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Abstract

Textual representation learners trained on large

amounts of data have achieved notable success

on downstream tasks; intriguingly, they have

also performed well on challenging tests of

syntactic competence. Hence, it remains an

open question whether scalable learners like

BERT can become fully proficient in the

syntax of natural language by virtue of data

scale alone, or whether they still benefit from

more explicit syntactic biases. To answer

this question, we introduce a knowledge

distillation strategy for injecting syntactic

biases into BERT pretraining, by distilling

the syntactically informative predictions of a

hierarchical—albeit harder to scale—syntactic

language model. Since BERT models masked

words in bidirectional context, we propose to

distill the approximate marginal distribution

over words in context from the syntactic LM.

Our approach reduces relative error by 2–21%

on a diverse set of structured prediction tasks,

although we obtain mixed results on the

GLUE benchmark. Our findings demonstrate

the benefits of syntactic biases, even for

representation learners that exploit large

amounts of data, and contribute to a better

understanding of where syntactic biases are

helpful in benchmarks of natural language

understanding.

1 Introduction

Large-scale textual representation learners trained

with variants of the language modeling (LM) obj-

ective have achieved remarkable success on down-

stream tasks (Peters et al., 2018; Devlin et al.,

2019; Yang et al., 2019). Furthermore, these mo-

∗Equal contribution.

dels have also been shown to perform remark-

ably well at syntactic grammaticality judgment

tasks (Goldberg, 2019), and encode substantial

amounts of syntax in their learned representa-

tions (Liu et al., 2019a; Tenney et al., 2019a,b;

Hewitt and Manning, 2019; Jawahar et al., 2019).

Intriguingly, success on these syntactic tasks

has been achieved by Transformer architectures

(Vaswani et al., 2017) that lack explicit notions of

hierarchical syntactic structures.

Based on such evidence, it would be tempting

to conclude that data scale alone is all we need to

learn the syntax of natural language. Nevertheless,

recent findings that systematically compare the

syntactic competence of models trained at varying

data scales suggest that model inductive biases are

in fact more important than data scale for acquiring

syntactic competence (Hu et al., 2020). Two

natural questions, therefore, are the following:

Can representation learners that work well at scale

still benefit from explicit syntactic biases? And

where exactly would such syntactic biases be

helpful in different language understanding tasks?

Here we work towards answering these questions

by devising a new pretraining strategy that injects

syntactic biases into a BERT (Devlin et al., 2019)

learner that works well at scale. We hypothesize

that this approach can improve the competence of

BERT on various tasks, which provides evidence

for the benefits of syntactic biases in large-scale

models.

Our approach is based on the prior work of

Kuncoro et al. (2019), who devised an effective

knowledge distillation (KD; Bucilǎ et al., 2006;

Hinton et al., 2015) procedure for improving

the syntactic competence of scalable LMs that

lack explicit syntactic biases. More concretely,

their KD procedure utilized the predictions of

an explicitly hierarchical (albeit hard to scale)

syntactic LM, recurrent neural network grammars
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(RNNGs; Dyer et al., 2016) (§2) as a syntactically

informed learning signal for a sequential LM that

works well at scale.

Our setup nevertheless presents a new chal-

lenge: Here the BERT student is a denoising

autoencoder that models a collection of con-

ditionals for words in bidirectional context, while

the RNNG teacher is an autoregressive LM that

predicts words in a left-to-right fashion, that is

tφ(xi|x<i). This mismatch crucially means that

the RNNG’s estimate of tφ(xi|x<i) may fail to

take into account the right context x>i that is

accessible to the BERT student (§3). Hence, we

propose an approach where the BERT student

distills the RNNG’s marginal distribution over

words in context, tφ(xi|x<i,x>i). We develop

an efficient yet effective approximation for this

quantity, since exact inference is expensive owing

to the RNNG’s left-to-right parameterization.

Our structure-distilled BERT model differs

from the standard BERT model only in its pre-

training objective, and thus retains the scalability

afforded by Transformer architectures and special-

ized hardwares like TPUs. In fact, our approach

maintains compatibility with standard BERT pipe-

lines; the structure-distilled BERT models can

simply be loaded as pretrained BERT weights,

which can then be fine-tuned in the exact same

fashion.

We hypothesize that the stronger syntactic

biases from our new pretraining procedure are

useful for a variety of natural language under-

standing (NLU) tasks that involve structured

output spaces—including tasks like semantic role

labeling (SRL) and coreference resolution that are

not explicitly syntactic in nature. We thus evaluate

our models on six diverse structured prediction

tasks, including phrase-structure parsing (in-

domain and out-of-domain), dependency parsing,

SRL, coreference resolution, and a combinatory

categorial grammar (CCG) supertagging probe, in

addition to the GLUE benchmark (Wang et al.,

2019). On the structured prediction tasks, our

structure-distilled BERTBASE reduces relative

error by 2% to 21%. These gains are more pro-

nounced in the low-resource scenario, suggesting

that stronger syntactic biases help improve sample

efficiency (§4).

Despite the gains on the structured prediction

tasks, we achieve mixed results on GLUE: Our

approach yields improvements on the corpus of

linguistic acceptability (Warstadt et al., 2018,

CoLA), but performs slightly worse on the rest

of GLUE. These findings allude to a partial

dissociation between model performance on

GLUE, and on structured prediction benchmarks

of NLU.

Altogether, our findings: (i) showcase the bene-

fits of syntactic biases, even for representation

learners that leverage large amounts of data, (ii)

help better understand where syntactic biases are

most helpful, and (iii) make a case for designing

approaches that not only work well at scale, but

also integrate stronger notions of syntactic biases.

2 Recurrent Neural Network Grammars

Here we briefly describe the RNNG (Dyer et al.,

2016) that we use as the teacher model. An RNNG

is a syntactic LM that defines the joint prob-

ability of surface strings x and phrase-structure

nonterminals y, henceforth denoted as tφ(x,y),
through a series of structure-building actions that

traverse the tree in a top–down, left-to-right fash-

ion. LetN andΣ denote the set of phrase-structure

non-terminals and word terminals, respectively.

At each time step, the decision over the next action

at ∈ {NT(n),GEN(w),REDUCE}, where n ∈
N and w ∈ Σ, is parameterized by a stack LSTM

(Dyer et al., 2015) that encodes partial constit-

uents. The choice of at yields these transitions:

• at ∈ {NT(n),GEN(w)}would push the cor-

respondingnon-terminal or word embeddings

—en or ew—onto the stack;

• at = REDUCE would pop the top k
elements up to the last incomplete non-

terminal, compose these elements with a

separate bidirectional LSTM, and lastly push
the composite phrase embedding ephrase back

onto the stack. The hierarchical inductive

bias of RNNGs can be attributed to this

composition function,1 which recursively

combines smaller units into larger ones.

