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ABSTRACT. The demand for more sophisticated natural human-computer and human-robot in-
teractions is rapidly increasing, as users become more accustomed to conversation-like inter-
actions with their devices. This requires not only the robust recognition and generation of ex-
pressions through multiple modalities (language, gesture, vision, action), but also the encoding
of situated meaning: (a) the situated grounding of expressions in context; (b) an interpretation
of the expression contextualized to the dynamics of the discourse; and (c) an appreciation of the
actions and consequences associated with objects in the environment. In this paper, we intro-
duce VoxWorld, a multimodal simulation platform for modeling human-computer interactions.
It is built on the language VoxML, and offers a rich platform for studying the generation and
interpretation of expressions, as conveyed through multiple modalities, including: language,
gesture, and the visualization of objects moving and agents acting in their environment.

RESUME. La demande d’interactions naturelles homme-ordinateur et homme-robot plus sophis-
tiquées augmente rapidement, car les utilisateurs s habituent davantage aux interactions de
type conversation avec leurs appareils. Cela nécessite non seulement la reconnaissance et la
génération robustes d’expressions a travers de multiples modalités (langage, geste, vision, ac-
tion), mais aussi I’encodage du sens situé : (a) I’ancrage situé des expressions dans le contexte;
(b) une interprétation de ’expression contextualisée a la dynamique du discours; et (c) une
appréciation des actions et des conséquences associées aux objets dans I’environnement. Nous
présentons VoxWorld, une plateforme de simulation multimodale pour la modélisation des in-
teractions homme-machine. 1l est construit sur le langage VoxML et offre une plate-forme riche
pour étudier la génération et 'interprétation d’expressions, telles qu’elles sont véhiculées a
travers de multiples modalités, notamment : le langage, le geste et la visualisation des objets en
mouvement et des agents agissant dans leur environnement.
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1. Introduction

When humans communicate with each other through language, there is a shared
understanding of both an utterance meaning (content) and the speaker’s meaning in
the specific context (intent). The ability to link these two is the act of situationally
grounding meaning to the local context, typically referred to as “establishing the com-
mon ground” between interlocutors (Stalnaker, 2002; Asher, 1998). Language use
may reflect only a subset of all properties of the current situation, where a full de-
scription may be impossible or at least unwieldy. Some kinds of information may in
fact be more efficiently communicated using other modalities, such as gesture (e.g.,
deixis for pointing), demonstration or action, images, or some other visual modality. A
central component to the contextualized interpretation of meaning in a discourse is the
situational determination of the meanings of expressions given the common ground.
It is this notion of situated meaning that is missing in most current human-computer
and human-robot interaction models, and the focus of the present paper.

In this paper, we argue that the problem of situational awareness and the creation
of situated meaning in discourse involves at least three components: (a) the situated
grounding of expressions in context; (b) an interpretation of the expression contex-
tualized to the dynamics of the discourse; and (c) an appreciation of the actions and
consequences associated with objects in the environment. In Section 2, we expand on
these aspects of meaning in some detail, and then in Section 3, we adopt the modeling
language, VoxML, designed to encode non-linguistic, multimodal aspects of meaning
associated with concepts. In section 4, we present a computational framework, Vox-
World, within which these components are operationalized to facilitate multimodal
communication between humans and robots or computers. Section 5 outlines a frame-
work within which to interpret multimodal expressions, while Section 6 presents ex-
perimental evidence from single and mixed modality dialogues, illustrating the differ-
ent ways in which meaning is situated in goal-directed dialogues.

2. Interactions in the Common Ground

There has been a growing interest in the Human-Robot Interaction community
on how to contextually resolve ambiguities that may arise from communication in
situated dialogues, from earlier discussions on how HRI dialogues should be de-
signed (Fischer, 2011; Scheutz et al., 2011), how perception and grounding can be
integrated into language understanding (Landragin, 2006), to recent work on task-
oriented dialogues (Williams ez al., 2019). This is the problem of identifying and
modifying the common ground between speakers (Clark and Brennan, 1991; Stal-
naker, 2002; Asher, 1998). It has long been recognized that an utterance’s meaning
is subject to contextualized interpretation; this is also the case with gestures in task-
oriented dialogues. E.g., depending on the situation, an oriented hand gesture could
refer either to an action request (“move it”) or a dismissive response (“forget it”)
(Williams et al., 2019). Even a request for action can be underspecified, denoting
either a continuous movement or a movement to a specific location. Similarly, de-
pending on the situation, the definite description in the command “Open the box.”
may uniquely refer or not, depending on how many boxes are in the context. These
and similar miscommunications or the need for clarification in dialogue have been
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called situated grounding problems (Marge and Rudnicky, 2013), and can be viewed
as problematic in a model that appeals to and encodes both a visual modality and situ-
ational information into the dialogue state. What the occurrence of these issues makes
apparent is the complexity underlying the interpretation of referential expressions in
actual situated dialogues. The richness provided by situationally grounding computer
or robot behaviors brings to the surface interpretive questions similar to those of a
human in the same scenario.

Some recent efforts have been made to provide contextual grounding to linguistic
expressions. For example, work on “multimodal semantic grounding” within the nat-
ural language processing and image processing communities has resulted in a number
of large corpora linking words or captions with images (cf. Chai et al. (2016)). In
this paper, we argue that language understanding and linking to abstract instances of
concepts in other modalities is insufficient; situated grounding entails knowledge of
situation and contextual entities beyond that provided by a multimodal linking ap-
proach (cf. Kennington et al. (2013)).

Actual situated meaning is much more
involved than aligning captions and bound-
ing boxes in an image: e.g., Hunter et al.
(2018) discuss the contribution of non-
linguistic events in situated discourse, and
also whether they can be the arguments
to discourse relations. Similarly, it is ac-
knowledged that gesture is part of either
the direct content of the utterance (Stojnié -
et al., 2019) or cosuppositional content Figure 1. Mother and son interacting
(Schlenker, 2020). Hence, we must assume in a shared task of icing cupcakes.
that natural interactions with computers and robots have to account for interpreting
and generating language and gesture.

Consider the joint activity shown in Fig. 1 above between a mother and her son,
where they are engaged in icing cupcakes in a kitchen setting. The dialogue in Fig. 2
illustrates some possible multimodal expressions used in such a context of joint activ-
ity between two agents.

SITUATED MEANING IN A JOINT ACTIVITY

— SON: Put it there (gesturing with co-attention)?

— MOTHER: Yes, go down for about two inches.

— MOTHER: OK, stop there. (co-attentional gaze)

— SON: Okay. (stops action)

— MOTHER: Now, start this one (pointing to another cupcake).

Figure 2. Dialogue.

Viewed as a multi-agent collaborative task interaction, there are some obvious ele-
ments constituting the common ground between the two agents in Fig. 1. These in-
clude reference to: the participants (agents); shared beliefs and assumptions; shared
goals and intentions; the accompanying objects in the situation; the shared perception
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of these objects; and the surrounding space within which the situation unfolds. Some
of these elements are given below in Fig. 3.

