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Abstract

This paper demonstrates that multilingual

denoising pre-training produces significant

performance gains across a wide variety of

machine translation (MT) tasks. We present

mBART—a sequence-to-sequence denoising

auto-encoder pre-trained on large-scale mono-

lingual corpora in many languages using the

BART objective (Lewis et al., 2019). mBART

is the first method for pre-training a complete

sequence-to-sequence model by denoising full

texts in multiple languages, whereas previous

approaches have focused only on the encoder,

decoder, or reconstructing parts of the text.

Pre-training a complete model allows it to

be directly fine-tuned for supervised (both

sentence-level and document-level) and un-

supervised machine translation, with no task-

specific modifications. We demonstrate that

adding mBART initialization produces per-

formance gains in all but the highest-resource

settings, including up to 12 BLEU points for

low resource MT and over 5 BLEU points

for many document-level and unsupervised

models. We also show that it enables transfer

to language pairs with no bi-text or that were

not in the pre-training corpus, and present

extensive analysis of which factors contribute

the most to effective pre-training.1

1 Introduction

Despite its wide adoption for other NLP tasks

(Devlin et al., 2019; Liu et al., 2019; Yang et al.,

2019b; Lewis et al., 2019; Raffel et al., 2019),

* Equal contribution. Most of the work was done when

the first author worked at Facebook.
1Code and pre-trained models are available at https://

github.com/pytorch/fairseq/tree/master

/examples/mbart.

self-supervised pre-training is not yet common

practice in machine translation (MT). Existing

approaches (Lample and Conneau, 2019; Edunov

et al., 2019; Lewis et al., 2019; Raffel et al., 2019)

have been proposed either to partially pre-train

the model or to only focus on English corpora. In

this paper, we show that significant performance

gains are possible by pre-training a complete

autoregressive model with an objective that noises

and reconstructs full texts across many languages.

In this work, we present mBART—a multilin-

gual sequence-to-sequence (Seq2Seq) denoising

auto-encoder. mBART is trained by applying

the BART (Lewis et al., 2019) to large-scale

monolingual corpora across many languages. The

input texts are noised by masking phrases and

permuting sentences, and a single Transformer

(Vaswani et al., 2017) model is learned to re-

cover the texts. Different from other pre-training

approaches for MT (Lample and Conneau,

2019; Song et al., 2019), mBART pre-trains a

complete autoregressive Seq2Seq model. mBART

is trained once for all languages, providing a

set of parameters that can be fine-tuned for any

of the language pairs in both supervised and

unsupervised settings, without any task-specific or

language-specific modifications or initialization

schemes.

Extensive experiments demonstrate that this

simple approach works remarkably well. We first

focus on existing MT benchmarks. For supervised

sentence-level MT, mBART initialization leads to

significant gains (up to 12 BLEU points) across

low/medium-resource pairs (<10M bi-text pairs),

without sacrificing performance in high-resource

settings. These results further improve with back-

translation (BT), setting a new state-of-the-art

on WMT16 English-Romanian and the FloRes

test sets. For document-level MT, our document-

level pre-training improves results by up to 5.5
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Figure 1: Sizes of the CC25 Corpus. A list of 25

languages ranked with monolingual corpus size.

BLEU points. For the unsupervised case, we

see consistent gains and produce the first non-

degenerate results for less related language pairs

(e.g., 9.5 BLEU gain on Nepali-English). Previous

pre-training schemes have only considered subsets

of these applications, but we compare performance

where possible and demonstrate that mBART

consistently performs the best.

We also show that mBART enables new types

of transfer across language pairs. For example,

fine-tuning on bi-text in one language pair (e.g.,

Korean-English) creates a model that can translate

from all other languages in the monolingual pre-

training set (e.g., Italian-English), with no further

training. We also show that languages not in the

pre-training corpora can benefit from mBART,

strongly suggesting that the initialization is at least

partially language universal. Finally, we present

a detailed analysis of which factors contribute

the most to effective pre-training, including the

number of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use the Common Crawl (CC) corpus (§2.1) to

pre-train BART models (§2.2). Our experiments

in the later sections involve fine-tuning a range of

models pre-trained on different subsets (§2.3).

2.1 Data: CC25 Corpus

Datasets We pre-train on 25 languages (CC25)

extracted from the CC corpora (Wenzek et al.,

2019; Conneau et al., 2019).2 CC25 includes

languages from different families and with varied

amounts of text (Figure 1). Following Lample and

Conneau (2019), we re-balanced the corpus by

2https://github.com/facebookresearch/cc

net.

up/down-sampling text from each language i with

a ratio λi:

λi =
1

pi
·

pα
i∑
i
pα
i

, (1)

where pi is the percentage of each language in

CC-25. We use the smoothing parameter α = 0.7.

