})-[:ud{rel:'obj'}]->(o:word{upos:'NOUN'})
return o

For a given corpus, this query will return all direct object nouns of the verb with lemma fo drink. It is
straightforward to combine edges of different types in a query. For instance, suppose you are interested
to find (heads of) direct objects which are double-quoted. This can be accomplished by identifying
direct objects (in the first clause), and then requiring that both the words to the left and the right are
double-quotes:

match ()-[:ud{rel:'obj'}]->(o:word),
(:word{lemma:'"'}) -[:next]-> (o)-[:next]->(:word{lemma:'"'})
return o

Queries can also return multiple values. And the values need not be vertices, but could also be edges.
Using the ’.’-operator you can also return the attributes of vertices or edges. The following example finds
nodes with a verb as the head and an indirect object. The result is a table of pairs consisting of the lemma
of the verb and the category of the indirect object.

match (v:word{pt:'ww'})<-[:rel{rel:'hd'}]-(:node)-[:rel{rel:'obj2'}]->(w:node)
return v.lemma, w.cat

It is straightforward to add further conditions on a pattern. The following example provides an illustra-
tion, where we want to collect direct objects of the verb "to eat", but ignoring the cases where the direct
object is a pronoun:

match (:word{lemma:'eten'})-[:ud{main:'obj'}]->(w2:word)
where w2.upos != 'PRON'
return w2

In addition to simply returning the matches, we can perform a variety of aggregations on those.

match (:word{lemma:'eten'})-[:ud{main: 'obj'}]->(w2)
where w2.upos != 'PRON'

return w2.lemma, count(w2.lemma) as frequency
order by frequency desc

This results in a table of lemmas with their respective frequencies in decreasing order.

4 Representing secondary edges

In the Lassy treebank, secondary edges are represented using an index attribute associated to nodes of
the tree to indicate reentrancies in the graph. In AlpinoGraph, such secondary edges are represented in
much the same way as primary edges (although an attribute is added to ensure that the difference can be
recovered in the relevant cases). An example will illustrate this.

In the annotation of passives, the subject of the passive auxiliary is also annotated to be the object of
the embedded verb. An as example, sentence 1 gets analysed as in the left part of figure 1. In contrast,
such "secondary edges" are represented in AlpinoGraph as first class citizens. Since AlpinoGraph is
graph-based, there is no problem by having two edges connecting to "het brood". In AlpinoGraph, the
resulting graph is displayed on the right of figure 1 (including the UD representation layer for further
illustration).

smain

sentence

1:np verb ppart

smain
det hd obj1 hd

det noun 1 verb

rel:top

rel:ve

rel:su ud:roof

rel:hd

het brood gebakken

rel:obj1

m rel:hd

rel:det rel:hd
ud:nsubj:pass

d:det d:aux:
I Hetl ucee I broodl | wordtl ucanxpass gebakken

Figure 1: Original Lassy annotation of Het brood wordt gebakken (left) and the representation in Alpino-
Graph (right), displaying two (:rel and :ud) of the available representation layers.

(1) Het brood wordt gebakken
The bread is baked

5 Comparison with XPath

5.1 Treebanks and queries

In this section, we compare the Cypher queries of AlpinoGraph with equivalent XPath queries used
in the earlier treebank search systems DACT(van Noord et al., 2013), GrETEL(Augustinus et al., 2012),
PaQu(Odijk et al., 2017). The comparison between XPath and Cypher is based on the same treebanks, for
a large number of queries. We thus need a large number of relevant linguistic queries. This representative
set of linguistic queries is taken from the SPOD extension of PaQu. SPOD (Syntactic Profiler of Dutch)
(van Noord et al., 2020) provides an interface to a set of over a hundred linguistic queries which can
be used to compare texts and corpora. These queries are supposed to be generally useful to obtain a
good characterization of the syntactic properties of a text. SPOD has been used to study, for instance,
the writing development of Dutch school children. The list of queries has been established in close
connection with linguists.
The queries are applied for four different treebanks, described here as follows.

Alpino Treebank. The Alpino Treebank (van der Beek et al., 2002) contains over 7 thousand manually
annotated sentences which constitute the newspaper ("cdbl") part of the Eindhoven corpus (uit den
Boogaart, 1975). This treebank is one of the UD treebanks. It is available both in CoNLL-U and
Lassy XML format.

