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Abstract

We propose a simple and efficient framework to learn syntactic embeddings based on information
derived from constituency parse trees. Using biased random walk methods, our embeddings not
only encode syntactic information about words, but they also capture contextual information. We
also propose a method to train the embeddings on multiple constituency parse trees to ensure the
encoding of global syntactic representation. Quantitative evaluation of the embeddings shows
competitive performance on POS tagging task when compared to other types of embeddings,
and qualitative evaluation reveals interesting facts about the syntactic typology learned by these
embeddings.

1 Introduction

Distributional similarity methods have been the standard learning representation in NLP. Word represen-
tations methods such as Word2vec, GloVe, and FastText [1, 2, 3] aim to create vector representation to
words from other words or characters that mutually appear in the same context. The underlying premise
is that ”a word can be defined by its company” [4]. For example, in the sentences, "’ eat an apple every
day” and "I eat an orange every day”, the words ’orange’ and ’apple’ are similar as they share similar
contexts.

Recent approaches have proposed a syntax-based extension to distributional word embeddings to in-
clude functional similarity in the word vectors by leveraging the power of dependency parsing[5] [6].
Syntactic word embeddings have been shown to be advantageous in specific NLP tasks such as ques-
tion type classification[7], semantic role labeling[8], part-of-speech tagging[6], biomedical event trigger
identification[9], and predicting brain activation patterns [10]. One limitation of these methods is that
they do not encode the hierarchical syntactic structure of which a word is a part due to its reliance on non-
constituency parsing such as dependency parsing. While the latter analyzes the grammatical structure
of a sentence by establishing a directed binary head-dependent relation among its words, constituency
parsing analyzes the syntactic structure of a sentence according to a phrase structure grammar.

Syntactic hierarchy has advantages in tasks such as grammar checking, question answering, and in-
formation extraction [11]. It has also been encoded in neural models such as Recursive Neural Tensor
Network and has proved it can predict the compositional semantic effects of sentiment in language [12].
Moreover, it can uniquely disambiguate the functional role of some words and therefore the overall se-
mantic meaning. Figure 1 shows the modal verb should in the following sentences: (1) Let me know
should you have any question. and (2) I should study harder for the next exam. Even though the word
should is a modal verb (MD) in both sentences, it exhibits two different grammatical functions: condi-
tionality and necessity respectively. Similarly, the word is in (3) The king is at home. and (4) Is the king
at home? has a similar semantic meaning in both sentences, yet it exhibits two different syntactic roles
(statement-forming and question-forming). Traditional word embeddings methods give a contextual,
semantic representation to words like is and should, but they make no distinction of their grammati-
cal function due to the absence of information on syntactic hierarchy. On the other hand, constituency
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parse trees provide a syntactic representation that can easily capture such distinction. Figures (a) and
(b) show constituency parse tree of sentences (1) and (2) respectively. The difference in the position of
the modal verb should in both sentences indicates a difference in the grammatical function, especially if
it is compared to words with similar grammatical function in other sentences such as the one in (figure
(c)). Comparing figures (a) and (c), we can note that should hold the same sense of conditionality the
word if has. To this end, we propose a simple, graph-based framework to build syntactic word embed-
dings that can be flexibly customized to capture syntactic as well as contextual information by leveraging
information derived from either manually or automatically constituency-parsed trees.

While recent transformer-based models such as BERT [13] have proved to be more sophisticated than
word embeddings, the latter remains a popular choice due to its simplicity and efficiency. Thus, the
contribution of this work is two-fold: (1) bridge the research gap in the literature of word embedding
by introducing hierarchical syntactic embeddings based on constituency parsing (2) propose a graph-
theoretic training method that cluster words according to their syntactic and constituent role without
sacrificing the original context in which a word appears.
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Figure 1: Trees (a), (b), (d) and (e) show different positions of the words should and is respectively
indicating differences in syntactic functions. Tree (c) is analogous to (a) suggesting similarity in syntactic
function between should and if.