RNNGs attempt to maximize the probability of

correct action sequences relative to each gold

tree.2

1Not all syntactic LMs have hierarchical biases; Choe

and Charniak (2016) modeled strings and phrase structures

sequentially with LSTMs. This model can be understood as

a special case of RNNGs without the composition function.
2Unsupervised RNNGs (Kim et al., 2019) exist, although

they perform worse on measures of syntactic competence.
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Extension to Subwords. Here we extend the

RNNG to operate over subword units (Sennrich

et al., 2016) to enable compatibility with the

BERT student. As each word can be split into

an arbitrary-length sequence of subwords, we

preprocess the phrase-structure trees to include

an additional nonterminal symbol that represents

a word sequence, as illustrated by the example ‘‘(S

(NP (WORD the) (WORD d ##og)) (VP (WORD

ba ##rk ##s)))’’, where tokens prefixed by ‘‘##’’

are subword units.3

3 Approach

We begin with a brief review of the BERT

objective, before outlining our structure distil-

lation approach.

3.1 BERT Pretraining Objective

The aim of BERT pretraining is to find model

parameters θ̂B that would maximize the prob-

ability of reconstructing parts of x = x1, · · · ,
xk conditional on a corrupted version c(x) =
c(x1), · · · , c(xk), where c(·) denotes the

stochastic corruption protocol of Devlin et al.

(2019) that is applied to each word xi ∈ x.

Formally:

θ̂B = argmin
θ

∑

i∈M(x)

− log pθ(xi|c(x1), · · · , c(xk)),

(1)

where M(x) ⊆ {1, · · · , k} denotes the indices

of masked tokens that serve as reconstruction

targets.4 This masked LM objective is then

combined with a next-sentence prediction loss

that predicts whether the two segments in x are

contiguous sequences.

3.2 Motivation

Because the RNNG teacher is an expert on

syntactic generalizations (Kuncoro et al., 2018;

Futrell et al., 2019; Wilcox et al., 2019), we adopt

a structure distillation procedure (Kuncoro et al.,

2019) that enables the BERT student to learn from

the RNNG’s syntactically informative predictions.

Our setup nevertheless means that the two models

here crucially differ in nature: The BERT student

3An alternative here is to represent each phrase as a flat

sequence of subwords, although our preliminary experiments

indicate that this approach yields worse perplexity.
4In practice, the corruption protocol c(·) and the recon-

struction targets M(x) are intertwined; M(x) denotes the

indices of tokens in x (∼ 15%) that were altered by c(x).

Figure 1: An example of the masked LM task, where

[MASK] = chase, and window is an attractor (red). We

suppress phrase-structure annotations and corruptions

on the context tokens for clarity.

is not a left-to-right LM like the RNNG, but rather

a denoising autoencoder that models a collection

of conditionals for words in bidirectional context

(Eq. 1).

We now present two strategies for dealing

with this challenge. The first, naı̈ve approach

is to ignore this difference, and let the BERT

student distill the RNNG’s marginal next-word

distribution for each w ∈ Σ based on the left

context alone, that is tφ(w|x<i). Although this

approach is surprisingly effective (§4.3), we

illustrate an issue in Figure 1 for ‘‘The dogs

by the window [MASK=chase] the cat’’.

The RNNG’s strong syntactic biases mean that

we can expect tφ(w|The dogs by the window) to

assign high probabilities to plural verbs like bark,

chase, fight, and run that are consistent with the

agreement controller dogs—despite the presence

of a singular attractor (Linzen et al., 2016),

window, that can distract the model into predicting

singular verbs like chases. Nevertheless, some

plural verbs that are favored based on the left

context alone, such as bark and run, are in fact poor

alternatives when considering the right context

(e.g., ‘‘The dogs by the window bark/run the cat’’

are syntactically illicit). Distilling tφ(w|x<i) thus

fails to take into account the right context x>i
that is accessible to the BERT student, and runs

the risk of encouraging the student to assign high

probabilities for words that fit poorly with the

bidirectional context.

Hence, our second approach is to learn from

teacher distributions that not only: (i) reflect the

strong syntactic biases of the RNNG teacher, but

also (ii) consider both the left and right context

when predicting w ∈ Σ. Formally, we propose

to distill the RNNG’s marginal distribution over

words in bidirectional context, tφ(w|x<i,x>i),
henceforth referred to as the posterior probability

for generating w under all available information.

We now demonstrate that this quantity can, in fact,

be computed from left-to-right LMs like RNNGs.
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3.3 Posterior Inference

Given a pretrained autoregressive, left-to-right

LM that factorizes tφ(x) =
∏k
i=1 tφ(xi|x<i),

we discuss how to infer an estimate of

tφ(xi|x<i,x>i). By definition of conditional

probabilities:5

tφ(xi|x<i,x>i) =
tφ(x<i, xi,x>i)

∑

w∈Σ tφ(x<i, x̃i = w,x>i)
,

=
tφ(x<i) tφ(xi|x<i) tφ(x>i|xi,x<i)

tφ(x<i)
∑

w∈Σ tφ(w|x<i) tφ(x>i|x̃i = w,x<i)
,

(2)

=
tφ(xi|x<i)

∏k
j=i+1 tφ(xj |x<j)

∑

w∈Σ tφ(w|x<i)
∏k
j=i+1 tφ(xj|x̃<j(w, i))

,

where x̃<j(w, i) = [x<i;w;xi+1:j−1] is an alter-

nate left context where xi is replaced by w ∈ Σ.

Intuition. After cancelling common factors

tφ(x<i), the posterior computation in Eq. 2 is

decomposed into two terms: (i) the likelihood of

producing xi given its prefix—tφ(xi|x<i), and

(ii) conditional on the fact that we have generated

xi and its prefix x<i, the likelihood of producing

the observed continuations x>i—tφ(x>i|xi,x<i).
In our running example (Figure 1), the posterior

would assign low probabilities to plural verbs

like bark that are nevertheless probable under

the left context alone (i.e., tφ(bark |The dogs

by the window) would be probable), because

they are unlikely to generate the continuations

x>i (i.e., we expect tφ(the cat | The dogs by

the window bark) to be low because it is

syntactically illicit). In contrast, the posterior

would assign high probabilities to plural verbs

like fight and chase that are consistent with the

bidirectional context, because we expect both

tφ(fight | The dogs by the window) and tφ(the cat

| The dogs by the window fight) to be probable.

Computational Cost. Let k denote the max-

imum length of x. Our KD approach requires

computing the posterior distribution (Eq. 2)

for every masked token xi in the dataset D,

which (excluding marginalization cost over y)

necessitates O(|Σ| ∗ k ∗ |D|) operations, where

5In this setup, we assume thatx is a fixed-length sequence.

We aim to infer the LM’s estimate for generating a single

token xi, relative to all potential single tokens w ∈ Σ
(denominator in Eq. 2), conditional on the bidirectional

context.

each operation returns the RNNG’s estimate

of tφ(xj|x<j). In the standard BERT setup,6

this procedure leads to a prohibitive number of

operations (∼ 5 ∗ 10+16).

3.4 Posterior Approximation

Because exact inference of the posterior is

computationally expensive, here we propose

an efficient approximation procedure. Approxi-

mating tφ(x>i|xi,x<i) ≈ tφ(x>i|xi) in Eq. 2

yields:7

tφ(xi|x<i,x>i) ≈
tφ(xi|x<i) tφ(x>i|xi)

∑

w∈Σ tφ(w|x<i) tφ(x>i|w)
.