Agents mother, son

Shared goals baking, icing

Beliefs, desires, Mother knows how to ice, icing goes on cupcakes, etc.
intentions Mother is teaching son

Objects cupcakes, plate, knives, pastry bag, icing, gloves
Shared perception | the objects on the table

Shared Space kitchen

Figure 3. Elements from the common ground for Figure 1.

From this example, it is apparent that we can identify three core aspects of meaning
that contribute to the common ground in a multimodal dialogue:

1) co-situatedness and co-perception of the agents, such that they can interpret the
same situation from their respective frames of reference. This might be a human and
an avatar perceiving the same virtual scene from different perspectives; or a human
sharing the perspective of a robot as it navigates through a disaster zone;

2) co-attention of a shared situated reference, which allows more expressiveness in
referring to the environment (i.e., through language, gesture, visual presentation, etc.).
The human and avatar might refer to objects in multiple modalities with a common
model of differences in perspective-relative references (e.g., “your left, my right”);
or the human sharing the robot’s perspective might be able to direct its motion using
reference in natural language (“go through the second door on the left”) or gesture
(“go this way,” with pointing);

3) co-intent of a common goal, such that misaligned relationships between agents
reflect a breakdown in the common ground. A human and avatar interacting around
a table might seek to collaborate to build a structural pattern known to one or both of
them; or the human and robot sharing perspective both have a goal to free someone
trapped behind a door in a fire. The robot informs the human about the situation and
the human helps the robot problem-solve in real time until the goal is achieved.

What this suggests is that any robust communication between humans and com-
puters or robots will require at least three capabilities: (a) a robust recognition and
generation within multiple modalities; (b) an understanding of contextual grounding
and co-situatedness in the conversation; and (c) an appreciation of the consequences
of behavior and actions taking place throughout the dialogue. To this end, in our work,
we have developed a platform making use of semantically interpreted multimodal sim-
ulations, which provides an approach to modeling human-computer communication
by both situating and contextualizing the interaction, thereby visually demonstrating
what the co-agent computer or robot is hearing, seeing, thinking, and doing. This
platform is based on VoxML, a modeling language for encoding traditionally non-
linguistic, multimodal, aspects of meaning associated with the objects that we en-
counter, manipulate, and explore in our environment. We turn to this discussion in the
next section.
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3. VoxML: Encoding Knowledge of Action and Behavior

Here we argue that a significant part of any model for situated communication is an
encoding of the semantic type, functions, purposes, and uses introduced by the objects
under discussion. L.e., a semantic model of perceived object teleology, as introduced
by Qualia Structure, for example (Pustejovsky, 1995), as well as object affordances
(Gibson, 1977) is needed to help ground expression meaning to speaker intent.

Objects under discussion in discourse (cf. Ginzburg (1996)) can be partially con-
textualized through their semantic type and their qualia structure: e.g., a food item has
a TELIC value of eat, a pencil, a TELIC of write, a box, a CHAIR of sit_in, and so
forth. However, while an artifact may be designed for a specific purpose, this can only
be achieved under specific circumstances. To account for this context-dependence,
Pustejovsky (2013) enriches the lexical semantics of words denoting artifacts (the
TELIC role specifically) by introducing the notion of an object’s habitat, which en-
codes these circumstances. For example, an object, z, within the appropriate context
C, performing the action 7 will result in the intended or desired resulting state, R, i.e.,
C — [w]R. That is, if the habitat C (a set of contextual factors) is satisfied, then every
time the activity of 7 is performed, the resulting state R will occur. The precondition
context C is necessary to specify, since this enables the local modality to be satisfied.

The habitat for an object is situated within an embedding space and then contextu-
alized within it. For example, in order to use a glass to drink from, the concavity has
to be oriented upward, the interior must be accessible, and so on. Similarly, a chair
must also be oriented up, the seat must be free and accessible, it must be large enough
to support the user, etc. An example of what the resulting knowledge structure for the
habitat of a chair is shown below, where these constraints are superscripted with “ *”.

These distinctions in habitats facilitate both Gibsonian and telic affordances and
transfer learning of Gibsonian affordances relies on information taken from telic af-
fordances (its use for sitting), and vice versa (see Section 6.4): below, the F and C
values specify size and part structure, respectively.

chair(x)
F = [phys(x), on(w, y1)", in(x, y2)", clear(a1)", orient(z, up)",
(D) Az support(z1,ys)”

C = [seat(z1), back(xz),legs(xs)]

T = AzXelC — [sit(e, z, )| Rsit ()]

A = [made(e’,w, )]
The notion of habitat and the attached behaviors that are associated with an object
are further developed in Pustejovsky and Krishnaswamy (2016), where an explicit
connection to Gibson’s ecological psychology is made, along with a direct encoding
of the affordance structure for the object (Gibson, 1977). The affordance structure
available to an agent, when presented with an object, is the set of actions that can
be performed with it. We refer to these as GIBSONIAN affordances, and they include

“grasp”, “move”, “hold”, “turn”, etc. This is to distinguish them from more goal-
directed, intentionally situated activities, what we call TELIC affordances.

VoxML (Visual Object Concept Modeling Language) is a modeling language for
constructing 3D visualizations of concepts denoted by natural language expressions,
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and is being used as the platform for creating multimodal semantic simulations in the
context of human-computer and human-robot communication (Pustejovsky and Krish-
naswamy, 2016; Krishnaswamy and Pustejovsky, 2016). It adopts the basic semantic
typing for objects and properties from Generation Lexicon and the dynamic interpre-
tation of event structure developed in Pustejovsky and Moszkowicz (2011), along with
a continuation-based dynamic interpretation for both sentence and discourse compo-
sition (De Groote, 2001; Barker and Shan, 2014; Asher and Pogodalla, 2010).

VoxML forms the scaffolding we use to encode knowledge about objects, events,
attributes, and functions by linking lexemes to their visual instantiations, termed the
“visual object concept” or voxeme. Voxemes representing humans or IVAs are lexi-
cally typed as agents, but agents, due to their embodiments, ultimately inherit from
physical objects and so fall under objects in the taxonomy. In parallel to a lexicon,
a collection of voxemes is termed a voxicon. There is no requirement on a voxicon
to have a one-to-one correspondence between its voxemes and the lexemes in the as-
sociated lexicon, which often results in a many-to-many correspondence. That is,
the lexeme plate may be visualized as a [[SQUARE PLATE]], a [[ROUND PLATE]],
or other voxemes, and those voxemes in turn may be linked to other lexemes such
as dish or saucer. Each voxeme is linked to either an object geometry, a program
in a dynamic semantics, an attribute set, or a transformation algorithm, which are all
structures easily exploitable in a rendered simulation platform.