2 Related Work

The NLP literature is rich with studies suggesting an improvement to original word embeddings mod-
els by incorporating external semantic resources like lexicons and ontologies [14, 15, 16, 17, 18].
However, very few studies were dedicated to syntactic embeddings. One of the earliest methods was
dependency-based word embeddings [5], which generalizes the Skip-gram algorithm to include arbitrary
word context. Instead of using bag-of-word context, they use context derived automatically from de-
pendency parse trees. Specifically, for a word w with modifiers my, ..., my and head h, the contexts
(m1,1bly), ..., (my, Ibly,), (h, Ibl}), where bl is a type of dependency relation between the head. and the
modifier (e.g. nsub, dobj, etc). For example, the context for the word scientist in “Australian scientist
discovers star with telescope” is Australian/amod and discovers/nsubj!.

Another modification to word2vec model was proposed by [6] to improve the word embeddings to
syntax-based tasks by making it sensitive to the positioning of the words, and thereby accounting for its
lack of order-dependence. The modification does not involve incorporating external parsing information,
but it includes using 2 output predictors for every word in the window context each of which is dedicated
to predicting position-specific value. Results on syntax-based tasks such as POS tagging and parsing
show an improvement over classic word2vec embeddings.

More recently, a new approach, named SynGCN, for learning dependency-based syntactic embed-
dings is introduced by [19]. SynGCN builds syntactic word representation by using Graph Convolution
Network (GCN). Using GCN allows SynGCN to capture global information from the graph on which it
was trained while remaining efficient at training due to parallelization. Experiments show that SynGCN
obtains improvement over state-of-the-art approaches when used with methods such as ELMo [20].

Most syntactic word embeddings methods rely on dependency parsing, and to the best of our knowl-
edge that our work is the first utilizing constituency parsing to build syntactic representation.
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3 Method

Our goal is to learn word embeddings that not only capture the sentence-level syntactic hierarchy encoded
by the constituency parse tree, but also capture a global (suprasentential) syntactic representation, and
because the constituency parse tree only provides sentence-level syntactic representations, we need a
method to combine multiple constituency parse trees. We also need a flexible algorithm to learn the
embeddings from those combined trees. In this section, we present a method of parse tree combination
(namely graph unionization) as well as the Node2vec algorithm.

Graph Unionization Given a training dataset of constituency parse trees, we compose one graph
(henceforth supergraph, Figure 2) by unionizing all the sentence trees in the training dataset. Formally,
let G(V, E) be a graph in the training corpus, where V' represents a lexical or a non-lexical vertex in
a constituency parse tree and E is the edge between them, and let H be ;' ; G;(V;, E;) where | is a
non-disjoint union operator and n is the number of sentences in the training corpus. The vertices and
edges of the supergraph Vi and Ey are | J;_; V; and |J;-_; E; respectively [21, 22].

Node2vec For learning syntactic embeddings from the supergraph, we use a variant of skip-gram
algorithm, called node2vec algorithm[23]. Node2vec adapts Word2vec algorithm to graphs in which a
node is defined by an arbitrary set of other nodes in the same graph sampled using a biased random walk.
Using tunable parameters p and ¢, the biased random walk offers BFS and DFS search behavior in which
more diverse neighborhoods are explored, and therefore richer representation may be learned[23].
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Figure 2: Trees (a), (b) and (c) are sample parse trees in the training corpus while (d) represents their
unionized supergraph.

As shown in Figure 2, nodes tagged with certain labels, such as adjectives (JJ) or nouns (NN), will be
linked together in the supergraph while remaining children of a noun phrase (NP). Similarly, sentences
with similar grammatical structures such as interrogative sentences or questions (SQ) will be clustered
together in the supergraph. It can be noted that the supergraph can cluster words of similar syntactic
functions together while simultaneously enforcing/preserving the global syntactic hierarchy of the train-
ing corpus. The supergraph with the aid of the biased sampling strategy Node2vec offers the flexibility
of learning customizable syntactic representation. A breadth-first search strategy, for instance, would
favor the selection of words of similar POS tags and thereby yielding word-class-specific representation
while a depth-first strategy would yield more hierarchical or contextual representation.