CGN. The CGN treebank contains the manually syntactically annotated part of CGN ("Corpus of Spo-
ken Dutch") (Schuurman et al., 2003). The treebank consists of 1 million words. The CGN annota-
tion format has been automatically converted to the Lassy XML format.

Eindhoven. The Eindhoven treebank contains over 40 thousand automatically annotated sentences. The
annotations are provided by the Alpino parser (van Noord, 2006), in the Lassy XML format.

Lassy Small. The Lassy Small treebank (van Noord et al., 2013) is the de facto standard treebank of
written Dutch. The size of the manually annotated corpus is 1 million words, and the corpus consists

of a variety of text types. Part of this treebank is available as one of the UD treebanks (the limitation
is due to copyright reasons).

The list of linguistic queries from SPOD contains 102 items (we ignore the queries about parser per-
formance since most of our treebanks are manually developed). Of those, 18 queries are not available
for the timing experiment because the Cypher queries exploit an efficiency improvement which we will
only discuss in section 5. Since that improvement is somewhat independent of the actual query engine,
including those queries here would be unfair. A further complication is that the automatically annotated
treebanks include some information on separable verb prefixes that is not available in the manually anno-
tated treebanks. SPOD includes 6 queries which focus on that information, so naturally those 6 queries
are only applied for the Eindhoven treebank. Finally, the CGN treebank pre-dates the other treebanks
and does not include certain types of secondary edges which have been added systematically to later
treebanks. For that reason, three queries are not applicable to the CGN treebank. Table 1 summarizes
the number of queries used per treebank. We list both the number of queries used to compare the results
(left) and the number of queries used in the timing experiment (right).

results timing

queries in SPOD 102 84
Eindhoven 102 84
Lassy Small 96 78
Alpino Treebank 96 78
CGN 93 75

Table 1: Number of queries used in the two experiments per treebank. On the left, the number of
queries used to compare the number of results. On the right, the number of queries used for the timing
experiment.

5.2 Differences in query results

The queries available in SPOD have all been re-implemented in AlpinoGraph. As a consequence, we
can compare the results of running the original XPath queries on the one hand, and running the newly
implemented Cypher queries in AlpinoGraph on the other hand. During the development of the Cypher
queries, we carefully compared if the Cypher queries returned the same hits as the corresponding XPath
query. In a limited number of cases, it turned out quite hard to obtain precisely the same set of hits.
There are two classes of cases where the number of hits differs for some of the queries. Firstly, while
we were re-implementing the queries in AlpinoGraph we found a number of subtle problems with the
original XPath queries. A few cases are reported below. Secondly, a further important difference is the
representation of "secondary edges".

5.2.1 Query improvements

During the process of re-implementing the SPOD queries in AlpinoGraph, we encountered a small num-
ber of subtle problems with the original XPath queries.

A simple example concerns the identification of noun phrases. Word groups are labeled by a category
attribute, so any node with category "np" is a noun phrase. However, category features are used only
for word groups and not for single words. Therefore, single-word noun phrases such as pronouns do not
have a category attribute. If noun phrases have to be identified in XPath queries, a disjunction is used to
include both word groups with the relevant category attribute as well as single words with appropriate
part-of-speech attributes. A further complication arises for coordination. A coordination of two noun
phrases is assigned "conj" as category attribute, not "np". In PaQu, a macro is defined to specify what
it means to be a noun phrase. That macro essentially states that you are a noun phrase if you are a basic
noun phrase, or if you are a coordination of basic noun phrases. And a basic noun phrase is a word group
with category "np", or a word with the appropriate part of speech tag (noun, pronoun, proper name). This
definition missed the cases where a conjunction was built up of two NP conjunctions, as in:

smain

e

mod hd su predc
pp verb noun np
/\ was /\
hd objl det mod hd
prep np det num noun
Voor /\ de derde schipbreuk
hd app mod
noun noun smain
kapitein Rijkers /N
su hd mod predc
noun verb np adj
ik was /\ bang
det hd
det noun

geen ogenblik

Figure 2: Annotation of Voor kapitein Rijkers "(ik was geen ogenblik bang)" was dit de derde schipbreuk

(2) de problemen van misdaad en straf , schuld en vergeving
the problems of crime and punishment, guilt and forgiveness

A more intricate example concerns the definition of the topic position in main sentences, in Germanic
studies often called the "vorfeld": the word group that precedes the finite verb in V2 main sentences. In
the hybrid dependency annotation format, it is somewhat complicated to define this word group. The
word group should be a dependent (either direct or indirectly) of the finite verb, and it should (directly)
precede that finite verb.