(3)

Although Eq. 3 is still expensive to compute, it

enables us to apply the Bayes rule to compute

tφ(x>i|xi):

tφ(x>i|xi) =
tφ(xi|x>i) tφ(x>i)

q(xi)
, (4)

where q(·) denotes the unigram distribution. For

efficiency, we replace tφ(xi|x>i) through a sep-

arately trained ‘‘reverse’’, right-to-left RNNG,

denoted as rω(xi|x>i). We now apply Eq. 4 and

the right-to-left parameterization rω(xi|x>i) into

Eq. 3, and cancel common factors tφ(x>i):

tφ(xi|x<i,x>i) ≈

tφ(xi|x<i) rω(xi|x>i)

q(xi)
∑

w∈Σ

tφ(w|x<i) rω(w|x>i)

q(w)

.

(5)

Our approximation in Eq. 5 crucially reduces

the required number of operations from O(|Σ| ∗
k ∗ |D|) to O(|Σ| ∗ |D|), although the actual

speedup is much more substantial in practice,

since Eq. 5 involves easily batched operations that

considerably benefit from specialized hardwares

like GPUs.

Notably, our proposed approach here is a

general one; it can approximate the posterior

6In our BERT pretraining setup, |Σ| ≈ 29, 000 (vocab-

ulary size of BERT-cased), |D| ≈ 3 ∗ 109, and k = 512.
7This approximation preserves the intuition explained in

§3.3. Concretely, verbs like bark would also be assigned low

probabilities under this posterior approximation, since tφ(the

cat | bark) would be low since it is syntactically illicit—the

alternative ‘‘bark at the cat’’ would be syntactically licit.
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over xi from any left-to-right LM, which can

be used as a learning signal for BERT through

KD, irrespective of the LM’s parameterization.

It does, however, necessitate a separately trained

right-to-left LM.

Connection to a Product of Experts. Eq. 5

has a similar form to a product of experts (PoE;

Hinton, 2002) between the left-to-right and right-

to-left RNNGs’ next-word distributions, albeit

with extra unigram terms q(w). If we replace the

unigram distribution with a uniform one, namely,

q(w) = 1/|Σ| ∀w ∈ Σ, Eq. 5 reduces to a standard

PoE.

Approximating the Marginal. The approxi-

mation in Eq. 5 requires estimates of tφ(xi|x<i)
and rω(xi|x>i) from the left-to-right and right-

to-left RNNGs, respectively, which necessitate

expensive marginalizations over all possible tree

prefixes y<i and y>i. Following Kuncoro et al.

(2019), we approximate this marginalization using

a one-best predicted tree ŷ(x) = argmaxy∈Y (x)

sψ(y|x), where sψ(y|x) is parameterized by the

transition-based parser of Fried et al. (2019), and

Y (x) denotes the set of all possible trees for x.

Formally:

tφ(xi|x<i) ≈ tφ(xi|x<i, ŷ<i(x)), (6)

where ŷ<i(x) denotes the non-terminal symbols

in ŷ(x) that occur before xi.
8 The marginal

next-word distributions rω(xi|x>i) from the

right-to-left RNNG is approximated similarly.

Preliminary Experiments. Before proceeding

with the KD experiments, we assess the quality

and feasibility of our approximation through

preliminary LM experiments on the Penn

Treebank (PTB; Marcus et al., 1993). We find

that our approximation is much faster than exact

inference by a factor of more than 50,000, at

the expense of a slightly worse average posterior

negative log-likelihood (2.68 rather than 2.5 for

exact inference). More details are provided in

Appendix A.

8Our approximation of tφ(xi|x<i) relies on a tree prefix

ŷ<i(x) from a separate discriminative parser, which has

access to yet unseen words x>i. This non-incremental

procedure is justified, however, because we aim to design

the most informative teacher distributions for the non-

incremental BERT student, which also has access to

bidirectional context.

Model KL Div. with Posterior Approx.

Left-to-right LM 2.27±1.84

Right-to-left LM 2.04±1.87

Product of Experts 1.12±1.08

Table 1: Preliminary experiments reporting the

mean±stdev. of the KL divergence (in nats)

between the proposed posterior approximation

(Eq. 5) and: (i) the left-to-right LM, (ii) the right-

to-left LM, and (iii) a simple product of experts

baseline (Eq. 5, but with the uniform distribution

for q(w)).

Differences Between the Models. We now

empirically validate our motivating intuition in

Figure 1: A model that takes into account the

bidirectional context (as is the case for our pro-

posed posterior approximation in Eq. 5) should

make different predictions compared with the

unidirectional left-to-right and right-to-left mod-

els.9 To ascertain whether this is truly the case,

we compute the mean Kullback-Leibler (KL)

divergence between the distributions from the

proposed posterior approximation (Eq. 5) and the

distributions from: (i) the left-to-right model, (ii)

the right-to-left model, and (iii) a simple product

of experts baseline (i.e., Eq. 5, but where q(w) is

the uniform distribution). The findings in Table 1

suggest that our proposed posterior approximation

approach indeed yields quantifiably different

distributions from the left-to-right and right-to-

left baselines. To a lesser extent, it also differs

from a simple product of experts baseline that

similarly incorporates both the left-to-right and

right-to-left models’ predictions, albeit with the

uniform distribution for q(w).

3.5 Objective Function

In our structure distillation pretraining, we aim

to find BERT parameters θ̂KD that emulate our

approximation of tφ(w|x<i,x>i) through a word-

level cross-entropy loss (Hinton et al., 2015; Kim

and Rush, 2016; Furlanello et al., 2018, inter alia):

θ̂KD = argmin
θ

1

|D|

∑

x∈D

ℓKD(x; θ), where

ℓKD(x; θ) = −
∑

i∈M(x)

∑

w∈Σ

[

t̃φ,ω(w|x<i,x>i)

log pθ (x̃i = w|c(x1), · · · , c(xk))
]

,

9We use the same setup as Preliminary Experiments.
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where t̃φ,ω(w|x<i,x>i) is our approximation of

tφ(w|x<i,x>i), as defined in Eqs. 5 and 6.

Interpolation. The RNNG teacher is an expert

on syntax, although in practice it is only feasible

to train it on a much smaller dataset. Hence, we

not only want the BERT student to learn from

the RNNG’s syntactic expertise, but also from

the rich common-sense and semantics knowledge

contained in large text corpora by virtue of

predicting the true identity of the masked token

xi,
10 as done in the standard BERT setup. We thus

interpolate the KD loss and the original BERT

masked LM objective:

θ̂B-KD = argmin
θ

1

|D|

∑

x∈D

[

αℓKD(x; θ) + (1− α)

∑

i∈M(x)

− log pθ(xi|c(x1), · · · , c(xk))
]

,

(7)

omitting the next-sentence prediction for brevity.

We henceforth setα = 0.5 unless stated otherwise.

4 Experiments

Here we outline the evaluation setup, present

our results, and discuss the implications of our

findings.

4.1 Evaluation Tasks and Setup

We conjecture that the improved syntactic

competence from our approach would benefit a

broad range of tasks that involve structured output

spaces, including tasks that are not explicitly

syntactic. We thus evaluate our structure-distilled

BERTs on six diverse structured prediction

tasks that encompass syntactic, semantic, and

coreference resolution tasks, in addition to the

GLUE benchmark that is largely composed of

classification tasks.