Pre-processing We tokenize with a sentence-

piece model (SPM; Kudo and Richardson, 2018)

learned on the full CC data that includes 250,000

subword tokens. Although not all of these lan-

guages are used for pre-training, this tokeniza-

tion supports fine-tuning on additional languages.

We do not apply additional preprocessing, such

as true-casing or normalizing punctuation/

characters.

2.2 Model: mBART

Our models follow the BART (Lewis et al., 2019)

Seq2Seq pre-training scheme, as reviewed in this

section. Whereas BART was only pretrained for

English, we systematically study the effects of

pre-training on different sets of languages.

Architecture We use a standard Seq2Seq Trans-

former architecture (Vaswani et al., 2017), with

12 layers of encoder and 12 layers of decoder with

model dimension of 1024 on 16 heads (∼ 680M

parameters). We include an additional layer-

normalization layer on top of both the encoder

and decoder, which we found stabilized training

at FP16 precision.

Learning Our training data coversK languages:

D = {D1, . . . ,DK} where eachDi is a collection

of monolingual documents in language i. We (1)

assume access to a noising function g, defined

below, that corrupts text, and (2) train the model

to predict the original text X given g(X). More

formally, we aim to maximize Lθ:

Lθ =
∑

Di∈D

∑

X∈Di

logP (X|g(X); θ) , (2)

where X is an instance in language i and the

distribution P is defined by the Seq2Seq model.

Noise Function Following Lewis et al. (2019),

we use two types of noise in g. We first remove

spans of text and replace them with a mask token.

We mask 35% of the words in each instance by

randomly sampling a span length according to a

Poisson distribution (λ = 3.5). We also permute
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the order of sentences within each instance. The

decoder input is the original text with one position

offset. A language id symbol <LID> is used as

the initial token to predict the sentence. It is also

possible to use other noise types, such as those in

Lample et al. (2018c), but we leave the exploration

of the optimal noising strategy to future work.

Instance Format For each instance of a batch,

we sample a language id symbol <LID>, and we

pack as many consecutive sentences as possible

sampled from the corresponding corpus of <LID>,

until either it hits the document boundary or

reaches the 512 max token length. Sentences in

the instance are separated by the end of sentence

(</S>) token. Then, we append the selected <LID>

token to represent the end of this instance. Pre-

training at ‘‘multi sentence’’ level enables us to

work on both sentence and document translation.

Optimization Our full model (including 25

languages) is trained on 256 Nvidia V100 GPUs

(32GB) for 500K steps. The total batch size is

around 128K tokens per GPU, matching BART

(Lewis et al., 2019) configuration. We use the

Adam optimizer (ǫ = 1e−6, β2 = 0.98) and linear

learning rate decay scheduling. The total training

time was approximately 2.5 weeks. We started the

training with dropout 0.1 and reduced it to 0.05 at

250K steps and 0 at 400K steps. All experiments

are done with Fairseq (Ott et al., 2019).

Reproducibility One potential issue of the

proposed approach is the replicability problem

due to the requirement of massive monolingual

corpora and computational resources, with fine-

grained selection on hyper-parameters during

pre-training. It is likely to get slightly different

fine-tuning performance if we re-train the system

again. Tackling on this, we will release the pre-

trained checkpoints as well as the code with full

instructions for pre-training a new model.

Related Work: XLM(-R) and MASS There

are several closely related approaches of

multilingual pre-training for machine translation.

XLM (Lample and Conneau, 2019) and XLM-R

(Conneau et al., 2019) pretrain BERT (Devlin

et al., 2019; Liu et al., 2019) in a multilingual

fashion, and the resulted parameters can be used to

initialize the translation model encoder. Different

from XLM(-R), mBART simultaneously pre-

trains the encoder and the decoder due to the

Seq2Seq setup, which is more natural to adapt to

machine translation applications.

Similar to mBART, MASS (Song et al., 2019)

is also a Seq2Seq-based pre-training technique

with ‘‘word-masking’’. However, the decoder of

MASS only predicted tokens that was masked in

the encoder, whereas mBART reconstructs the full

target sequence which allows to apply not only

‘‘masking’’ but any possible noise functions.

Furthermore, both XLM and MASS did

not show evidence of the pre-trained models

improving translation performance over two

languages.

2.3 Pre-trained Models

To better measure the effects of different levels

of multilinguality during pre-training, we built a

range of models as follows:

• mBART25 We pre-train a model on all

25 languages, using the setting described in

§2.2.

• mBART06 To explore the effect of pre-

training on related languages, we pretrain a

model on a subset of six European languages:

Ro, It, Cs, Fr, Es, and En. For a fair

comparison, we use∼ 1/4 of the mBART25

batch size, which allows our model to have

the same number of updates per language

during pre-training.

• mBART02 We pre-train bilingual models,

using English and one other language for

four language pairs: En-De, En-Ro, En-It.