An OBJECT voxeme’s semantic structure provides habitats,
which are situational contexts or environments conditioning the
object’s affordances, which may be either “Gibsonian” affor-
dances (Gibson, 1977) or “Telic” affordances (Pustejovsky, 1995;
Pustejovsky, 2013). A habitat specifies how an object typically
occupies a space. When we are challenged with computing the
embedding space for an event, the individual habitats associated
with each participant in the event will both define and delineate the
space required for the event to transpire. Affordances are used as
attached behaviors, which the object either facilitates by its geom-
etry (Gibsonian) or purposes for which it is intended to be used (Telic). For example, a
Gibsonian affordance for [[CUP]] is “grasp,” while a Telic affordance is “drink from.”
This allows procedural reasoning to be associated with habitats and affordances, ex-
ecuted in real time in the simulation, inferring the complete set of spatial relations
between objects at each frame and tracking changes in the shared context between
human and computer.

Figure 4. Cup in
habitat allowing
rolling.

Indeed, object properties and the events they facilitate are a primary component
of situational context. In Fig. 4, we understand that the cup in the orientation shown
can be rolled by a human. Were it not in this orientation, it might be able to be
only slid across its supporting surface (cf. (2)). This voxeme for [[CUP]] gives the
object appropriate lexical predicate and typing (a cup is a PHYSICAL OBJECT and an
ARTIFACT). It denotes that the cup is roughly cylindrical and concave, has a surface
and an interior, is symmetrical around the Y-axis and across associated planes (VoxML
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adopts 3D graphics convention where the Y-axis is vertical), and is smaller than and
movable by the agent. The remainder of VoxML typing structure is devoted to habitat
and affordance structures, which we discuss below.

(2) Objects encoding semantic type, habitat, and affordances:

[ cup

LEXICAL = | 1ypE _ physobj, artifact

HEAD = cylindroid[1]
COMPONENTS = surface, interior
TYPE = | CONCAVITY = concave

ROTATIONAL_SYMMETRY = {Y'}
REFLECTION_SYMETRY = {XY,Y Z}

CONSTR = {Y > XY > Z}
UP = align(Y,Ey)

TOP = top(+Y)

EXTRINSIC — [31[ upP = align(Y, ELY)]

Ay = Hig — [put(z,on([1]
Ay = Hjg) — [put(z, in([1]
As - Hiy — grasp(z, 1)
Ay = H[3] — [TOll(:E,[ ])]R
SCALE = <agent}
MOVABLE = true

PREDICATE = cup }

INTRINSIC = [2]
HABITAT —

))]support([1], x)
%)]comfam([l]7 x)

AFFORDANCE_STRUCTURE = hold(x, [1])

EMBOD =

In VoxML encodings like 2, bracketed numbers, e.g., [1] are reentrancy indices,
such that terms annotated with the same number refer to the same entity. For instance,
in habitat 2 (H]g)), the intrinsic habitat where the cup has an upward orientation, if an
agent puts some x inside the cup’s cylindroid geometry ([1]), the cup contains x.

One of the major improvements to the notion of habitat developed in VoxML over
that given originally in Pustejovsky (2013) is how the preconditions to actions are
encoded and scoped. Notice how in the example in (1), the constraint on relative
size of the chair to its user (along with all constraints) is specified outside the modal
context in the TELIC, while the VoxML representation using Habitats in (3) provides
a reentrant binding for the situational variables.

(3) Habitat and affordance structure for chair:

chair

CONSTR = {Y > XY > Z}
UP = align(Y,Ey)

TOP = top(+Y)

AFFORD_STR = [Al = Hpj — [sit(y, on([l]))}support([l],y)}

HABITAT = | INTR = 2]

VoxML treats actions and events within a dynamic event semantics as programs
(Pustejovsky and Moszkowicz, 2011; Mani and Pustejovsky, 2012). The advantage of
adopting a dynamic interpretation of events is that one can map linguistic expressions
directly into simulations through an operational semantics (Miller and Johnson-Laird,
1976). Models of processes using updating typically make reference to the notion of
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a state transition (Harel, 1984). Each event, such as put in (4), can be seen as a traced
structure over a Labeled Transition System. The approach is similar in many respects
to that developed in both Fernando (2009) and Naumann (2001).

This also allows the system to reason about objects and actions independently.
When simulating the objects alone, the simulation presents how the objects change in
the world. By removing the objects and presenting only the actions that the viewer
would interpret as causing the intended object motion (i.e., an embodied agent pan-
tomiming the object motion), the system presents a “decoupled” interpretation of the
action, for example, as an animated gesture that traces the intended path of motion.
By composing the two, it demonstrates a particular instantiation of the complete event.
This allows an embodied situated simulation approach to easily compose objects with
actions by directly interpreting at runtime how the two interact.

For the simulation to run, all parameters (e.g., object location, agent motion, etc.)
must have values assigned. The simulation environment itself facilitates the calcula-
tion of these values, including a common path that the object and agent’s manipulator
must follow while completing an action; adhering to these common paths and posi-
tional values keeps the two synchronized.

(4) Events as Programs:

[ put
_ | PRED = put
LEX = [TYPE = transition_event]
HEAD = transition
A1 = X:agent
ARGS = | Az = y:physobj
TYPE = Az = z:location
E1 = grasp(z,y)
BODY = | E; = [while(hold(x,y), move(z,y)]
Es = |at(y, z) = ungrasp(z,y)]

The logic of event structure encodes only minimal temporal constraints on how the
subevents interact or play out. The rendering engine itself maintains an internal clock
and regulates frame rate, and therefore the time it takes to conduct movements, obvi-
ating the need to regularly model this temporal aspect in operationally defined events
in VoxML, although scalara attributives like faster or slower can provide temporal
modifiers.

4. VoxWorld: A Platform for Multimodal Simulations

In this section, we introduce a simulation framework, VoxWorld, that situates an
embodied agent in a multimodal simulation, with the capability of understanding and
generating language and gesture, and the ability to synthetically perceive an interlocu-
tor human as well as objects in its virtual surroundings, and act on them through a
limited inventory of actions.
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4.1. Modes of Simulation

The concept of simulation has played an important role in both Al and cognitive
science for over forty years. The two most common uses for the term simulation
as used in computer science and Al include: (a) computational simulation modeling,
where variables in a model are set, the model is run, and the consequences of all possi-
ble computable configurations become known; and (b) situated embodied simulations,
where an environment allows a user to interact with objects in a “virtual or simulated
world”, where the agent is embodied as a dynamic point-of-view or avatar in a proxy
situation. Such simulations are used for training humans in scripted scenarios, such as
flight simulators, battle training, and of course, in video gaming, where the goal is to
simulate an agent within a situation.

Simulation has yet another meaning, where starting with Craik (1943), we en-
counter the notion that agents carry a mental model of external reality in their heads.
Johnson-Laird (1987) develops his own theory of a mental model, which represents
a situational possibility, capturing what is common to all the different ways in which
the situation may occur. This is used to drive inference and reasoning, both factual
and counterfactual. Simulation Theory, as developed in philosophy of mind, has fo-
cused on the role “mind reading” plays in modeling the mental representations of other
agents and the content of their communicative acts (Goldman, 2006). Simulation se-
mantics (Feldman, 2010; Narayanan, 2010) argues that language comprehension is
accomplished by means of such mind reading operations. Similarly, within psychol-
ogy, there is an established body of work arguing for “mental simulations” of future
or possible outcomes, as well as interpretations of perceptual input (Barsalou, 1999).
These approaches we refer to as embodied theories of mind.