Phrase-structure Parsing - PTB. We first

evaluate our model on phrase-structure parsing on

the WSJ section of the PTB. Following prior work,

we use sections 02–21 for training, section 22 for

validation, and section 23 for testing. We apply

our approach on top of the BERT-augmented

in-order (Liu and Zhang, 2017) transition-based

parser of Fried et al. (2019), which approaches

the current state of the art. Because the RNNG

10The KD loss ℓKD(x; θ) is defined independently of xi.

teacher that we distill into BERT also uses phrase-

structure trees, this setup is related to self-training

(Yarowsky, 1995; Charniak, 1997; Zhou and Li,

2005; McClosky et al., 2006; Andor et al., 2016,

inter alia).

Phrase-structure Parsing - OOD. Still in the

context of phrase-structure parsing, we evaluate

how well our approach generalizes to three out-

of-domain (OOD) treebanks: Brown (Francis and

Kučera, 1979), Genia (Tateisi et al., 2005), and

the English Web Treebank (Petrov and McDonald,

2012). Following Fried et al. (2019), we test the

PTB-trained parser on the test splits11 of these

OOD treebanks without any retraining, to simulate

the case where no in-domain labeled data are

available. We use the same codebase as above.

Dependency Parsing - PTB. Our third task

is PTB dependency parsing with Stanford

Dependencies (De Marneffe and Manning, 2008)

v3.3.0. We use the BERT-augmented joint phrase-

structure and dependency parser of Zhou and

Zhao (2019), which is inspired by head-driven

phrase-structure grammar (HPSG; Pollard and

Sag, 1994).

Semantic Role Labeling. Our fourth evaluation

task is span-based (SRL) on the English CoNLL

2012 (OntoNotes) dataset (Pradhan et al., 2013).

We apply our approach on top of the BERT-

augmented model of Shi and Lin (2019), as

implemented on AllenNLP (Gardner et al., 2018).

Coreference Resolution. Our fifth evaluation

task is coreference resolution, also on the English

OntoNotes dataset (Pradhan et al., 2012). For

this task, we use the BERT-augmented model of

Joshi et al. (2019), which extends the higher-order

coarse-to-fine model of Lee et al. (2018).

CCG Supertagging Probe. All proposed tasks

thus far necessitate either fine-tuning the entire

BERT model, or training a task-specific model

on top of the BERT embeddings. Hence, it

remains unclear how much of the gains are due

to better structural representations from our new

pretraining strategy, rather than the available

supervision at the fine-tuning stage. To better

understand the gains from our approach, we

evaluate on CCG (Steedman, 2000) supertagging

11We use the Brown test split of Gildea (2001), the Genia

test split of McClosky et al. (2008), and the EWT test split

from SANCL 2012 (Petrov and McDonald, 2012).
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(Bangalore and Joshi, 1999; Clark and Curran,

2007) through a classifier probe (Shi et al., 2016;

Adi et al., 2017; Belinkov et al., 2017, inter alia),

where no BERT fine-tuning takes place.12

CCG supertagging is a compelling probing

task because it necessitates an understanding

of bidirectional context information; the per-

word classification setup also lends itself well to

classifier probes. Nevertheless, it remains unclear

how much of the accuracy can be attributed to

the information encoded in the representation,

as opposed to the classifier probe itself. We

thus adopt the control task protocol of Hewitt

and Liang (2019) that assigns each word type

to a random control category,13 which assesses

the memorisation capacity of the classifier. In

addition to the probing accuracy, we report

the probe selectivity,14 where higher selectivity

denotes probes that faithfully rely on the linguistic

knowledge encoded in the representation. We use

linear classifiers to maintain high selectivities.

Commonality. All our structured prediction ex-

periments are conducted on top of publicly avail-

able repositories of BERT-augmented models,

with the exception of the CCG supertagging task

that we evaluate as a probe. This setup means that

obtaining our results is as simple as changing the

pretrained BERT weights to our structure-distilled

BERT, and applying the exact same steps as for

fine-tuning the baseline model. The fine-tuning

hyperparameters are summarized in Appendix C.

GLUE. Beyond the six structured prediction

tasks above, we evaluate our approach on the

classification15 tasks of the GLUE benchmark

except the Winograd NLI (Levesque et al., 2012)

for consistency with the BERT paper (Devlin

et al., 2019). The BERT GLUE fine-tuning

hyperparameters are based on the fine-tuning

configurations of Joshi et al. (2020); we sum-

marize these in Appendix C.

12A similar CCG probe was explored by Liu et al. (2019a);

we obtain comparable results for the no distillation baseline.
13Following Hewitt and Liang (2019), the cardinality of

this control category is the same as the number of supertags.
14A probe’s selectivity is defined as the difference between

the probing task accuracy and the control task accurary.
15This setup excludes the semantic textual similarity

benchmark (STS-B), which is formulated as a regression

task.

4.2 Experimental Setup and Baselines

Here we describe the key aspects of our empirical

setup, and outline the baselines for assessing the

efficacy of our approach.

RNNG Teacher. We implement the subword-

augmented RNNG teachers (§2) on DyNet

(Neubig et al., 2017a), and obtain ‘‘silver-grade’’

phrase-structure annotations for the entire BERT

training set using the transition-based parser of

Fried et al. (2019). These trees are used to train

the RNNG (§2), and to approximate its marginal

next-word distribution at inference (Eq. 6). We use

the same WordPiece tokenization and vocabulary

as BERT-Cased; Appendix B summarizes the

complete list of RNNG hyperparameters. Because

our approximation (Eq. 5) makes use of a right-

to-left RNNG, we train this variant with the

same hyperparameters and data as the left-to-right

model. We train each directional RNNG teacher

on a shared subset of 3.6M sentences (∼3%) from

the BERT training set with automatic dynamic

batching (Neubig et al., 2017b), which takes three

weeks on a V100 GPU.

BERT Student. We first apply our structure dis-

tillation pretraining protocol to BERTBASE-Cased.

We use the exact same training dataset, model con-

figuration, WordPiece tokenization, vocabulary,

and hyperparameters (Appendix C) as in the stan-

dard pretrained BERT model.16 The sole excep-

tion is that we use a larger initial learning rate

of 3e−4 based on preliminary experiments,17

which we apply to all models (including the

no distillation/standard BERT baseline) for fair

comparison.

Baselines and Comparisons. We compare the

following set of models in our experiments:

• A standard BERTBASE-Cased without any

structure distillation loss, which benefits

from scalability but lacks syntactic biases

(‘‘No-KD’’);

• Four variants of structure-distilled BERTs

that: (i) only distill the left-to-right RNNG

(‘‘L2R-KD’’), (ii) only distill the right-

to-left RNNG (‘‘R2L-KD’’), (iii) distill

the RNNG’s approximated marginal for

16https://github.com/google-research/bert.
17We find this larger learning to perform better on most of

our evaluation tasks. Liu et al. (2019b) have similarly found

that tuning BERT’s initial learning rate leads to better results.
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Task

Validation Set Test Set

Baselines Structure-distilled BERTs
No-KD Best-KD Err. Red.