We use a batch size of ∼ 1/12 of that in the

mBART25.

• BART-En/Ro To help establish a better

understanding towards multilingual pre-

training, we also train monolingual BART

models on the En and Ro corpus only,

respectively.

• Random As additional baselines, we will

also include a comparison with a model

randomly initialized without pre-training for

each translation task. Because the sizes

of different downstream datasets vary, we

always grid-search the hyper-parameters

(architecture, dropout, etc.) to find the best

non-pretrained configuration.
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Figure 2: Framework for our multilingual denoising pre-training (left) and fine-tuning on downstream

MT tasks (right), where we use (1) sentence permutation and (2) word-span masking as the injected

noise. A special language id token is added at both the encoder and decoder. One multilingual pre-trained

model is used for all tasks.

All models use the same vocabulary (§2.1). Not

all tokens will frequently occur in all pre-training

corpora, but later experiments show that this

large vocabulary can improve generalization in

multilingual settings even for unseen languages.

2.4 Scaling-up Matters

Scaling-up the training data and model parameters

has been a key factor in pre-training (Devlin

et al., 2019; Conneau et al., 2019; Raffel et al.,

2019). Compared to conventional semi-supervised

methods (e.g., back-translation) and other pre-

training for MT (Lample and Conneau, 2019;

Song et al., 2019), we pre-train mBART on much

more monolingual data with relatively deeper

architecture. This scale, in combination with the

new multi-lingual training, is central to our results

(sections 3 to 5), although future work could

more carefully study the relative contributions

of each.

3 Sentence-level Machine Translation

This section shows that mBART pre-training

provides consistent performance gains in low

to medium resource sentence-level MT settings,

including bi-text only and with back translation,

and outperforms other existing pre-training

schemes (§3.2). We also present a detailed analysis

to understand better which factors contribute

the most to these gains (§3.3), and show that

pre-training can even improve performance for

languages not present in the pre-training data

(§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-

able parallel corpora that cover all the languages

in CC25 (Figure 1). Most pairs are from previous

WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es, Zh,

De, Ru, Fr ↔ En) and IWSLT (Vi, Ja, Ko, Nl,

Ar, It ↔ En) competitions. We also use FLoRes

pairs (Guzmán et al., 2019, En-Ne and En-Si),

En-Hi from IITB (Kunchukuttan et al., 2017), and

En-My from WAT19 (Ding et al., 2018, 2019).

We divide the datasets into three categories—low

resource (<1M sentence pairs), medium resource

(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune mBART

on a single pair of bi-text data, feeding the

source language into the encoder and decod-

ing the target language. As shown in Figure 2,

we load the pre-trained weights and train the MT

model on bi-texts with teacher forcing. For all

directions, we train with 0.3 dropout, 0.2 label

smoothing, 2500 warm-up steps, 3e−5 maximum

learning rate. We use a maximum of 40K training

updates for all low and medium resource pairs and

100K for high resource pairs. The final models are

selected based on validation likelihood. We use

beam-search with beam size 5 for decoding. Our

initial experiments indicate that the fine-tuning

process is generally stable with different seeds.

Therefore, to reduce the total computation, all

our results are reported with single execution. We

validate the statistical significance with scripts

from the mosesdecoder.3

3https://github.com/moses-smt/mosesdecoder

/blob/master/scripts/analysis/bootstrap

-hypothesis-difference-significance.pl.
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko

Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K

Direction ← → ← → ← → ← → ← → ← →

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3

mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro

Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K

Direction ← → ← → ← → ← → ← → ← →

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3

mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv

Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M

Direction ← → ← → ← → ← → ← → ← →

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9

mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 1: Low/medium resource machine translation Pre-training consistently improves over a

randomly initialized baseline, with particularly large gains on low resource language pairs (e.g.,

Vi-En).

3.2 Main Results

As shown in Table 1, initializing with the pre-

trained mBART25 weights shows gains on all the

low and medium resource pairs when compared

with randomly initialized baselines. We observe

gains of 12 or more BLEU points on low

resource pairs such as En-Vi, En-Tr, and noisily

aligned pairs like En-Hi. Fine-tuning still fails

in extremely low-resource cases such as En-Gu,

which have ∼10k examples. In these settings,

unsupervised translation is more appropriate,

see §5.2. For high resource cases (Table 2),

we do not observe consistent gains, and pre-

training slightly hurts performance when more

than 25M parallel sentences are available. When

a significant amount of bi-text data is given, we

suspect that supervised training washes out the

pre-trained weights.

Note that some reported runs of our baseline

systems using the vanilla Transformers with

randomly initialized weights have considerably

noticeable gaps between the SoTA systems

reported in the original competitions.4 The differ-

ence is mainly because we train and search

4http://matrix.statmt.org/.