(3) hethuis opde heuvel wordt verkocht
the house on the hill is sold

In this example, "het huis op de heuvel" satisfies those conditions and is a potential vorfeld. In order
to rule out dependents of the actual vorfeld constituent, in the example "op de heuvel", the XPath query
furthermore required that the vorfeld candidate should not be part of a constituent which is itself a vorfeld
candidate. However, after comparing the results of the XPath query and the Cypher variant, it became
apparent that this added condition was a bit too strict. That condition also rules out vorfelds of embedded
main sentences. An example is listed where, with the analysis illustrated in figure 2. The original XPath
query thus missed the fact that "ik" here also should be considered a vorfeld constituent.

(4) Voor kapitein Rijkers " (ik was geen ogenblik bang) " was dit de derde schipbreuk .
for captain Rijkers" (I wasno moment afraid) " was this the third shipwreck .

5.3 Differences for secondary edges

Complements of fixed verbal expressions are labeled using the relation "svp". In a few cases, such a
fixed part of a fixed verbal expression also functions as the subject in a passive-like construction, as in
example 5, analysed as in the left part of figure 3.

(5) Wel werd meteen groot alarm geslagen
Indeed was immediately major alarm raised

"however, a major alarm was immediately raised"

smain

smain
ve

T oo [|

hd su ve
verb 1mp ppart hd svP
werd /\ /N mod | mod hd
mod hd mod mod svp hd mod "\ hd
adj noun ad ad 1 erb
! ! v v v | Wel ” werd ” meteen ” groot ” alarm ” geslagen I
groot alarm Wel meteen geslagen

Figure 3: Representation of Wel werd meteen groot alarm geslagen in Lassy XML (left) and the :rel
representation layer in AlpinoGraph (right)

One of the SPOD queries identifies complements of fixed verbal expressions. It does so using a simple
query which identifies all nodes that have a "svp" dependency with a verbal head. In that query, however,
no special consideration was made for cases where that node only contains an index. Therefore, the
word group "groot alarm" is not found by the XPath query. The right part of figure 3 illustrates the
representation used in AlpinoGraph. As a consequence, the AlpinoGraph variant of the query to identify
complements of fixed verbal expressions will identify the "groot alarm" word group as a hit.

Almost all differences between XPath and Cypher are caused by this difference in representation of
secondary edges, and in most of these cases, the Cypher version of the query is in fact closer to the
linguistic intention of the query - as in our running example. As a side note, going over the differences
revealed quite a few manual annotation mistakes too.

5.4 Timing experiment

In addition to a comparison of the results of the various queries, it is also interesting to consider the speed
of the various queries for both XPath and Cypher.

As explained in the first paragraph of this section, we compare the cputime requirements for about 80
queries applied to four different treebanks. The results are presented in figure 4. Both axes of the graph
are in logarithmic scale. Each dot in the graph represents the cputime it took to finish a particular query
for a particular treebank. The Y-axis represents the cputime taken by the XPath queries, whereas the
X-axis represents the time taken by the Cypher queries.

As can be observed in the graph, in most cases, but not all, the evaluation of the Cypher queries by
AlpinoGraph is much faster than the evaluation of the XPath queries. For the few cases for which the
Cypher query is slower, the difference is relatively small.

6 Search optimization

Both Cypher and XPath are expressive enough to define complex syntactic patterns. Some of these
patterns occur quite frequently. For example, in the Lassy dependency structures, the topological fields
known from Germanic syntax, such as vorfeld, mittelfeld and nachfeld are not explicitly encoded. Yet, it
is possible to define Cypher expressions and XPath expressions which recover this information. However,
such complicated patterns are relatively hard to compute.

The properties of nodes that we regularly want to refer to can be pre-computed. For instance, a special
attribute _vorfeld has been added in the representation of treebanks in AlpinoGraph. This attribute is
assigned the value "True" for the relevant nodes at the time when the corpus is loaded into AlpinoGraph.

Without such an attribute, it would be possible to identify vorfeld constituents using a Cypher query,
but that query is quite complicated, since it must recover the surface syntax of the sentence on the basis
of a dependency graph. The actual query identifies potential vorfelds which are (potentially indirect)
dependents of the finite verb which precede that finite verb. From those potential vorfelds, the query

Time in seconds

2.00 5.00 10.00 20.00
| |

XPath
1.00
!