No-KD Seq-KD L2R-KD R2L-KD UF-KD UG-KD
P

ar
si

n
g

Const. PTB - F1 95.38 95.33 95.55 95.55 95.58 95.59 95.35 95.70 7.6%

Const. PTB - EM 55.33 55.41 55.92 56.18 56.39 56.59 55.25 57.77 5.63%

Const. OOD - F1† 86.76 86.54 87.43 87.53 87.23 87.40 89.04 89.76 6.55%

Dep. PTB - UAS 96.48 96.40 96.70 96.64 96.60 96.66 96.79 96.86 2.18%

Dep. PTB - LAS 94.65 94.56 94.90 94.80 94.79 94.83 95.13 95.23 1.99%

SRL - OntoNotes 86.17 86.09 86.34 86.29 86.30 86.46 86.08 86.39 2.23%

Coref. - OntoNotes 72.53 69.27 73.74 73.49 73.79 73.33 72.71 73.69 3.58%

CCG supertag. probe 93.69 91.59 93.97 95.21 95.13 95.21 93.88 95.2 21.57%

Probe selectivity 24.79 23.77 23.3 23.57 27.28 28.3 23.15 26.07 N/A

Table 2: Validation and test results for the structured prediction tasks; each entry reflects the mean of

three random seeds. To preserve test set integrity, we only obtain test set results for the no distillation

baseline and the best structure-distilled BERT on the validation set; ‘‘Err. Red.’’ reports the test error

reductions relative to the No-KD baseline. We report F1 and exact match (EM) for PTB phrase-structure

parsing; for dependency, we report unlabeled (UAS) and labeled (LAS) attachment scores. The ‘‘Const.

OOD’’ (†) row indicates the mean F1 from three out-of-domain corpora: Brown, Genia, and the English

Web Treebank (EWT), although the validation results exclude the Brown Treebank that has no validation

set.

generating xi under the bidirectional context,

where q(w) (Eq. 5) is the uniform distribution

(‘‘UF-KD’’), and lastly (iv) a similar variant

as (iii), but where q(w) is the unigram

distribution (‘‘UG-KD’’). All these BERT

models crucially benefit from the syntactic

biases of RNNGs, although only variants (iii)

and (iv) learn from teacher distributions that

consider bidirectional context for predicting

xi; and

• A BERTBASE model that distills the

approximate posterior for generatingxi under

the bidirectional context, but from sequential

LSTM teachers (‘‘Seq-KD’’) in place of

RNNGs.18 This baseline crucially isolates

the importance of learning from hierarchical

teachers, because it utilizes the exact same

approximation technique and KD loss as the

structure-distilled BERTs.

Learning Curves. Given enough labeled data,

BERT can acquire the relevant structural infor-

mation from the fine-tuning (as opposed to pre-

training) procedure, although better pretrained

representations can nevertheless facilitate sample-

efficient generalizations (Yogatama et al., 2019).

18For fair comparison, we train the LSTM on the exact

same subset as the RNNG, with comparable number of

model parameters. An alternative here is to use Transformers,

although we elect to use LSTMs to facilitate fair comparison

with RNNGs, which are also based on LSTM architectures.

We thus additionally examine the models’ fine-

tuning learning curves, as a function of varying

amounts of training data, on phrase-structure

parsing and SRL.

Random Seeds. Because fine-tuning the same

pretrained BERT with different random seeds

can lead to varying results, we report the mean

performance from three random seeds on the

structured prediction tasks, and from five random

seeds on GLUE.

Test Results. To preserve the integrity of the

test sets, we first report all performance on the

validation sets, and only report the test set results

for: (i) the No-KD baseline, and (ii) the best

structure-distilled model on the validation set

(‘‘Best-KD’’).

4.3 Findings and Discussion

We report the validation and test set results for

the structured prediction tasks in Table 2. The

validation set learning curves for phrase-structure

parsing and SRL that compare the No-KD baseline

with the UG-KD variant are provided in Figure 2.

General Discussion. We summarize several

key observations from Table 2 and Figure 2.

• All four structure-distilled BERT models

consistently outperform the No-KD baseline,

including the L2R-KD and R2L-KD variants
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Figure 2: The fine-tuning learning curves that examine how the number of fine-tuning instances (from 5% to

100% of the full training sets) affect validation set F1 scores in the case of phrase-structure parsing and SRL. We

compare the No-KD/standard BERTBASE-Cased and the UG-KD structure-distilled BERT.

that only distill the syntactic knowledge

of unidirectional RNNGs. Remarkably, this

pattern holds true for all six structured pre-

diction tasks. In contrast, we observe no such

gains for the Seq-KD baseline, which largely

performs worse than the No-KD model. We

conclude that the gains afforded by our

structure-distilled BERTs can be attributed

to the syntactic biases of the RNNG teacher.

• We conjecture that the surprisingly strong

performance of the L2R-KD and R2L-

KD models, which distill the knowledge of

unidirectional RNNGs, can be attributed to

the interpolated objective in Eq. 7 (α = 0.5).

This interpolation means that the target

distribution assigns a probability mass of

at least 0.5 to the true masked word xi,
which is guaranteed to be consistent with the

bidirectional context. However, the syntactic

knowledge contained in the unidirectional

RNNGs’ predictions can still provide a

structurally informative learning signal, via

the rest of the probability mass, for the BERT

student.

• Although all structure-distilled variants out-

perform the baseline, models that distill our

approximation of the RNNG’s distribution

for words in bidirectional context (UF-KD

and UG-KD) yield the best results on four out

of six tasks (PTB phrase-structure parsing,

SRL, coreference resolution, and the CCG

supertagging probe). This finding confirms

the efficacy of our approach.

• We observe the largest gains for the syn-

tactic tasks, particularly for phrase-structure

parsing and CCG supertagging. However,

the improvements are not at all confined to

purely syntactic tasks: we reduce relative

error from strong BERT baselines by 2.2%

and 3.6% on SRL and coreference resolution,

respectively. While the RNNG’s syntac-

tic biases are derived from phrase-structure

grammar, the strong improvement on CCG

supertagging, in addition to the smaller im-

provement on dependency parsing, suggests

that the RNNG’s syntactic biases generalize

well across different syntactic formalisms.

• We observe larger improvements in a low-

resource scenario,where the model is exposed

to fewer fine-tuning instances (Figure 2), sug-

gesting that syntactic biases are helpful for

enabling more sample-efficient generaliza-

tions. This pattern holds for both tasks that we

investigated: phrase-structure parsing (syn-

tactic in nature) and SRL (not explicitly

syntactic in nature). With only 5% of the fine-

tuning data, the UG-KD model improves F1

score from 79.9 to 80.6 for SRL (a 3.5%

error reduction relative to the No-KD base-

line, as opposed to 2.2% on the full data). For

phrase-structure parsing, the UG-KD model

achieves a remarkable 93.68 F1 (a 16% rel-

ative error reduction, as opposed to 7.6% on

the full data) with only 5% of the PTB—this

performance is notably better than past state

of the art phrase-structure parsers trained on

the full PTB c. 2017 (Kuncoro et al., 2017).