Languages Cs Es Zh De Ru Fr

Size 11M 15M 25M 28M 29M 41M

RANDOM 16.5 33.2 35.0 30.9 31.5 41.4

MBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 2: High resource machine translation

where all the datasets are from their latest WMT

competitions. We only evaluate our models on

En-X translation.

the hyper-parameters for baselines on officially

provided bitext only without using any mono-

lingual corpus or multilingual adaptation. For

instance, the SoTA score for En→Gu is 28.2

in WMT19, compared with 0 in Table 1. It is

basically because the quality of the original bitext

data is low, and the SoTA systems commonly

used additional languages such as Hi to boost

the performance. Similar gaps can also be

observed in pairs such as Kk-En and Lt-En,

where Ru as the additional language is also

crucial. The main purpose of this part is to

discuss the effects of multilingual pre-training in a

constrained bitext setting for a better comparison.

We will include more discussions of combining
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Figure 3: Pre-training + back translation on FLoRes with two iterations of BT.

multilingual translation with pretraining in future

work.

Plus Back-Translation Back-translation (BT;

Sennrich et al., 2016) is a standard approach

to augment bi-text with target-side monolingual

data. We combine our pre-training with BT and

test it on low resource language pairs—En-Si

and En-Ne—using the FLoRes dataset (Guzmán

et al., 2019). We use the same monolingual data

as Guzmán et al. (2019) to generate BT data.

Figure 3 shows that initializing the model with

our mBART25 pre-trained parameters improves

BLEU scores at each iteration of back translation,

resulting in new state-of-the-art results in all four

translation directions. It indicates that the pre-

trained mBART weights can be directly plugged

into existing pipeline using BT.

Compared with Other Pre-training

Approaches We also compare our pre-trained

models with recent self-supervised pre-training

methods, as shown in Table 3. We consider En-Ro

translation, the only pair with established results.

Our mBART model outperforms all the other

pre-trained models, both with and without BT

augmentation. We also show comparisons with

the conventional BART model trained on the same

En and Ro data only. Both have improvements

over baselines, although worse than mBART

results, indicating that pre-training in a multilin-

gual setting is essential. Moreover, combining

BT leads to additional gains, resulting in a new

state-of-the-art for Ro-En translation.

3.3 Analysis

We also present additional analyses, to better

quantify when our pre-training helps.

How many languages should you pre-train on?

We investigate when it is helpful for pre-training to

include languages other than the targeted language

pair that will be used during fine tuning. Table 4

Pre-training Fine-tuning

Model Data En→Ro Ro→En +BT

RANDOM None 34.3 34.0 36.8

XLM (2019) En Ro – 35.6 38.5

MASS (2019) En Ro – – 39.1

BART (2019) En – – 38.0

XLM-R (2019) CC100 35.6 35.8 –

BART-EN En 36.0 35.8 37.4

BART-RO Ro 37.6 36.8 38.1

MBART02 En Ro 38.5 38.5 39.9

MBART25 CC25 37.7 37.8 38.8

Table 3: Comparison with other pre-training

approaches on WMT16 Ro-En.

Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5

mBART06 – 38.5 39.3 –

mBART25 30.5 37.7 39.8 36.9

Table 4: Pretraining languages on En-X trans-

lation. The size refers to the size of monolingual

data for X. The size of En is shown as reference.

All the pretrained models were controlled to see

the same number of English instances during

training.

shows performance on four X-En pairs. Pre-

training on more languages helps most when the

target language monolingual data is limited (e.g.,

En-My, where the size of My is around 0.5%
of En).

In contrast, when monolingual data is plentiful

(De, Ro), pre-training on multiple languages

slightly hurts the final results (<1 BLEU). In

these cases, additional languages may reduce

the capacity available for each test language.

Additionally, the fact that mBART06 performs

similar to mBART02 on Ro-En suggests that

pre-training with similar languages is particularly

helpful.
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Figure 4: Fine-tuning curves for Ro-En along

with Pre-training steps. Both mBART25 and

mBART02 outperform the best baseline system

after 25K steps.

Figure 5: Fine-tuning curves for En-De along with

size of bitext. The x-axis is on a log scale.

How many pre-training steps are needed? We

plot Ro-En BLEU score vs. Pre-training steps in

Figure 4, where we take the saved checkpoints

(every 25K steps) and apply the same fine-tuning

process described in §3.1. Without any pre-

training, our model overfits and performs much

worse than the baseline. However, after just 25K

steps (5% of training), both models outperform

the best baseline. The models keep improving

by over 3 BLEU for the rest of pre-training and

have not fully converged after 500K steps. In

addition, mBART25 is consistently slightly worse

than mBART02, which confirms the observation

in Table 4.