4.2. VoxWorld

VoxWorld integrates the functionality and the goals of all three approaches above.
The platform situates an embodied agent in a multimodal simulation, with mind-
reading interpretive capabilities, facilitated through assignment and evaluation of ob-
ject and context parameters within the environment being modeled.

4.2.1. Architecture

VoxWorld is based on the semantic scaffold provided by the VoxML modeling
language (Pustejovsky and Krishnaswamy, 2016), which provides a dynamic, inter-
pretable model of objects, events, and their properties. This allows us to create visu-
alized simulations of events and scenarios that are rendered analogues to the “mental
simulations” discussed above. We can restrict mind-reading to events that are tangible
and perceptually reflective or transparent. So, mental events (desires, beliefs by them-
selves, etc.) will not be modeled here as simulations themselves, but rather as modal
signatures or propositional content of a common ground—that is an agent’s desire for
food may manifest as holding their stomach or opening the refrigerator, themselves
modeled as distinct events stemming from that cause. VoxSim (Krishnaswamy and
Pustejovsky, 2016) serves as the event simulator within which these simulations are
created and rendered in real time, serving as the computer’s method of visually pre-
senting its interpretation of a situation or event. Because modalities are modes of
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presentation, a multimodal simulation entails as many presentational modes as there
are modalities being modeled. The visual modality of presentation (as in embodied
gaming) necessitates “situatedness” of the agent, as do the other perceptual modal-
ities. Therefore, when we speak of multimodal simulations, they are inherently sit-
vated. In a human-computer interaction using such a simulation, the simulation is
a demonstration of the computational agent’s “mind-reading” capabilities (an agent
simulation). If the two are the same (where the agent is a proxy for the player or user),
then the “mind-reading” is just a demonstration of the scenario. It observes what the
user can. The user observes the agent act as if they share the same perspective. If,
on the other hand, the two are separate (agent is not proxy for the user), then the
simulation/demonstration communicates the agent’s understanding of the user and the
interaction. In this case, this demonstration entails the illustration of both epistemic
and perceptual content of the agent. The agent’s actions within the scene facilitate the
human’s “mind-reading” based on the agent’s demonstrated interpretation of proposi-
tional content within the scene. We assume an agent has present epistemic knowledge
and the relevant inferences reasonably associated with/derivable from these proposi-
tions. The agent may know that an object is graspable and can be held in a certain way.
This also means that the agent “knows” that it is touchable and moveable, similarly
for propositional knowledge associated with logical entailments, etc.

The current architecture of the VoxWorld system is shown in Fig. 5.

VoxWorld

OUTPUT
INTERFACE

Other NLP/ " .
AU ook » e »

VoxML/GL
Object

Multimodal
Simulation
Grammar
(MSG)

Event
Habitat
Affordance

Figure 5. VoxWorld Architecture schematic.

At the center is VoxSim, the software that handles visual event simulation in three di-
mensions, written with the Unity game engine. VoxSim connects to a number of other
default VoxWorld components, including some native natural language processing ca-
pabilities, VoxML encodings/GL knowledge as interpreted through the multimodal
semantics discussed in Section 5, and 3rd-party libraries, e.g., QSRLib (Gatsoulis
et al., 2016). Individual agent, such as the interactive avatar Diana (discussed below),
are arbitary output interfaces that can also connect to 3rd-party endpoints; in the case
of Diana, this is custom gesture and affect recognition (Narayana et al., 2018).

4.2.2. Usage

VoxSim contains scenes in a Blocks World domain, plus a set of more complicated
or interesting everyday objects (e.g., cups, plates, books, etc.). In scenes without an
avatar, the user can direct the computer to manipulate objects in space or create an
avatar that can act upon objects and respond to the user’s input. VoxWorld includes
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other software, models, and interfaces, e.g., to consume input from CNN-based ges-
ture recognizers (Narayana et al., 2018), or to track the agent’s epistemic state or
knowledge of what its interlocutor knows.

It is straightforward to create new scenes with 3D geometries with packaged code
that creates and instantiates voxemes, handles their interactions and performs basic
spatial reasoning over them. VoxWorld contains a library of basic motion predicates
and methods to compose them into more complex actions using VoxML.

4.2.3. Situated Reasoning in VoxWorld

Situational embodiment takes place in real time, so in a situation where there may
be too many variables to predict the state of the world at time ¢ from initial conditions
at time 0, situational embodiment within the simulation allows the agent to reason
forward about a specific subset of consequences of actions taken at time ¢, given the
agent’s current conditions and surroundings. Situatedness and embodiment is required
to arrive at a complete, tractable interpretation given any element of non-determinism.
E.g., an agent trying to navigate a maze from start to finish could easily do so with
a map that provides complete or sufficient information about the scenario. However,
if the scene is disrupted (e.g., the floor crumbles, or doors open and shut randomly),
the agent would be unable to plot a course to the goal. It would have to start moving,
assess circumstances at every timestep, and choose the next move(s) based on them.
Situated embodiment allows the agent to assess the next move based on the current set
of relations between itself and the environment (e.g., ability to move forward but not
leftward at the current state). This allows reasoning that saves computational resources
and performs more analogously to human reasoning.

Given the continuous tracking of object parameters such as position and orienta-
tion, facilitated by a game engine or simulation, and the knowledge of object, event,
and functional semantics facilitated by a formal model, an entity’s interpretation at
runtime can be computed in conjunction with the other entities it is currently interact-
ing with and their properties. One such canonical example would be placing an object
[[SPOON]] in an [[IN]] relation with another object [[MUG]] (Fig. 6).

The mug has an intrinsic top, which is aligned with the upward Y-axis
of the world or embedding space (denoted in VoxML as {align(Y, &y ),
top(+Y)}). The mug is a concave object, and the mug’s geometry (the
[[cuP]], excluding the handle) has reflectional symmetry across its inherent
Figure 6. (object-relative) XY- and YZ-planes, and rotational symmetry around its
[[sPOON inherent Y-axis such that when the object is situated in its inherent top
IN habitat, its Y-axis is parallel to the world’s. From this we can infer that the
MUG]]. opening (e.g., access to the concavity) must be along the Y-axis. Encoding

the object’s concavity allows fast computation for physics and collisions
using bounding boxes, while still facilitating reasoning over concave objects.

An embodied simulation model such as VoxWorld is an approach that integrates
all three aspects of simulation: a situated embodied environment built on a game en-
gine platform. The computer, either as an embodied agent distinct from the viewer,
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or as the totality of the rendered environment itself, presents an interpretation (mind-
reading) of its internal model, down to specific parameter values, which are often
assigned for the purposes of testing that model. As such, it provides a rich environ-
ment within which to experiment with task-oriented dialogues, such as those explored
in Section 6, because of the requirement that the agent have a situated embodiment
in which it interprets its environment and its interlocutor. This in turn requires the
creation of common ground (CG) between the human and the AI that allows them
to communicate. The parameters within this CG structure can be varied and set ac-
cording to various experimental configurations, allowing us to both qualitatively and
quantitatively measure the effect of different CG structures on the communication. For
example, we can experiment with variable settings for the composition of multimodal
referring descriptions as well as action or event predicates; that is, what aspects of the
content of the expression are conveyed through each modality, speech or gesture? An-
other variation involves the degree of alignment of information in each modal channel;
that is, whether a linguistic expression and gesture are synchronous or asynchronous
when generated. The interaction in Fig. 7 illustrates a person directing an avatar to
pick up a block, using an asynchronous multimodal expression.