GLUE Results and Discussion. We report the

GLUE validation and test results for BERTBASE-

Cased in Table 3. Because we observe a different

pattern of results on the Corpus of Linguistic

Acceptability (CoLA; Warstadt et al., 2018) than
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No-KD UG-KD

Validation Set (Per-task average / 1-best random seed)

CoLA 50.7 / 60.2 54.3 / 60.6

7-task avg. (excl. CoLA) 85.4 / 87.8 84.8 / 86.9

Overall 8-task avg. 81.1 / 84.4 81.0 / 83.6

Test set (Per-task 1-best random seed on validation set)

CoLA 53.1 55.3

7-task avg. (excl. CoLA) 84.2 83.5

Overall 8-task avg. 80.3 80.0

Table 3: Summary of the validation and test

set results on GLUE. The validation results are

derived from the average of five random seeds

for each task, which accounts for variance, and

the 1-best random seed, which does not. The test

results are derived from the 1-best random seed

on the validation set.

on the rest of GLUE, we henceforth report: (i)

the CoLA results, (ii) the seven task average

that excludes CoLA, and (iii) the average across

all eight tasks. We select the UG-KD model

because it achieved the best validation set eight

task average among the structure-distilled BERTs;

the per-task GLUE breakdown is provided in

Appendix D.

The results on GLUE provide an interesting

contrast to the consistent improvements we

observed on the structured prediction tasks. More

concretely, our UG-KD model outperforms the

baseline on CoLA, but performs slightly worse on

the other GLUE tasks in aggregate, leading to a

slightly lower overall test set accuracy (80.0 for

the UG-KD as opposed to 80.3 for the No-KD

baseline).

The improvement on the syntax-sensitive

CoLA provides additional evidence—beyond the

improvement on the syntactic tasks (Table 2)—

that our approach indeed yields improved syntactic

competence. We conjecture that these improve-

ments do not transfer to the other GLUE tasks

because they rely more on lexical and semantic

properties, and less on syntactic competence

(McCoy et al., 2019).

We defer a more thorough investigation of

how much syntactic competence is necessary for

solving most of the GLUE tasks to future work,

but make two remarks. First, the findings on

GLUE are consistent with the hypothesis that our

approach yields improved structural competence,

albeit at the expense of a slightly less rich meaning

representation, which we attribute to the smaller

dataset used to train the RNNG teacher. Second,

human-level natural language understanding

includes the ability to predict structured outputs,

for example, to decipher ‘‘who did what to whom’’

(SRL). Succeeding in these tasks necessitates

inference about structured output spaces, which

(unlike most of GLUE) cannot be reduced to

a single classification decision. Our findings

indicate a partial dissociation between model

performance on these two types of tasks; hence,

supplementing GLUE evaluation with some of

these structured prediction tasks can offer a more

holistic assessment of progress in NLU.

CCG Probe Example. The CCG supertagging

probe is a particularly interesting test bed, because

it clearly assesses the model’s ability to use con-

textual information in making its predictions—

without introducing additional confounds from

the BERT fine-tuning procedure. We thus provide

a representative example of four different BERT

variants’ predictions on the CCG supertagging

probe in Table 4, based on which we discuss

two observations. First, the different models make

different predictions, where the No-KD and L2R-

KD models produce (coincidentally the same)

incorrect predictions, while the R2L-KD and

UG-KD models are able to predict the correct

supertag. This finding suggests that different

teacher models are able to impose different biases

on the BERT students.19

Second, the mistakes of the No-KD and L2R-

KD BERTs belong to the broader category

of challenging argument-adjunct distinctions

(Palmer et al., 2005; Fowlie, 2017). Here both

models fail to subcategorize for the prepositional

phrase (PP) ‘‘as screens’’, which serves as

an argument of the verb ‘‘use’’, as opposed to the

noun phrase ‘‘TV sets’’. Distinguishing between

these two potential dependencies naturally re-

quires syntactic information from the right

context; hence the R2L-KD BERT, which is

trained to emulate the predictions of an RNNG

teacher that observes the right context, is able

to make the correct prediction. This advantage

is crucially retained by the UG-KD model that

distills the RNNG’s approximate distribution over

words in bidirectional context (Eq. 5), and further

confirms the efficacy of our proposed approach.

19All four BERTs have access to the full bidirectional

context at test time, although some are trained to mimic

the predictions of unidirectional RNNGs (L2R-KD and

R2L-KD).
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Sentence Input No-KD & L2R-KD Pred. R2L-KD & UG-KD Pred.

‘‘Apple II owners , for example , had to use their TV
(S[b]\NP)/NP ((S[b]\NP)/PP)/NP

sets as screens and stored data on audiocassettes’’

Table 4: An example of the CCG supertag predictions for the verb ‘‘use’’ from four different BERT

variants. The correct answer is ‘‘((S[b]\NP)/PP)/NP’’, which both the R2L-KD and UG-KD predict

correctly (blue). However, the No-KD baseline and the L2R-KD model produce (the same) incorrect

predictions (red); both models fail to subcategorize for the prepositional phrase ‘‘as screens’’ as a

dependent of the verb ‘‘use’’. Beyond this, all four models predict the correct supertags for all other

words (not shown).

Measuring the Models’ Differences. Beyond

the qualitative example in Table 4, we further

quantify the extent to which the different BERT

models produce different predictions. To this

end, we compute pairwise model agreement for

the phrase-structure parsing task, as measured

by exact match accuracy. We present the full

experimental setup and findings in Appendix E,

but summarize two key findings here.

First, the highest exact match agreement bet-

ween any pair of different models is fairly low

at 44.92%, further supporting our conjecture

that different teacher models indeed impose

different biases on the BERT student, as evidenced

by the different model predictions. Second, all

four structure-distilled BERT variants have the

lowest pairwise agreement score with the No-

KD baseline (< 39% pairwise model agreement),

suggesting that all variants of our structure

distillation objectives yield quantifiably different

outputs compared to the no distillation alternative,

which does not learn from the syntactic knowledge

of RNNGs.

BERTLARGE Results. Having evaluated our

structure-distilled BERTBASE-Cased, we now apply

our approach on top of BERTLARGE-Cased, and

present the results on the structured prediction

tasks in Table 5. Overall, we observe a similar

pattern of results with BERTLARGE as we do with

BERTBASE: On the structured prediction tasks, our

best structure distillation approach reduces error

by 1.5% to 5.5% relative to the No-KD baseline.

Furthermore, our structure-distilled BERTLARGE

models establish new state of the art single model

results—among models pretrained on the original

BERT training set20—on phrase-structure parsing

(PTB and OOD), PTB dependency parsing, and

SRL.

20This comparison excludes other models like XLNet and

RoBERTa, which are trained on more data.

Task

Test Set - BERTLARGE-Cased

Error BERT

No-KD Best-KD Red. SoTA

P
ar

si
n
g

Const. PTB − F1 95.80 95.95 3.73% 95.84†

Const. PTB − EM 56.87 57.74 2.02% −
Const. OOD − F1 89.63 90.20 5.48% 89.91‡

Dep. PTB − UAS 96.91 97.03 3.78% 97.0†

Dep. PTB − LAS 95.33 95.49 3.43% 95.43†

SRL − OntoNotes 87.59 87.77 1.45% 86.5♦

Coref. − OntoNotes 74.03 74.69 2.55% 79.6�

Table 5: Test set results for the structured

prediction tasks with BERTLARGE-Cased; each

entry reflects the mean of three random seeds.