0.20
|
o

0.05
|

\ \ \ \ \ \ \ \ \
0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00

Cypher

Figure 4: Timing all queries. Note the logarithmic scale. All results above the straight line are cases
where the Cypher queries are faster. The few results below the line indicate queries for which the Cypher
queries were slower.

then further extracts the maximal one. A further complication is that parts of the vorfeld constituent may
actually be extraposed. The full query is given in the appendix.

Running the complicated query over the Lassy Small corpus to identify vorfelds in the corpus takes
almost four minutes. After coding the property as an attribute of the relevant nodes, the following, trivial,
query finishes within 100 msec:

match (n:nw{_vorfeld: truel})
return n

Properties of nodes that are often used in treebank queries can be encoded by simple attributes. We
developed a tool which takes a treebank, a query, an attribute and a value. Each node in the treebank that
satisfies the query is augmented with the given attribute and value. This way, treebanks can be enriched
with, essentially, redundant information. The benefit will be that queries which rely on that information
can be expressed much simpler and will be evaluated much faster.

7 Concluding remarks

In this paper, we introduced AlpinoGraph, a novel graph-based treebank search engine, based on the
Cypher query language for graphs. We argued that graphs are an appropriate representation for linguistic
annotation, in particular if several annotation layers are combined. We have compared the Cyper queries

of AlpinoGraph with the XPath queries that can be used in PaQu, a popular existing treebank search
tool for Dutch treebanks. This comparison is based on a large set of relevant syntactic queries, taken
from SPOD. Both in XPath and Cypher, it is possible to recover fairly subtle and complicated syntactic
patterns. And typically, the Cypher queries are evaluated much faster.

We also described a simple search optimization technique by adding special attributes to nodes which
represent properties which are often referred to in queries, but slow to be evaluated on-line. This pre-
processing technique is applicable to other treebank search engines too.

AlpinoGraph is open-source and can be used on-line, free of charge. The system is available via
https://urd2.let.rug.nl/kleiweg/alpinograph/, and the sources are available via https://
github.com/rug-compling/alpinograph.

Appendix: Query for vorfeld

In order to identify the vorfeld, the following query first identifies the head of main sentences (the finite
verb) and then selects embedded dependents for which it is the case that their head precede this finite
verb. These potential vorfeld constituents include the actual vorfeld, but also most of the dependents of
the vorfeld. Therefore, the query is complicated by removing from the set of potential vorfelds all those
nodes that are dominated by a potential vorfeld.

Further complications arise because of the possibility of multi-word-units, and because of the fact that
not only real heads (with relation "hd") are treated as heads here, but also dependents of type "crd" and

”Cmp" .
select sentid, id
from (
match (n:node{cat:'smain'}) -[:rel{rel:'hd'}]-> (fin:word)
match (n) -[:rel*{primary:true}]-> (topic:nw) -[rel:relx0..1]-> (htopic:nw)
where ((not htopic.lemma is null)
and htopic.begin < fin.begin
and (length(rel) = 0 or rel[0].rel in ['hd','cmp','crd'])
) or
(topic.begin < fin.begin and topic.end <= fin.begin)
return topic.sentid as sentid, topic.id as id, n.id as nid
except
match (n:node{cat:'smain'}) -[:rel{rel:'hd'}]-> (fin:word)
match (n) -[:rel*{primary:true}]-> (topic:nw) -[rel:rel*0..1]-> (htopic:nw)
where ((not htopic.lemma is null)
and htopic.begin < fin.begin
and (length(rel) = 0 or rel[0].rel in ['hd','cmp','crd'])
) or
(topic.begin < fin.begin and topic.end <= fin.begin)
match (topic) <-[:relx1l..]- (nt:node) <-[:rel*]- (n)
match (nt) -[relt:rel*0..1]-> (hnt:nw)
where ((not hnt.lemma is null)
and hnt.begin < fin.begin
and (length(relt) = 0 or relt[0].rel in ['hd','cmp','crd'])
) or
(nt.begin < fin.begin and nt.end <= fin.begin)
return topic.sentid as sentid, topic.id as id, n.id as nid
) as foo

References

Liesbeth Augustinus, Vincent Vandeghinste, and Frank Van Eynde. 2012. Example-based treebank querying. In
Proceedings of the S8th International Conference on Language Resources and Evaluation (LREC-2012), pages
3161-3167, Istanbul, Turkey.