We assume that a simulation is a contextu-
alized 3D virtual realization of both the situa-
tional environment and the co-situated agents, as
well as the most salient content denoted by com-
municative acts in discourse between them. The
encoding that VoxML provides for objects, with
its rich semantic typing and action affordances,

Figure 7. Asynchronous enables VoxWorld to describe agent actions as
ensemble dialogue: Human multimodal programs, as well as identifying and
grasping gesture precedes his tracking the elements of the common ground that
linguistic utterance, “Grab it”. are revealed in the interaction between parties, be

they humans or artificially intelligent agents.

5. Multimodal Semantics for Common Ground

The theory of common ground has a rich and diverse literature concerning what
is shared or presupposed in human communication (Clark and Brennan, 1991; Stal-
naker, 2002; Asher, 1998; Ginzburg and Fernandez, 2010). With the presence of a
common ground during shared experiences, embodied communication assumes agents
can understand one another in a shared context, through the use of co-situational and
co-perceptual anchors, and a means for identifying such anchors, such as gesture,
gaze, intonation, and language. In this section, we develop a computational model of
common ground for multimodal communication.

We assume generally a model of discourse semantics as proposed in Asher and
Lascarides (2003), as it facilitates the adoption of a continuation-based semantics for
our phrase-level compositional semantics (Barker and Shan, 2014), as well for dis-
course, as outlined in De Groote (2001) and Asher and Pogodalla (2010). For the
present discussion, however, we will not refer to SDRT representations, but focus
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instead on the semantics integrated multimodal expressions in the context of task ori-
ented dialogue, as presented first in (Pustejovsky, 2018) and extended here.

Here, we introduce the notion of a common ground structure, the information as-
sociated with a state in a dialogue or discourse. We model this as a state monad
(Unger, 2011), as illustrated in (5).

(5) State Monad: Mo = State — (o x State)

A state monad corresponds to computations that read and modify a particular state, in
this case a state in the discourse. M is a type constructor that constructs a function
type taking a state as input and returns a pair of a value and a new or modified state as
output. This monad consists of the following state information:

(6) a. the communicative act, C,, performed by an agent, a: a tuple of expressions
from the modalities involved. For our present discussion, we restrict this to a
linguistic utterance, S (speech) and a gesture, G. There are hence three possible
configurations in performing a C: C,, = {(G), (5), (S, G)};

b. A: the agents engaged in communication;
c. B: the shared belief space;
d. P: the objects and relations that are jointly perceived in the environment;
e. £: the embedding space that both agents occupy in the communication.
The common ground structure (CGS) can be represented graphically as in (7), where

an agent, a;, makes a communicative act either through gesture, G in (7a), or linguis-
tically, as in (7b.) !

A:ai,as B:A Pb £ F
(7) a. b.
ga1

A:ai,a9 B:A Pb £ F
Sa;, = “You,, see ity”

(7a) specifies that two agents, a; and ag, co-inhabiting an embedding space, E, within
which the experience is embodied, share a set of beliefs, A, where they can both see
the object, b. Given this representation, the gesture is now situated to refer to objects
and knowledge within the CG structure. In (7b), the linguistic expression, S, , is
grounded relative to the parameters of common ground, where the indexical you will
denote the agent, as, and the pronoun it will denote the object, b.

We have augmented and extended the approach taken in Kendon (2004) and Las-
carides and Stone (2009), where gestures are simple schemas consisting of distinct
sub-gestural phases, where Stroke is the content-bearing phase of the gesture.

(8) G — (Prep) (Pre_stroke Hold) Stroke Retract

!This is similar in many respects to the representations introduced in Cooper and Ginzburg
(2015), Ginzburg and Fernandez (2010) and Dobnik et al. (2013) for modeling action and con-
trol with robots.
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In the context of multimodal dialogues and interactions with computational agents
and robots, gesture’s Stroke will denote a range of primitive action types, ACT, e.g.,
grasp, pick up, move, throw, pull, push, separate, and put together. There are many
ways to convey intent to carry out these actions, but they all involve two characteris-
tics: (a) the action’s object is an embodied reference in the common ground; and (b)
the gesture sequence must be interpreted dynamically, to correctly compute the end
state of the event. To this end, we model two kinds of gestures in our dialogues: (a)
establishing a reference; and (b) depicting an action-object pair.

(9) a. Deixis: D,; — Dir Obj
b. Action: Gy — Act Obj

We introduce the notion of an interpreted gesture tree in (10a), which indicates that
the gesture D,;; functionally consists of a deictic orientation, Dir, with the demon-
stratum, d, and the referenced or denoting entity, Obj, denoting b;.

(10) Interpreted Gesture Tree:

a. Deixis: Doy; — Dir Obj b. Action: G4 — Act Obj
Do(,j Acty f

D|ir Obj Act Obj
d b a b

As gesture is intended for visual interpretation, it is directly interpretable by the in-
terlocutor in the context if and only if the value is clearly evident in the common
ground, most likely through visual inspection. Directional or orientational informa-
tion conveyed in a gesture identifies a distinct object or area of the embedding space,
E, by directing attention to the End of the designated pointing ray (or cone) trace
(Lascarides and Stone, 2009; Liicking et al., 2015; Pustejovsky, 2018).
(11 [Doy;] = [End(ray(d))]
We model the interpretation function, [.], as fully determining the value of the deixis
in the context, supplied by the common ground, which we discuss below. In (10b),
the action gesture type, G 4 ¢, consists of an action-object pairing, where the action, a,
is applied to the object, by, in some prototypical manner. The strategies available are
outlined in (12-14).
(12) ACTION-OBJECT: e.g., grab [Object]
b. GvP1 — Gay Doy; (Action Focus)
— Dypj G ay (Object Focus)

®»

(13)

&

ACTION-RESULT: e.g., put [Object] at [Location]

b. GvP; — Gy Dop; Dioc (Action Focus)
— Dopj Gag Dioe (Object Focus)
— Doyj Dioc G ay (Transition Focus)

(14)

&

ACTION-RESULT: e.g., move [Object] [Direction]
b. GUPg — GAf Dobj Dgir
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As mentioned above, the deictic gesture in (9a) and (10a) actually serves to indicate
both a location and objects within that location, suggesting that deixis denotes a dot
object, viz., PHYSOBJeLOCATION (Pustejovsky, 1995). Either of these type compo-
nents may be exploited by the deictic reference, which is then interpreted in context,
either as a selection (exploiting the PHYSOBJ) or as a destination (exploiting either).
For example, should an object b; already be selected through a deixis dg, as in (10a),
a subsequent deixis d, may be interpreted as selecting a destination location in isola-
tion (in which case the interpretation exploits the LOCATION of d;), or as selecting a
location relative to another object (exploiting the PHYSOBJ type of d). We discuss
this further below.