How much bi-text is needed? Tables 1 and 2

show that pre-training consistently improves for

low and medium resource language pairs. To

verify this trend, we plot performance for differing

sized subsets of the En-De dataset. More precisely,

we take the full En-De corpus (28M pairs) and

randomly sample 10K, 50K, 100K, 500K, 1M,

5M, 10M datasets. We compare performance

without pre-training to the mBART02 results,

as shown in Figure 5. The pre-trained model

is able to achieve over 20 BLEU with only 10K

training examples, whereas the baseline system

scores 0. Unsurprisingly, increasing the size of bi-

text corpus improves both models. Our pre-trained

model consistently outperforms the baseline

models, but the gap reduces with increasing

amounts of bi-text, especially after 10M sentence

pairs. This result confirms our observation in §3.2

that our pre-training does not help translation in

high-resource pairs.

3.4 Generalization to Languages NOT in

Pre-training

In this section, we show that mBART can improve

performance even for languages that did not

appear in the pre-training corpora, suggesting that

the pre-training has language universal aspects.

Similar phenomena have also been reported in

other multilingual pre-training approaches in other

NLP applications (Pires et al., 2019; Wang et al.,

2019; Artetxe et al., 2019).

Experimental Settings We report results fine-

tuning for three pairs, Nl-En, Ar-En, and De-Nl,

using the pre-trained mBART25, mBART06, and

mBART02 (EnRo) models. The mBART06 and

mBART02 models are not pre-trained on Ar, De

or Nl text, but all languages are in mBART25.

Both De and Nl are European languages and are

related to En, Ro, and the other languages in the

mBART06 pre-training data.

Results As shown in Table 5, we find large

gains from pre-training on English-Romanian,

even when translating a distantly related unseen

language (Arabic) and two unseen languages

(German and Dutch). The best results are achieved

when pre-training includes both test languages,

although pre-training on other languages is

surprisingly competitive.

Unseen Vocabularies Arabic is distantly

related to the languages in mBART02 and

mBART06, and has a disjoint character set. This

means that its word embeddings are largely not

estimated during pre-training. However, we obtain

similar improvements on Ar-En pairs to those on

Nl-En. This result suggests that the pre-trained

Transformer layers learn universal properties of

language that generalize well even with minimal

lexical overlap.
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Monolingual Nl-En En-Nl Ar-En En-Ar Nl-De De-Nl

RANDOM None 34.6 (−8.7) 29.3 (−5.5) 27.5 (−10.1) 16.9 (−4.7) 21.3 (−6.4) 20.9 (−5.2)

MBART02 En Ro 41.4 (−2.9) 34.5 (−0.3) 34.9 (−2.7) 21.2 (−0.4) 26.1 (−1.6) 25.4 (−0.7)

MBART06 En Ro Cs It Fr Es 43.1 (−0.2) 34.6 (−0.2) 37.3 (−0.3) 21.1 (−0.5) 26.4 (−1.3) 25.3 (−0.8)

MBART25 All 43.3 34.8 37.6 21.6 27.7 26.1

Table 5: Generalization to unseen languages Language transfer results, fine-tuning on language-pairs

without pre-training on them. mBART25 uses all languages during pre-training, while other settings

contain at least one unseen language pair. For each model, we also show the gap to mBART25 results.

Unseen Source or Target Languages Table 5

shows different performance when the unseen

languages are on the source side, target side, or

both sides. If both sides are unseen, the perfor-

mance (in terms of difference from mBART25) is

worse than where at least one language is seen

during pre-training. Furthermore, although the

En-X pairs perform similarly, mBART06 out-

performs mBART02 on X-En pairs. Fine-tuning

unseen languages on the source side is more diffi-

cult, and is worthy of extensive future study.

4 Document-level Machine Translation

We evaluate mBART on document-level machine

translation tasks, where the goal is to translate

segments of text that contain more than one

sentence (up to an entire document). During pre-

training, we use document fragments of up to 512

tokens, allowing the models to learn dependencies

between sentences. We show that this pre-

training significantly improves document-level

translation.

4.1 Experimental Settings

Datasets We evaluate performance on two

common document-level MT datasets: WMT19

En-De and TED15 Zh-En. For En-De, we use the

document data from WMT19 to train our model,

without any additional sentence-level data. The

Zh-En dataset is from IWSLT 2014 and 2015

(Cettolo et al., 2012, 2015). Following Miculicich

et al. (2018), we use 2010-2013 TED as the test

set.

Pre-processing We pre-process with the ap-

proach used in pre-training. For each block, sen-

tences are separated by end of sentence symbols

(</S>) and the entire instance is ended with

the specific language id (<LID>). On average,

documents are split into 2–4 instances.

Fine-tuning & Decoding We use the same fine-

tuning scheme as for sentence-level translation

(§3.1), without using any task-specific techniques

developed by previous work (Miculicich et al.,

2018; Li et al., 2019), such as constrained

contexts or restricted attention. For decoding, we

simply pack the source sentences into blocks,

and translate each instance block autoregressively.