Liesbeth Augustinus, Vincent Vandeghinste, Ineke Schuurman, and Frank Van Eynde. 2017. GrETEL. a tool
for example-based treebank mining. In Jan Odijk and Arjan van Hessen, editors, Clarin in the low countries.
Ubiquity Press, London.

Steven Bird and Catherine Lai. 2010. Querying linguistic trees. Journal of Logic, Language and Information,
19:53-73, 06.

Guillaume Bonfante, Bruno Guillaume, and Guy Perrier. 2018. Application of Graph Rewriting to Natural Lan-
guage Processing. Wiley.

Gosse Bouma and Gertjan van Noord. 2017. Increasing return on annotation investment: The automatic con-
struction of a universal dependency treebank for Dutch. In Proceedings of the NoDaLiDa 2017 Workshop on
Universal Dependencies (UDW 2017), pages 19-26, Gothenburg, Sweden, May. Association for Computational
Linguistics.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther Konig, Wolfgang Lezius, Christian
Rohrer, George Smith, and Hans Uszkoreit. 2004. Tiger: Linguistic interpretation of a german corpus. Journal
of Language and Computation, 2:597-620, 12.

Jifi Mirovsky. 2008. Netgraph - making searching in treebanks easy. In I/JCNLP 2008 Proceedings of the Third In-
ternational Joint Conference on Natural Language Processing, pages 945-950, Hyderabad, India. International
Institute of Information Technology.

Joakim Nivre, Mitchell Abrams, Zeljko Agié, Lars Ahrenberg, Lene Antonsen, Katya Aplonova, Maria Jesus Aran-
zabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Augusti-
nus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu, Victoria
Basmov, John Bauer, Sandra Bellato, Kepa Bengoetxea, Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad
Bhat, Erica Biagetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev, Carl Borstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Adriane Boyd, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gauthier Caron,
Giilsen Cebiroglu Eryigit, Flavio Massimiliano Cecchini, Giuseppe G. A. Celano, Slavomir éépl'd, Savas Cetin,
Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Silvie Cinkova, Aurélie Collomb, Cagr1 Coltekin,
Miriam Connor, Marine Courtin, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria de Paiva, Arantza
Diaz de Ilarraza, Carly Dickerson, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaz Erjavec, Aline Etienne, Richard Farkas, Hec-
tor Fernandez Alcalde, Jennifer Foster, Claudia Freitas, Katarina GajdoSovd, Daniel Galbraith, Marcos Gar-
cia, Moa Girdenfors, Sebastian Garza, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gokirmak, Yoav Goldberg, Xavier Gomez Guinovart, Berta Gonzales Saavedra, Matias Grioni, Normunds
Grizitis, Bruno Guillaume, Céline Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan Haji¢ jr., Linh Ha My,
Na-Rae Han, Kim Harris, Dag Haug, Barbora Hladka, Jaroslava Hlavacova, Florinel Hociung, Petter Hohle,
Jena Hwang, Radu Ion, Elena Irimia, Ol4jidé Ishola, Tomas Jelinek, Anders Johannsen, Fredrik Jgrgensen,
Hiiner Kagikara, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Boris Katz, Tolga Kayadelen, Jessica
Kenney, Vaclava Kettnerova, Jesse Kirchner, Kamil Kopacewicz, Natalia Kotsyba, Simon Krek, Sookyoung
Kwak, Veronika Laippala, Lorenzo Lambertino, Lucia Lam, Tatiana Lando, Septina Dian Larasati, Alexei
Lavrentiev, John Lee, Phuong Lé Héng, Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li,
Josie Li, Keying Li, KyungTae Lim, Nikola Ljubesi¢, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl, Christopher Manning, Ruli Manurung, Catdlina Maranduc,
David Marecek, Katrin Marheinecke, Héctor Martinez Alonso, André Martins, Jan Masek, Yuji Matsumoto,
Ryan McDonald, Gustavo Mendonga, Niko Miekka, Margarita Misirpashayeva, Anna Missild, Catélin Mititelu,
Yusuke Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Keiko Sophie Mori, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Yugo Murawaki, Kaili Miitirisep, Pinkey
Nainwani, Juan Ignacio Navarro Horfiiacek, Anna Nedoluzhko, Gunta NeSpore-Bérzkalne, Luong Nguyén Thi,
Huyén Nguyén Thi Minh, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Adedayo Oliokun,
Mai Omura, Petya Osenova, Robert Ostling, Lilja @vrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Ag-
nieszka Patejuk, Guilherme Paulino-Passos, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel, Lauma Pretkalnina, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiorkowski, Tiina Puolakainen, Sampo Pyysalo, Andriela Réibis, Alexan-
dre Rademaker, Loganathan Ramasamy, Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva
Reddy, Georg Rehm, Michael RieBler, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko,
Rudolf Rosa, Davide Rovati, Valentin Rosca, Olga Rudina, Jack Rueter, Shoval Sadde, Benoit Sagot, Shadi