With conventional treatments of continuation-style passing within the utterance,
all linguistic expressions are continuized within the sentence. This has a distinct ad-
vantage in multimodal processing, because it allows for an informational distribution
among the expressions being used in composition to form larger meanings.

By treating the common ground as a state monad, as described above, we can con-
tinuize the composition above the level of the sentence as well. Following De Groote
(2001), Asher and Pogodalla (2010) and further developments in Van Eijck and Unger
(2010), we represent a context as a stack of items and the type of left contexts to be
lists of entities, [e]. Right contexts will be interpreted as continuations: a discourse
that requires a left context to yield a truth value. The type of a right context is therefore
[e] — t. Hence, context transitions get the type [e] — [e] — ¢; they are character-
istic functions of binary relations on contexts. The continuized semantics for gesture
phrases is in (15).

(15) a. S¢ — (NP) GvP
[S1 = (INP][GvP])
b. GvP; — Gaf DObj
[GVP1] = Aji-(IDow;1; Aj"-(([Gar]i")d))
c. GvPy — Gaf DObjDLoc
[GVP2] = Ak.(IDLoc]; Aj-([Dovi]; AJ"-(([Gar]i")5)k))
d. GvP3; — Gaf DObjDDir
[GVP3] = Ak.(IDpir]; Aj-([Dos;]; A" ((IGas15)5)K))

The discourse updating operation is accomplished through continuation-passing as
well, as in (Asher and Pogodalla, 2010). We apply a CPS transformation to arrive at
the continuized type for each expression, notated as an overlined expression (Van Eijck

and Unger, 2010). Given the current discourse, 7', and the new utterance, C, we take
the integration of C'into T as follows:

(16) [(T.O)]*:¢9 = Ak.[T](An.[C](Am.k(m n)))

To illustrate how continuations help in the interpretation of gesture sequences,
consider a single modality gesture imperative.
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SINGLE MODALITY (GES- ” Thﬁro(t;gh 1t}s1 ovf;/n cc()int.m.uatll)on, th; referen(;
TURE) IMPERATIVE 1dentifie '1nt e first deixis, Ob]:, 1S passe
to the action (Ak.k([Move])), while the con-

HUMAN;: G = [points to tinuized interpretation of the action delays the

the purple block]+1 computation of its argument until the appro-
HUMANsy: G = [makes priate binding has been identified. Finally,
move gesture]2 the goal location for the movement selected
HUMAN3: G = [points to for by the move gesture is identified through

the red block] s the action of the continuized location deixis,

L J) Droc. This is illustrated in (18), along with

the common ground structure that is com-
puted, shown in (17).

A:ay,a; B: A P: by, locy,locy £: E

Put,,

- T
Do, Imp Droc
N T T N\

Dir Obj Agent Gay Dir Obj
| | T~ |

d b az Act Obj Loc d loc

Move T Y
(17)

(18) [Dopj-Move.Dyoc] = Ak.([Droc]; Aj.([Dow;i]; Aj'-(([Move]s")7)k))

Given a description of the gesture grammar as used in our multimodal dialogues,
let us explore a communicative act that exploits a combination of both speech and
gesture, (S, G). We identify three configurations for how a language-gesture ensem-
ble can be interpreted, depending on which modality carries the majority of semantic
content: (a) language with co-speech gesture, where language conveys the bulk of the
propositional content and gesture adds situated grounding, affect, effect, and presup-
positional force (Cassell et al., 2000; Lascarides and Stone, 2009; Schlenker, 2020);
(b) co-gestural speech, where gesture plays this role (Pustejovsky, 2018); and (c) a
truly mixed modal expression, where both language and gesture contribute equally to
the meaning. In practice, while many of the interaction in our dialogues have this prop-
erty, the discourse narrative is broadly guided by gesture. For this reason, we model
the multimodal interactions as content-bearing gesture with co-gestural speech.

A multimodal communicative act, C, consists of a sequence of gesture-language
ensembles, (g;, s;), where an ensemble is temporally aligned in the common ground.
Let us assume that a linguistic subexpression, s, is either a word or full phrase in the
utterance, while a gesture, g, comports with the gesture grammar described above.

(19) Co-gestural Speech Ensemble: We assume an aligned language-gesture
G g1 o Gi - On syntactic structure, for which we provide a
S st ... S ... S continuized semantic interpretation. Both
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of these are contained in the common ground state monad introduced above (6). For

each temporally indexed and aligned gesture-speech pair, (g, s), we have a continuized

interpretation, as shown below. Each modal expresssion carries a continuation, k, or
ks, and we denote alignment of these two continuations as ks ® kg, seen (20).

We bind co-gestural speech to specific gestures

(20) Aks.Es([s]) in the communicative act, within a common

Mkg.ky([g]) ground, CGS. A dashed line in (21) indicates that

ks @ kg.ks @ kg ([(s:8)])  aco-gestural speech element, S, is aligned with a

particular gesture, G. For example, consider the co-gestural speech expression below.

The CG structure for this expres- SINGLE MODALITY (GESTURE) IMPERATIVE
sion G Dov; Grabg is HUMAN;: S =That;,

’ S THAT ’ G = [points to purple block]s
shown in (21) HUMANs: G = [makes grab gesture]

(1) [(THAT, Doy;).{_, Grab)] = Aks @ ky.([Dow;]; Adg-(([Grab]jg) ks @ k)

Common ground updates will also include ex-
ecuting modal operations over the belief space B,

A:aj,ap B:A P:by £:E

GU,, where each new element from the discourse is intro-
T duced via a public announcement logic (PAL) for-
Point, Imp mula, and each new perceived object or relation is
N Py introduced into P via an analogous public perception
Dir Obj Agent  ActO logic (PPL) formula (Plaza, 2007; Van Ditmarsch

1 N 1 et al, 2007; Van Benthem, 2011). We will use
d & : A‘Ct O|bj [a]e to denote that an agent “« knows ¢”. Public
\ announcements are implemented as: [!¢1|¢2. An
N Grab T p y
that proposition, ¢, in the common knowledge held by

‘ two agents, « and 3, is computed as: [(a U 8)*]¢p.

Similarly, an agent a’s perception is encoded as
sets of accessibility relations, «, between situations.
What is seen in a situation is encoded as either a
proposition, ¢, or existential statement of an object, x, Z. [@], ¢ denotes that agent “«
perceives that ¢”. [«],4 denotes that agent “« perceives that there is an z.”

Given the theory of two-level
affordances proposed here (Gib-
sonian/Telic), we can naturally
think of objects as antecedents to
the actions performable on them. For each object in (22), we identify attached
behaviors. This naturally suggests that affordances are a subclass of continua-
tions. For example, both cup and block have similar Gibsonian affordance values,
but quite distinct Telic affordance values. This can be distinguished by the na-
ture of their respective Telic continuation sets as follows, where sel is a function
that selects a suitable discourse antecedent inside the continuation set (Asher and
Pogodalla, 2010): Akgip ® kretic-kaiv ® kTelic(Cup), grab C sel kg, drink C
sel Ereic, Aegib @ kretic-kaiv @ kretic(block), grab C sel kg, pick_up C
sel kg, move C sel kggp. This is the subject of ongoing research.