We compare the no distillation baseline (‘‘No-

KD’’) with the best structure-distilled model,

as selected on the validation set (‘‘Best-KD’’);

‘‘Error Red.’’ reports the test error reductions

relative to the No-KD baseline. We also report

the previous state of the art among non-ensemble

models pretrained on the original BERT training

set (‘‘BERT SoTA’’).21

4.4 Limitations

We outline two limitations to our approach. First,

we assume the existence of decent-quality ‘‘silver-

grade’’ phrase-structure trees to train the RNNG

teacher. Although this assumption holds true for

English because of the existence of accurate

phrase-structure parsers, this is not necessarily

the case for other languages. Second, pretraining

the BERT student in our naı̈ve implementation

is about half as fast on TPUs compared with

the baseline due to I/O bottleneck. This overhead

only applies at pretraining, and can be reduced

through parallelization.

5 Related Work

Earlier work has proposed a few ways for

introducing notions of hierarchical structures into

21†Zhou and Zhao (2019), ‡Fried et al. (2019), ♦Shi and

Lin (2019), and �Joshi et al. (2020).
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BERT, for instance, through designing structurally

motivated auxiliary losses (Wang et al., 2020), or

including syntactic information in the embedding

layers that serve as inputs for the Transformer

(Sundararaman et al., 2019). In contrast, we

use a different technique for injecting syntactic

biases, which is based on the structure distillation

technique of Kuncoro et al. (2019), although

our work features two key differences. First,

Kuncoro et al. (2019) put a sole emphasis on

cases where both the teacher and student models

are autoregressive, left-to-right LMs; here we

extend this objective for when the student model

is a representation learner that has access to

bidirectional context. Second, Kuncoro et al.

(2019) only evaluated their structure-distilled

LMs in terms of perplexity and grammatical

judgment (Marvin and Linzen, 2018). In contrast,

we evaluate our structure-distilled BERT models

on six diverse structured prediction tasks and the

GLUE benchmark. It remains an open question

whether, and how much, syntactic biases are

helpful for a broader range of NLU tasks beyond

grammatical judgment; our work represents a step

towards answering this question.

Substantial progress has recently been made in

improving the performance of BERT and other

masked LMs (Lan et al., 2020; Liu et al., 2019b;

Raffel et al., 2019; Sun et al., 2020, inter alia). Our

structure distillation technique is orthogonal, and

can be applied for these approaches. Lastly, our

findings on the benefits of syntactic knowledge for

structured prediction tasks that are not explicitly

syntactic in nature, such as SRL and coreference

resolution, are consistent with those of prior work

(He et al., 2017; Swayamdipta et al., 2018; He

et al., 2018; Strubell et al., 2018, inter alia).

6 Conclusion

Given the remarkable success of textual

representation learners trained on large amounts

of data, it remains an open question whether

syntactic biases are still relevant for these models

that work well at scale. Here we present evidence

to the affirmative: our structure-distilled BERT

models outperform the baseline on a diverse set

of six structured prediction tasks. We achieve

this through a new pretraining strategy that

enables the BERT student to learn from the

predictions of an explicitly hierarchical, but much

less scalable, RNNG teacher model. Because

the BERT student is a bidirectional model that

estimates the conditional probabilities of masked

words in context, we propose to distill an efficient

yet surprisingly effective approximation of the

RNNG’s posterior estimate for generating each

word conditional on its bidirectional context.

Our findings suggest that syntactic inductive

biases are beneficial for a diverse range of

structured prediction tasks, including for tasks that

are not explicitly syntactic in nature. In addition,

these biases are particularly helpful for improving

fine-tuning sample efficiency on these tasks.

Lastly, our findings motivate the broader ques-

tion of how we can design models that integrate

stronger notions of structural biases—and yet can

be easily scalable at the same time—as a promising

(if relatively underexplored) direction of future

research.
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A Preliminary Experiments

Here we discuss the preliminary experiments to

assess the quality and computational efficiency

of our posterior approximation procedure (§3.4).

Recall that this approximation procedure only

applies at inference; the LM is still trained in a

typical autoregressive, left-to-right fashion.

Model. Because exactly computing the

RNNG’s next-word distributions tφ(xi|x<i)
involves an intractable marginalization over all

possible tree prefixes y<i, we run our experi-

ments in the context of sequential LSTM language

models, where tLSTM(xi|x<i) can be computed

exactly. This setup crucially enables us to isolate

the impact of approximating the posterior distribu-

tion over xi under the bidirectional context (Eq. 2)

with our proposed approximation (Eq. 5), with-

out introducing further confounds stemming from

the RNNG’s marginal approximation procedure

(Eq. 6).

Dataset and preprocessing. We train the

LSTM LM on an open-vocabulary version of the

PTB,22 in order to simulate the main experimental

setup where both the RNNG teacher and BERT

student are also open-vocabulary by virtue of

byte-pair encoding (BPE) preprocessing. To this

end, we preprocess the dataset with SentencePiece

(Kudo and Richardson, 2018) BPE tokenization,

where |Σ| = 8, 000; we preserve all case

information. We follow the empirical setup of the

parsing (§4.1) experiments, with Sections 02–21

for training, Section 22 for validation, and Section

23 for testing.

Model Hyperparameters. We train the LM

with 2 LSTM layers, 250 hidden units per layer,

and a dropout (Srivastava et al., 2014) rate of 0.2.

Model parameters are optimized with stochastic

gradient descent (SGD), with an initial learning

rate of 0.25 that is decayed exponentially by a

22Our open-vocabulary setup means that our results are

not directly comparable to prior work on PTB language

modeling (Mikolov et al., 2010, inter alia), which mostly

utilize a special ‘‘UNK’’ token for infrequent or unknown

words.

Model Posterior NLL Posterior Ppl.

MoE 3.28 26.58

Uniform Approx. 3.18 24.17

Unigram Approx. 2.68 14.68

Exact Inference 2.50 12.25

Table 6: The findings from the preliminary

experiments that assess the quality of our posterior

approximation procedure. We compare three

variants against exact inference (bottom row;

Eq. 2) as computed from the left-to-right model.

factor of 0.92 for every epoch after the tenth.

Because our approximation relies on a separately

trained right-to-left LM (Eq. 5), we train this

variant with the exact same hyperparameters and

dataset split as the left-to-right model.

Evaluation and Baselines. We evaluate the

models in terms of the average posterior negative

log likelihood (NLL) and perplexity.23 Because

exact inference of the posterior is expensive, we

evaluate the model only on the first 400 sentences

of the test set. We compare the following variants:

• A mixture of experts baseline that simply

mixes (α = 0.5) the probabilities from

the left-to-right and right-to-left LMs in an

additive fashion, as opposed to multiplicative

as in the case of our PoE-like approximation

in Eq. 5 (‘‘MoE’’);

• Our approximation of the posterior over

xi (Eq. 5), where q(w) is the uniform

distribution (‘‘Uniform Approx.’’);

• Our approximation of the posterior over xi
(Eq. 5), but where q(w) is the unigram

distribution (‘‘Unigram Approx.’’); and

• Exact inference of the posterior as computed

from the left-to-right model, as defined in

Eq. 2 (‘‘Exact Inference’’).