Saleh, Tanja Samardzié, Stephanie Samson, Manuela Sanguinetti, Baiba Saulite, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simké, Maria
§imkové, Kiril Simov, Aaron Smith, Isabela Soares-Bastos, Carolyn Spadine, Antonio Stella, Milan Straka, Jana
Strnadovd, Alane Suhr, Umut Sulubacak, Zsolt Szantd, Dima Taji, Yuta Takahashi, Takaaki Tanaka, Isabelle Tel-
lier, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zdetika UreSova, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric Villemonte
de la Clergerie, Veronika Vincze, Lars Wallin, Jing Xian Wang, Jonathan North Washington, Seyi Williams,
Mats Wirén, Tsegay Woldemariam, Tak-sum Wong, Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu, Zdenék
Zabokrtsky, Amir Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi Zhu. 2018. Universal dependencies
2.3. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles University.

Jan Odijk, Gertjan van Noord, Peter Kleiweg, and Erik Tjong Kim Sang. 2017. The parse and query (PaQu)
application. In Jan Odijk and Arjan van Hessen, editors, Clarin in the low countries. Ubiquity Press, London.

Thomas Proisl and Peter Uhrig. 2012. Efficient Dependency Graph Matching with the IMS Open Corpus Work-
bench. In Proceedings of LREC, page 2750-2756, Istanbul. ELRA.

Douglas L. T. Rohde. 2001. Tgrep2 user manual.

I. Schuurman, M. Schouppe, T. Van der Wouden, and H. Hoekstra. 2003. Cgn, an annotated corpus of Spoken
Dutch. In A. Abbeilé, S. Hansen-Schirra, and H. Uszkoreit, editors, Proceedings of 4th International Workshop
on Language Resources and Evaluation, pages 340-347, Budapest.

P. C. uit den Boogaart. 1975. Woordfrequenties in geschreven en gesproken Nederlands. Oosthoek, Scheltema &
Holkema, Utrecht. Werkgroep Frequentie-onderzoek van het Nederlands.

Leonoor van der Beek, Gosse Bouma, Robert Malouf, and Gertjan van Noord. 2002. The Alpino dependency tree-
bank. In Hendri Hondorp Mariét Theune, Anton Nijholt, editor, Computational Linguistics in the Netherlands
2001. Rodopi.

Frank van Eynde. 2005. Part of speech tagging en lemmatizering van het D-COI corpus.

Gertjan van Noord, Gosse Bouma, Frank Van Eynde, Daniél de Kok, Jelmer van der Linde, Ineke Schuurman, Erik
Tjong Kim Sang, and Vincent Vandeghinste. 2013. Large scale syntactic annotation of written Dutch: Lassy.
In Peter Spyns and Jan Odijk, editors, Essential Speech and Language Technology for Dutch: Results by the
STEVIN programme, pages 147-164. Springer Berlin Heidelberg, Berlin, Heidelberg.

Gertjan van Noord, Ineke Schuurman, and Gosse Bouma. 2019. Lassy syntactische annotatie.

Gertjan van Noord, Jack Hoeksema, Peter Kleiweg, and Gosse Bouma. 2020. SPOD: Syntactic profiler of Dutch.
Computational Linguistics in the Netherlands Journal, 10. Accepted.

Gertjan van Noord. 2006. At Last Parsing Is Now Operational. In TALN 2006 Verbum Ex Machina, Actes De La
13e Conference sur Le Traitement Automatique des Langues naturelles, pages 20—42, Leuven.

Gertjan van Noord. 2009. Huge parsed corpora in Lassy. In Frank van Eynde, Anette Frank, Koenraad De Smedt,
and Gertjan van Noord, editors, Proceedings of the Seventh International Workshop on Treebanks and Linguistic
Theories (TLT 7), number 12 in LOT Occasional Series, pages 115-126, Utrecht, The Netherlands. Netherlands
Graduate School of Linguistics.