4 Data and Experiment

For the purposes of training the syntactic embeddings, we use the Penn Treebank corpus[24], which
contains over 43,000 constituency parse trees to sentences collected from the Wall Street Journal (WSJ).
Next, we unionize all the parses trees into one supergraph. The supergraph has 51071 vertices and 65895
edges, and it has an average degree of 2.5805 and a density of 5.05 x 10~5. We chose to unionize all the
trees in the training corpus for simplicity, but we certainly could have grouped the sentences into clusters
of thematic or semantic identity prior to applying unionization. After that, we train the embeddings with
node2vec algorithm using SGD of 10,000 epochs and a learning rate of 0.025 with a weight decay of
0.005. In terms of node2vec hyperparameters, we chose a random walk of length 200 and a batch size
of 100, and the return parameter p and the in-out parameter ¢ are both set to 10~ 6. Lower p values keep
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the walk close to the starting node, and lower ¢ values encourage the walk to behave in a DFS manner
[23]. The training took 51 seconds on 1 Tesla K80 GPU using the Graphvite Python package[25]. We
initialize the word vectors randomly for simplicity, but initialization with other types of distributional
embeddings such as word2vec or GloVe is possible. We decide to explore the latter in future work.

5 Results

We conduct two types of evaluations: qualitative and quantitative. In the qualitative evaluation, we
examine the extent to which the learned embeddings can encode grammatical information about the
words using words analogies and word arithmetics. In addition, we compare its performance against
GloVe vectors [2] and SynGCN [19] on one stream task, POS tagging.

5.1 Qualitative Evaluation

One common method to evaluate word embeddings is examining word vectors by their top k nearest
neighbors in the latent vector space. From table 5.1, we observe that the top 3 neighbors for the words
complicate, failed, earthquakes are all of the similar syntactic category: a present verb attracts similar
present verbs; a plural noun attracts plural nouns; and so on. Similarly, the adjective responsible and
the adverb handsomely maintain a very close distance to words of the same part-of-speech. In con-
trast, neither GloVe vectors nor SynGCN exhibit similar neighborhood typology. This confirms that our
constituency-based embeddings have consistently preserved syntactic information about words.

Another way to evaluate word embeddings is by explaining word analogies by the means of word
vector arithmetics [26]. The famous example used in [1] is woman is to queen as man is to king, or
(wg + wi) — W, &= w,. When we apply the same method to our constituency-based syntactic vectors,
we assert that the vector arithmetic sense strongly matches the syntactic analogies. For example, in table
5.1, if we subtract the sum of word vectors in the prepositional phrase (PP) in an industrial from the
PP of any clearly domestic, the top 3 nearest neighbors in our embeddings are all adverbs (ADV) to
compensate for the missing adverb in the second PP. We also note the case is not true for the other types
of embeddings where the top nearest neighbors are affected by words in the PP. Similarly, applying the
same arithmetic operations to the phrases his state-of-the-art plan and her plan would results in adjective
vectors, unlike the other embeddings.