(22) a. block: Pick me up!, Move me!
b. cup: Pick me up!, Drink what’s in me!
c. knife: Pick me up!, Cut that with me!
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6. Experiments with Multimodal Dialogues
6.1. Aspects of Multimodal Compositionality

In this section, we provide additional formal analysis of experimental data gathered
from multimodal dialogues between a human and a computational agent, represented
as an avatar in VoxWorld. We examine extracts from dialogues between humans and
computational agents in various tasks, in order to examine the nature of the commu-
nicative act in the context of the common ground structure. We illustrate how the
situated meaning of the multimodal expression is constructed in each case. In partic-
ular, we look at three aspects of multimodal compositionality in these examples:

(23) a. generating referring expressions using different modalities;
b. generating and interpreting action and event expressions;
c. generating full action descriptions using both gesture and language.

Recall that a multimodal communicative act, C, consists of a sequence of gesture-
language ensembles, (g;, s;), where an ensemble is temporally aligned in the com-
mon ground. For the examples below, we annotate the dialogue with the contribution
of both speech and gesture for each agent. Each dialogue turn encodes a multimodal

ensemble, , which may or may not be realized in both modalities. In the annota-

S
g
tion below, alignment between the modalities is indicated through a temporal indexing
on the appropriate modal expression, e.g., t;.

Since we can use speech and gesture to indicate
objects, location, and actions, we bias our speech
recognition toward syntactic categories that represent
partial information (e.g., NPs for objects, PPs for lo-
cations, VPs for actions), using incrememntal pre-
dictivity (cf. Hough et al. (2015)). We parse input
in both directions, so we can take inputs like “put
a block on the purple block” without resolving “a
block™ to the purple block, to prevent the agent from
putting the purple block on itself.

Figure 8. Co-gestural speech
imperative.

MIXED MODALITY IMPER Atay,a; B: A P: by,locy,locs Er €
HUMAN;: S = Thaty ////P/“ff‘\,,ﬁ\%
= ints to th Point, Imp Point,
G = [points to the -
p Ufple bIOCk]tl Dir Obj Agent Ac‘tO Dir Obj

\ |
HUMANsy: S = Moves @ At Obj Loc d loc

b
(24) G = [makes move \M{‘n(/i 1‘/ \l/

o

gesture] o ,
HUMAN3: S = There;s that m.‘T’Ve thore
oo \ \
g [pOIHtS to the red Demp Action Demy,
block]3 ~

Sa,

Ars@rq.([{THERE, Droc) | Aks @kg. ([{THAT, Dow; ) |; Ajs®7q.(([(MOVE, Move)]js®
Jg)ks @ kg))rs ® 1g)
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6.2. Multimodal Referring Expressions

The Embodied Multimodal Referring Expressions (EMRE) dataset
(Krishnaswamy and Pustejovsky, 2019) consists of 1,500 visual simulated situations
showing an agent (Diana) indicating various object in a scene each accompanied by
a definite referring expression. Referring expressions may take the form of deictic
gesture only, a spoken description only with no demonstratives (e.g., “the red block
in front of the knife and left of the green block™”), or a mixed-modality referring
expression as in Fig. 9 (right). Fig. 9 (left) shows a sample still that accompanies the
utterance, with an equivalent common ground structure one the right.

A:qg,an B: A P:t,c k,pl,p1,p2,T1,72,91,92 € : E

GUa,

Point,,

/\

Dir Obj

d n

that red block in front of the knife

Demgp PProc

Ak, ® kg(that(x)[block(x) Ared(x) A
in_front(x, &, N1 A k, ® kg(x)], ~

where v = q, Sa

Figure 9. Left: Sample still from the EMRE dataset (L), with CGS (R) and semantics
of the RE (below), showing a continuation for each modality, ks and kg, which apply
over the object subsequently in the dialogue.

Amazon Mechanical Turk workers evaluted the EMRE dataset on a Likert-type
scale for naturalness of the depicted referring expression for the indicated object. We
found a clear preference for the multimodal referring expressions, suggesting that
the redundancy provided by co-occurring language and gesture made for the clearest,
most natural references to objects.

In Krishnaswamy and Pustejovsky (2020), we extracted formal features from the
data as one-hot vectors representing elements of common ground structures. If in one
of visualized REs, the avatar points to b, one of the jointly perceived objects € P, such
that Vb (b € P — Ky, Po,b A Ko, Pa,)- This demonstrates the avatar can point, and
knows that b is the target [C,,, = Pointy — Dir b1Kq, Ko, (Pointg A target(b)),
which is encoded as a single feature. An agent may introduce a new object into the
dicussion, making common the knowledge of its existence. Or an agent a uses a term
t to make public the knowledge of a’s interpretation of ¢.

We used these CGS-extracted features to train a neural net to predict the natural-
ness of a given referring expression, using the naturalness judgments from the EMRE
dataset as ground truth. The EMRE dataset contains situational information about the
specific configuration in which the referring expression was generated, and the lin-
guistic referring expression itself, so we tested the effects of including formal, CGS-
derived features by training classifiers on combinations of the symbolic situational
features, embedding vectors of the linguistic RE, and the CGS-derived features.
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We trained a multilayer preception, a simple, fast architecture that can distin-
guish dependencies in linearly-inseparable regions of data. This architecture con-
sists of three fully-connected hidden layers of 32, 128, and 64, respectively, prior to
a softmax output layer. The layers use tanh, ELU, and tanh activation, respec-
tively, cross-entropy loss and Adam optimization, and is trained for 1,000 epochs with
a batch size of 50. We perform 7-fold cross-validation in order to achieve a more
balanced sample across all classes of annotator judgments. k = 7 is chosen here
to approximate a leave-one-out cross-validation approach over the 8 annotator judg-
ments on each visualized referring expression. The “most likely” annotator judgment
in the EMRE dataset is a probability distribution so, we regard a “correct” prediction
by the classifier as one that falls within the correct quintile of the distribution over all
annotator judgments of that visualized referring expression.

Raw features | Raw feat. + SE Fig. 10 shows that inclu-
p Ace. (1K) | 0.6757 0.6429 sion of formal features de-
o Acc. (1K) | 0.0230 0.0111 rived from the elements of
Raw + | Raw + Formal | common-ground structures im-
form. form. + SE | only proved classifier prediction ac-
wAce. (1K) | 0.7214 | 0.6671 0.7471 | curacy by between 7% and 11%
o Ace. (1K) | 0.0398 | 0.0243 0.0269 | relative to baseline predictions

that used the raw features of the
EMRE dataset, plus sentence
embedding representations of
the referring expression itself. This suggests that common ground structures provide
a dense, interpretable representation of the dialogue state, facilitating generation of
natural, situation-appropriate referring expressions, and predicts the natural quality of
a referring expression beyond other strong predictors of naturalness, e.g., modality.