The model does not know how many sentences

to generate in advance and decoding stops when

<LID> is predicted. We use beam size 5 by default.

Baselines & Evaluation We train 4 models: a

document-level (Doc-) MT model (§4.1) and a

corresponded sentence-level (Sent-) MT model

(§3.1) as the baseline, both with and without

pre-training. We use mBART25 as the common

pre-trained model for En-De and Zh-En. For

En-De, even though our mBART25 Doc-MT

model decodes multiple sentences together, the

translated sentences can be aligned to the source

sentences, which allows us to evaluate BLEU

scores both on sentence-level (s-BLEU) and

document-level (d-BLEU).5 For Zh-En, however,

we cannot produce the same number of translated

sentences as the reference due to alignment errors

in the test data. We only provide the d-BLEU

scores on this direction.

We also compare our models with Hierarchical

Attention Networks (HAN, Miculicich et al.,

2018) on Zh-En, which is the state-of-the-

art non-pretraining approach for document-level

translation for this pair. They combine two

layers of attention—first within and then across

sentences.

5Standard BLEU scores match n-grams at sentence-level.

We also consider document-level where we match n-grams

over the whole document resulting in a slightly higher score.
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(a) Sentence- and Document-level BLEU scores on En-De

Model
Random mBART25

s-BLEU d-BLEU s-BLEU d-BLEU

Sent-MT 34.5 35.9 36.4 38.0

Doc-MT × 7.7 37.1 38.5

(b) Document-level BLEU scores on Zh-En

Model
Random mBART25 HAN (2018)

d-BLEU d-BLEU d-BLEU

Sent-MT 22.0 28.4 −
Doc-MT 3.2 29.6 24.0

Table 6: Document-level machine translation on En-De and Zh-En. (×) The randomly initialized Doc-

MT model cannot produce translations aligned to the original sentences, so only document evaluation

is possible.

4.2 Main Results

Table 6 shows the main results for both En-De and

Zh-En at both sentence-level and document-level.

Random vs. Pre-trained The MT models

initialized with pre-trained weights outperform

randomly initialized models by large margins, for

both sentence-level and document-level training.

Our mBART25 models (both Sent-MT and Doc-

MT) also outperform HAN (Miculicich et al.,

2018),6 despite the fact that they are not

customized for document-level MT.

Sent-MT vs. Doc-MT For En-De and En-Zh,

the mBART25 Doc-MT models outperform

mBART25 fine-tuned at sentence-level by large

margins, reversing the trend seen for models

without pre-training. For both datasets, randomly

initialized Doc-MT fails to work, resulting

in much worse results than the sentence-

level models. Such large performance gaps

indicate that pre-training is critical for document

level performance. It is in general difficult to

collect high-quality document-level data in large

quantities, suggesting that pre-training may be a

strong strategy for future work. We also include a

sampled example in Figure 6.

5 Unsupervised Machine Translation

In addition to supervised machine translation, we

also evaluate our model on tasks where no bi-text

is available for the target language pair. We define

three types of unsupervised translation:

1. No bi-text of any kind. A common solution

is to learn from back-translation (Artetxe

et al., 2017; Lample et al., 2018c). We

show that mBART provides a simple and

effective initialization scheme for these

methods (§5.1).

6d-BLEU is recomputed from the provided system output.

2. No bi-text for the target pair, but both

languages appear in bi-text corpora with other

pairs. This setup is common for multilingual

MT systems (Johnson et al., 2017; Gu et al.,

2019). In this paper, we limit our focus to

building models for single language pairs,

and leave discussions for multilingual MT to

future work.

3. No bi-text for the target pair is available, but

there is bi-text for translating from some other

language into the target language. mBART

supports effective transfer, even if the source

language has no bi-text of any form (§5.2).

5.1 Unsupervised Machine Translation via

Back-Translation

Datasets We evaluate our pre-trained models

on En-De, En-Ne, and En-Si. En and De are both

European languages sharing many sub-words,

whereas Ne and Si are quite distinct from En. We

use the same test sets as supervised benchmarks

§3.1, and use the same pre-training data (CC25)

for back-translation to avoid introducing new

information.

Learning Following Lample and Conneau

(XLM, 2019), we initialize the translation model

with the mBART weights, and then learn to

predict the monolingual sentences conditioned

on source sentences generated by on-the-fly BT.

Furthermore, we constrain mBART to only gen-

erating tokens in target language7 for the first

1000 steps of on-the-fly BT, to avoid it copying

the source text.