word SynGCN (Cos Sim) GloVe (Cos Sim) Ours (Cos Sim)
complicates | 0.60 | complicating | 0.90 prune 0.97
complicate complicating | 0.51 complicates | 0.87 ruin 0.97
simplify 043 | jeopardize 0.83 outpace 0.97
failing 0.61 failing 0.89 | reconstructed | 0.98
failed unsuccessful | 0.56 attempt 0.88 slated 0.98
fail 0.54 attempts 0.86 hall d 0.98
earthquake | 0.65 quakes 0.90 failures 0.98
earthquakes i 0.61 | aftershocks | 0.80 sons 0.98
quakes 0.58 tremors 0.79 bouts 0.98
generously | 0.48 doled 0.71 effectively 0.97
handsomely ornately 0.46 rewarded 0.70 i ly 0.97
competently | 0.45 gambled 0.68 inexorably 0.97
accountable | 0.52 involved 0.90 extensive 0.97
responsible responsibility | 0.41 | responsibility | 0.84 fifth-biggest 0.97
tasked 0.39 planning 0.80 one-woman 0.97
. none 0.28 ignore 0.76 recariously 0.88
([off+[any ]+[Clea'ly.]s[d°‘?e]5“°])' all 027 uckfuwledge oTe T slightly 0.87
([in] + [an] + {industrial]) interestingly | 0.26 | necessarily | 0.75 itably 0.87
N ) i plans 0.35 build 0.69 | government-held | 0.92
([hlSjghjr]ti?z:;:r:;gﬂ;nj) B cutting-.edge 0.34 renovation 0.66 harder-line 0.90
planning 0.34 | redevelopment | 0.65 front-page 0.90
will 0.52 we 0.91 will 0.92
([would] + [need])-[require] should 0.59 come 0.90 might 0.91
could 0.47 want 0.88 can 0.91

Table 1: Comparison of top 3 KNN with cosine similarity produced by SynGCN [19], GloVe [2], and
our embeddings. Words in bold belong to the same POS tag/ grammatical category.

5.2 Intrinsic Evaluation

We also test the performance of our constituency-based embeddings on a mainstream task, parts-of-
speech tagging. Our goal is not to achieve state-of-the-art results in POS tagging, but we want to
demonstrate the grammatical potential of our embeddings. For this purpose, we treat POS tagging as
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SVM- F1 Score

CRF- F1 Score

Glove [2] 0.731 0.894
SynGCN [19] 0.892 0.898
Ours 0.881 0.910

Table 2: Evaluation on POS tagging using SVM and CREF classifiers. Scores represent a mean F1 score
of 5-fold cross-validation.

an independent classification task (as opposed to structured prediction one) in which a non-sequential
classifier support vector machine (SVM) is used to predict a POS tag for a word acontextually. The use
of non-neural, non-sequential classifier ensures that the grammatical generalizability comes strictly from
the embeddings and not from the neural network or the context. Nevertheless, we also treat POS tagging
as a structured prediction task in which we use a sequential classifier like conditional random field (CRF)
for the purposes of comparison. Performance is also reported for two other word embeddings: GloVe
and SynGCN under the same settings.

We test the performance using the trained vectors on the first 2000 sentences of the Brown corpus
[27]. In table 2, we report the mean F1 score of 5-fold cross-validation in which we can observe that
our vectors are competitive in performance to SynGCN and far better than GloVe when used with SVM
classifier. In addition, our embeddings outperform both of the competing embeddings when used with
CRE

Even though the performance of the constituency-based embeddings slightly lags behind SynGCN in
the case of independent classification, the size of the corpus upon which our embeddings were trained
(Penn Treebanks 1 million tokens) is much smaller compared to the one upon which SynGCN was
trained (Wikipedia 1.1 billion tokens). In addition, the flexibility of learning customizable syntactic word
embeddings as well as the training efficiency make constituency-based word embeddings a powerful and
promising research direction that can be applied to other graph-based tasks.

6 Conclusion and Future Work

We presented a simple and efficient framework to learn syntactic embeddings from constituency parse
trees using a combination of multiple graph unionization and biased random walk. Our framework can
be flexibly customized to learn purely contextual and non-contextual syntactic embeddings, and it can
be also used as a post-hoc method for other kinds of (distributional) word embeddings. Thus, for future
studies, we would like to investigate training constituency-based vectors on a larger corpus and examine
the effect of different initialization on more mainstream tasks such as machine translation and automatic
speech recognition.
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