Figure 10. Classification accuracy using formal
features (mean and standard deviation).

6.3. Interruptions and Corrections in Dialogue

Establishing entities in a common ground struc-
ture so they can be recombined appropriately and in-
terpreted in context allows us to build asynchronous
agent behaviors capable of interruption and correc-
tion. Correction (Fig. 12) is currently implemented
by performing three functions: (a) Undo, which re-
continuizes an expression which has saturated its pa-
rameters, i.e., undo k = A\k.k(grab); (b) Rewind,
which reintroduces the previous monad; and (c) Re-
Figull'e 11. CO"' recting and assign, which takes the corrected value and assigns
undoing an action. it, resulting in M, cgs = grab(white).

In this manner, parameters can be unbound from either object or location argu-
ment, depending on the typing of the content communicated. Fig. 11 shows one such
situation, where the replacement content “on the white one” is evaluated to a location.
The state monad containing the location on the blue block is rewound, and the argu-
ment reassigned to the location on top of the white block. Had the utterance been “the



REFERENCE REPAIR

H: G = [points to area around
yellow and white blocks]
D: S = Okay.1
G = [picks up yellow
block]¢1
H: S = No, the white one.
D: S = Okay.i2
G = |[picks up white
block] 2
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The user ambiguously points to yellow
and white blocks. Diana chooses the
yellow block (Ak.k(grab) = M, cqy
= grab(yellow)). The user corrects

Figure 12. Correcting deictic reference

her, focus is unbound from the yellow
block and assigned to the white block.

white one,” the action would be reassigned with the white block as the theme, with the
previously-existing target location, and Diana would put down the yellow block and

put the white block on the blue block.

6.4. Affordance Structure and Transfer Learning

Diana may come across objects with
different affordances from the typical
Blocks World scenario. In these cases,
the semantics of each object provided
by VoxML allows Diana to learn new
gestures associated with specific affor-
dances of specific objects. Fig. 13 spec-
ifies such an interaction.

Using a random forest classifier, the
gesture the human makes to associate
with the specific affordance is situated
in the search space defining the existing
known gestures. Those learned grasp se-
mantics can then be propagated down to
any other event containing [[GRASP]] as
a subevent, as shown in (25).

while(C, A) states that an activ-
ity, A, is performed only if a con-
straint, C, is satisfied at the same mo-
ment. Thus, if the agent encoun-
ters a [[SLIDE]] action with an out-
standing variable (\y.slide(y, loc)), and
the human makes a gesture denoting
grasp(plate), the agent can directly lift
grasp(plate) to the slide action and ap-

AFFORDANCE LEARNING 1IN
KITCHENWORLD

HUMAN: S = The plate.

DIANA: S = Okay.;1
G = [points to the plate]+1

HUMAN: G = [makes “claw down”
gesture]

DIANA: S = Should T grasp it
like this;2?
G = [grasps plate from the
side]t2

HUMAN: S = Yes.

DIANA: S = Is there a gesture
for that?

HUMAN: G = [makes “grasp plate”

gesture]

Figure 13. Diana and human interacting.

ply the argument plate to y: \y.slide(y, loc)@plate = \y.slide(y, loc).
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(25) grasp(ei, AG,y); while(hold(AG,y) A on(y, SURF) A —at(y,LOC)),
move_to(ez, AG,y,LOC)); if(at(y, LOC), ungrasp(es, AG,y))

Model % correct cluster Affordance properties can also be
MLP (Habitats) 78.82 transferred between objects. Given
MLP (Affordances) | 84.71 that similar habitats serve as neces-
CNN (Habitats) 78.82 sary (but not sufficient) preconditions
CNN (Affordances) | 81.18 to behaviors (e.g., to be rolled, an ap-

ple, cup, and bottle must all be turned
on their sides), the ability to assess an
unknown object relative to known ones allows an agent to transfer properties between
them, to gain a handle on interacting with and discussing a novel object. Consider
Fig. 15, where Diana has no semantics for what we recognize as a bottle.

Figure 14. Prediction accuracy w/ 6 means.

Diana observes similarities in the
cup’s habitats and the bottle’s (e.g., sim-
ilar orientation, symmetry and size con-
straints), infers they may share behav-
iors, and so grasps one like the other.
Links between habitats and affordances
allows inference of similar objects and
behaviors in the current situation.

TRANSFER OF
DANCES

OBJECT AFFOR-

Over 17 VoxML objects (e.g., Fig.2),

we trained 200D habitat and affordance HUMAN: S = What is that?;;

embeddings using a Skip-Gram model
for 50,000 epochs with window size 3.
Objects were represented as averaged
habitat or affordance vectors. These
embeddings were run through a 7-layer
MLP and a 4-layer (1D) CNN, that
chose the known object most similar to
the unlabeled vector. E.g., a vector rep-
resenting a plate’s affordances was pre-
dicted to be similar to a cup or bottle due
to its containment affordance.

For each object, 8 annotators chose
the 2 most similar objects in the vocab-
ulary, in terms of their afforded behav-
iors, and we performed k-means cluster-
ing over these annotations. Our models

G = [ points to the cup]y1
DIANA: S = That’s a cup2

G = [points to the cup]t2

HUMAN: S = What is that?;3
g =
bottle]3
DIANA: S =1 don’t know, but
I could grasp it like a

[points to the

CUpt4.
G = [points to the
bottle]¢4
HUMAN: S = Grab it.
DIANA: G = |[grasps bottle

from the side];s

Figure 15. Transferring affordance
properties through dialogue.

trained on habitat or affordance embedding vectors successfully predicted an object
in the correct cluster 80% of the time (Fig. 14). Diana then enacted known behav-
iors over novel objects (Fig. 15, top right). Further analysis of these models and their
properties are ongoing but these early results show how affordances can be used to
train useful models over small sample sizes.
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7. Conclusion

Multimodal peer-to-peer interfaces require robust integration of conversational
modalities in a naturalistic fashion. We have outlined the first steps toward such inte-
gration, based on the logic of our multimodal simulation semantics and 3D environ-
ment as the platform for shared common ground. We give our computational agent
a framework for major faculties natively available to humans using computer vision
techniques to recognize gesture and by laying the groundwork for a modal logic of
synthetic vision. The result is a framework and platform that interweaves linguistic
and non-linguistic modalities in the completion of a shared task by exploiting the rel-
ative strengths of linguistic and non-linguistic context to exchange information in a
situated communication. We have also developed this framework into an interaction
with a mobile robot mediated by a virtual rendition of the environment the robot sees
as it explores. The human then gestures to objects and locations on the screen and
gives the robot grounded instructions with spoken English and gesture.

We hope to have demonstrated that the notion of situatedness involves embedding
linguistic expressions and their grounding within a multimodal semantics. This ap-
proach allows environmentally-aware models that can be validated; if one model of
expression (e.g., gesture) is insufficiently communicative, another (e.g., language) can
be used to examine where it went wrong. Each additional modality provides an avenue
through which to validate models of other modalities.
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