Results Table 7 shows the unsupervised trans-

lation results compared with non-pretrained mod-

els, as well as models with existing pre-training

methods. Our models achieve large gains over

non-pretrained models for all directions, and

7We mask out the output probability of predicted tokens

which appear less than 1% in the target monolingual corpus.
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Figure 6: An example of document-level translation from mBART25 Sent-MT and Doc-MT, held out

from the test set of TED15 Zh-En. The Doc-MT system produces much fluent and coherent translation,

which is closer to the reference translation. For instance, Doc-MT model produces several ‘‘And’’ to

connect sentences to make it reads better, while the Sent-MT model does not contain global knowledge

and produce sentences independently. Additionally, both systems produce much better translations

than models without pre-training where the non-pretrained Doc-MT model completely fails to produce

readable translation output.
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En-De En-Ne En-Si

← → ← → ← →

Random 21.0 17.2 0.0 0.0 0.0 0.0

XLM (2019) 34.3 26.4 0.5 0.1 0.1 0.1

MASS (2019) 35.2 28.3 – – – –

mBART 34.0 29.8 10.0 4.4 8.2 3.9

Table 7: Unsupervised MT via BT between

dis-similar languages.

outperform XLM significantly for dissimilar pairs

(En-Ne, En-Si) where the existing approaches

completely fail. For En-De, our model also

performs comparably against XLM and MASS.

5.2 Unsupervised Machine Translation via

Language Transfer

We also report results when the target language

appears in a bi-text with some other source

language.

Datasets We only consider X→En translation,

and choose the bitexts of 12 language pairs from

§3.1, covering Indic languages (Ne, Hi, Si, Gu),

European languages (Ro, It, Cs, Nl), East Asian

languages (Zh, Ja, Ko), and Arabic (Ar).

Results The pre-trained mBART25 model is

fine-tuned on each language pair, and then

evaluated on the rest of pairs, as seen in Table 8.

We also present the direct fine-tuning performance

(§3) on the diagonal, for reference. We see transfer

for all pairs with all fine-tuned models except from

Gu-En where the supervised model completely

fails (0.3 BLEU). In some cases we can achieve

similar (Cs-En) or even much better (Ne-En,

Gu-En) results compared with the supervised

results. We also show an example of language

transfer in Figure 7.

As a comparison, we also apply the same proce-

dure on randomly initialized models without pre-

training, which always ends up with ≈ 0 BLEU.

This indicates that multilingual pre-training is

essential and produces universal representations

across languages, so that once the model learns to

translate one language to En, it learns to translate

all languages with similar representations.

When is language transfer useful? Table 8

also shows that the size of transfer effects varies

with the similarity of different languages. First, for

most pairs, language transfer works better when

fine-tuning is also conducted in the same language

family, especially between Indic languages (Hi,

Ne, Gu). However, significant vocabulary sharing

is not required for effective transfer. For instance,

Zh-En and It-En achieve the best transfer learning

results on Ko-En and Ar-En, respectively. This is

despite the low vocabulary overlap (even character

overlap) between (Zh, Ko) and (It, Ar).

With BT We present a comparison of unsuper-

vised MT with BT vs. language transfer in Table 9

where language transfer works better when there

exists a close language translation to transfer from.

Moreover, we show promising results for

combining these two techniques. We start from the

best transferred model and apply (iterative) BT on

the same monolingual corpus used in pre-training.

Table 9 presents the results with 1 iteration of BT.

We see improvements for all pairs. The complete

analysis of both methods is left as future work.

6 Related Work

Self-supervised Learning for Text Generation

This work inherits from the recent success brought

by pre-training for NLP applications (Peters et al.,

2018; Radford et al., 2018; Devlin et al., 2019;

Yang et al., 2019b; Liu et al., 2019), especially

for text generation (Radford et al., 2019; Song

et al., 2019; Dong et al., 2019; Raffel et al.,

2019; Lewis et al., 2019). The pre-trained models

are usually used as the initialization for fine-

tuning downstream tasks such as controllable

language modeling (Shirish Keskar et al., 2019),

summarization (Song et al., 2019; Liu and Lapata,

2019) and dialogue generation (Zhang et al.,

2019).

Specifically for machine translation, unsuper-

vised pre-training methods were also explored

to improve the performance. Qi et al. (2018)

investigated the application of pre-trained word

embeddings for MT; Ramachandran et al. (2017)

proposed to pre-train the encoder-decoder mod-

ules as two separate language models. Yang et al.