Discussion. We summarize the findings in

Table 6, based on which we remark on two obser-

vations. First, the posterior NLL of our approxi-

mation procedure that makes use of the unigram

distribution (Unigram Approx.; third row) is

not much worse than that of exact inference, in

exchange for a more than 50,000 times speedup24

23In practice, this perplexity is derived from simply

exponentiating the average posterior negative log likelihood.
24All three approximations in Table 6 have similar

runtimes.
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in computation time. Nevertheless, using the

uniform distribution (second row) on q(w) in

place of the unigram one (Eq. 5) results in a

much worse posterior NLL. Second, combining

the left-to-right and right-to-left LMs using a

mixture of experts—a baseline which is not well-

motivated by our theoretical analysis—yields the

worst result.

B RNNG Hyperparameters

To train the subword-augmented RNNG teacher

(§2), we use the following hyperparameters that

achieve the best validation perplexity from a grid

search: 2-layer stack LSTMs (Dyer et al., 2015)

with 512 hidden units per layer, optimized by

standard SGD with an initial learning rate of 0.5

that is decayed exponentially by a factor of 0.9 for

every epoch after the tenth. We use dropout with

p = 0.3.

C BERT Hyperparameters

Here we outline the hyperparameters of the BERT

student in terms of pretraining data creation,

masked LM pretraining, and fine-tuning.

Pretraining Data Creation. We use the same

codebase25 and pretraining data as Devlin et al.

(2019), which are derived from a mixture

of Wikipedia and Books text corpora. To

train our structure-distilled BERTs, we sample

a masking from these corpora following the

same hyperparameters used to train the original

BERTBASE-Cased model: a maximum sequence

length of 512, a per-word masking probability of

0.15 (up to a maximum of 76 masked tokens in

a 512-length sequence), and a dupe factor of 10.

We apply a random seed of 12345. We preprocess

the raw dataset using NLTK tokenizers, and then

apply the same (BPE-augmented) vocabulary and

WordPiece tokenization as in the original BERT

model. All other hyperparameters are set to the

same values as in the publicly released original

BERT model.

Masked LM Pretraining. We train all model

variants (including the no distillation/standard

BERT baseline for fair comparison) using a batch

size of 256 sequences. We use an initial Adam

learning rate of 3e−4 for the BERTBASE models

(as opposed to 1e−4 in the original BERT model)

25https://github.com/google-research/bert.

and 1e−4 for the BERTLARGE models. Following

Devlin et al. (2019), we pretrain our models for

1M steps. All other hyperparameters are similarly

set to their default values.

GLUE Fine-tuning. For each GLUE task, we

fine-tune the BERT model by running a grid

search over learning rates of {5e−6, 1e−5, 2e−5,
3e−5, 5e−5} and batch sizes of {16, 32}, with 5

random seeds. Following Joshi et al. (2020), we

train each fine-tuning configuration for 10 epochs,

except for CoLA, where we train for 4 epochs.

Structured Prediction Fine-tuning. For the

structured prediction tasks, we use the following

hyperparameters for learning rate and batch size.

These hyperparameters are either the default for

a given codebase, or lightly tuned on the No-KD

models. We use the same hyperparameters across

all models (No-KD and KD) of a given size (BASE

or LARGE) on a given task.

• In-order phrase-structure parser: a BERT

learning rate of 2e−5, a batch size of 32,

and a warmup period of 160 updates.

• HPSG dependency parser: a BERT learning

rate of 5e−5, a batch size of 150, and a

warmup period of 160 updates.

• Coreference resolution: for the BERTBASE

models: a learning rate of 1e−5 and a max-

imum segment length of 128 word pieces.

For the BERTLARGE models: a learning rate

of 5e−6 and a maximum segment length of

512 word pieces. Both sizes use a learning

rate warmup period of 2 epochs and a batch

size of 1 document.

• Semantic role labeling: for the BERTBASE

models: a learning rate of 5e−5. For the

BERTLARGE models: a learning rate of 1e−5.

Both sizes use a batch size of 32.

D Full GLUE Results

We present the full GLUE results for the No-KD

baseline and the UG-KD BERT in Table 7.

E Quantifying Model Differences

We quantify the extent to which learning from

different teacher models results in BERT models

that make different predictions. To this end, we
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Model COLA SST-2 MRPC QQP
MNLI

QNLI RTE
GLUE

(M/MM) AVG
D

E
V No-KD 60.2 92.2 90.0 89.4 90.3/90.9 90.7 71.1 84.4

UG-KD 60.6 92.0 88.9 89.3 89.6/90.0 89.9 68.6 83.6

T
E

S
T No-KD 53.1 92.5 88.0 88.8 82.8/81.8 89.9 65.4 80.3

UG-KD 55.3 91.2 87.6 88.7 81.9/80.8 89.5 65.0 80.0

Table 7: Summary of the full results on GLUE, comparing the No-KD baseline with the UG-KD

structure-distilled BERT (§4.2). All results are based on a single random seed: we select the 1-best

fine-tuning hyperparameters (including random seed) on the validation set, which we then evaluate on

the test set.

Pairwise Exact
No-KD L2R-KD R2L-KD UF-KD UG-KD

Match Agreement

No-KD − 36.20 36.56 38.01 37.05

L2R-KD 36.20 − 42.25 43.58 44.43

R2L-KD 36.56 42.25 − 39.95 41.53

UF-KD 38.01 43.58 39.95 − 44.92

UG-KD 37.05 44.43 41.53 44.92 −

Table 8: Pairwise model agreement scores for phrase-structure parsing, as measured

by average exact match on trees from the validation set of the PTB for which some

pair of models produced different trees. Self-agreement (diagonals) are 100%. Exact

match is symmetric; hence the table is also symmetric.

compute pairwise model agreement,26 in terms

of phrase-structure parsing exact match, between

each pair of five model variants (No-KD, L2R-

KD, R2L-KD, UF-KD, and UG-KD). We

compute this pairwise model agreement score

on the PTB dev set (§22). To better understand

the differences between the models, we exclude

sentences where all five models produce the exact

same phrase-structure trees, leaving 826 out of

1700 sentences; further analysis indicates that the

excluded sentences tend to be shorter and less

ambiguous.
We present the findings in Table 8, and

summarize two key observations. First, the highest

26For instance, when comparing the agreement between

the No-KD and the UG-KD models, we treat the UG-KD

model’s output as ‘‘gold reference’’, and compute the exact

match from the No-KD model’s output with respect to that.

exact match agreement between any pair of models

is fairly low at 44.92%. This finding supports our

conjecture that different teacher models indeed

impose different biases for the BERT students,

as evidenced by the different model predictions.

Second, each RNNG-distilled BERT model has

the lowest agreement rate with the No-KD

baseline. This finding suggests that all variants

of our structure distillation approach produce

quantifiably different predictions (<39% pairwise

model agreement) from the No-KD/standard

BERT baseline that does not learn from the

syntactic knowledge of RNNGs.
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