(2019a); Zhu et al. (2020) explored fusion ap-

proaches to incorporate the pre-trained BERT

weights to improve NMT training. In contrast

to most prior work, we focus on pre-training one

denoising autoencoder, and adapt the weights of

the entire model for various MT applications.
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Fine-tuning Languages

Zh Ja Ko Cs Ro Nl It Ar Hi Ne Si Gu

Domain News TED TED News News TED TED TED News Wiki Wiki Wiki
T

es
ti

n
g

L
a

n
g

u
a

g
es

ZH 23.7 8.8 9.2 2.8 7.8 7.0 6.8 6.2 7.2 4.2 5.9 0.0

JA 9.9 19.1 12.2 0.9 4.8 6.4 5.1 5.6 4.7 4.2 6.5 0.0

KO 5.8 16.9 24.6 5.7 8.5 9.5 9.1 8.7 9.6 8.8 11.1 0.0

CS 9.3 15.1 17.2 21.6 19.5 17.0 16.7 16.9 13.2 15.1 16.4 0.0

RO 16.2 18.7 17.9 23.0 37.8 22.3 21.6 22.6 16.4 18.5 22.1 0.0

NL 14.4 30.4 32.3 21.2 27.0 43.3 34.1 31.0 24.6 23.3 27.3 0.0

IT 16.9 25.8 27.8 17.1 23.4 30.2 39.8 30.6 20.1 18.5 23.2 0.0

AR 5.8 15.5 12.8 12.7 12.0 14.7 14.7 37.6 11.6 13.0 16.7 0.0

HI 3.2 10.1 9.9 5.8 6.7 6.1 5.0 7.6 23.5 14.5 13.0 0.0

NE 2.1 6.7 6.5 5.0 4.3 3.0 2.2 5.2 17.9 14.5 10.8 0.0

SI 5.0 5.7 3.8 3.8 1.3 0.9 0.5 3.5 8.1 8.9 13.7 0.0

GU 8.2 8.5 4.7 5.4 3.5 2.1 0.0 6.2 13.8 13.5 12.8 0.3

Table 8: Unsupervised MT via language transfer on X-En translations. The model fine-tuned on one

language pair is directly tested on another. We use gray color to show the direct fine-tuning results,

and lightgray color to show language transfer within similar language groups. We bold the highest

transferring score for each pair.

Figure 7: An example of unsupervised MT via language transfer. mBART models finetuned with Ko or

Zh are able to translate Ja sentence to En almost as correctly as in the supervised case.

Source online BT Transfer Combined

Ro 30.5 23.0 ( Cs ) 33.9

Ne 10.0 17.9 ( Hi ) 22.1

Zh 11.3 9.2 ( Ko ) 15.0

Nl 28.5 34.1 ( It ) 35.4

Table 9: BT vs. language transfer for unsupervised

MT for X-En translations. For language transfer,

we present the best transferring scores together

with the language transferred from.

Multilinguality in NLP tasks This work is also

related to the continual trend of multilingual

language learning, including aligning multilingual

word embeddings (Mikolov et al., 2013; Chen

and Cardie, 2018; Lample et al., 2018b) into

universal space, and learning crosslingual models

(Wada and Iwata, 2018; Lample and Conneau,

2019; Conneau et al., 2019) to exploit shared

representations across languages.

For MT, the most relevant field is multilingual

translation (Firat et al., 2016; Johnson et al.,

2017; Aharoni et al., 2019; Arivazhagan et al.,

2019) where the ultimate goal is to jointly train

one translation model that translates multiple

language directions at the same time, and

shares representations to improve the translation

performance on low-resource languages (Gu et al.,

2018). In this paper, we focus on multilingualism

in the pre-training stage and fine-tune the

learned model in the standard bilingual scenario.
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Compared with multilingual translation, we do

not require parallel data across multiple languages

but the targeted direction, which improves the

scalability to low-resource languages and specific

domains.

Document Translation As one of the key

applications, our work is also related to previous

efforts for incorporating document-level context

into neural machine translation (Wang et al.,

2017; Jean et al., 2017; Tiedemann and Scherrer,

2017; Miculicich et al., 2018; Tu et al., 2018).

Li et al. (2019) is the most relevant work

that also utilized pre-trained encoder (BERT)

for handling longer context. However, the

focus has been on designing new task-specific

techniques, and doing sentence-level translation

with a wider input context. To the best of our

knowledge, our multilingual pre-trained model

is the first that shows improved results on

document-level translation with standard Seq2Seq

models.

Unsupervised Translation This work also

summarizes the previous efforts of learning to

translate between languages without a direct

parallel corpus. When no parallel data of any

kind is available, Artetxe et al. (2017) and

Lample et al. (2018a) proposed to jointly learn

denoising auto-encoder and back-translation from

both directions, which, however, required good

initialization and only worked well on similar

language pairs. Wu et al. (2019) solve the

problem by mining sentences from Wikipedia

and using them as weakly supervised translation

pairs. Similar to Lample and Conneau (2019) and

Song et al. (2019), we follow the first approach

and treat our pre-trained model as the initialization

step. We also investigate unsupervised translation

using language transfer, which is similar to

Pourdamghani et al. (2019), where the authors

generate translationese of the source language

and train a system on high-resource languages

to correct these intermediate utterances. It is

also closely related to Conneau et al. (2018)

and Artetxe et al. (2019) for cross-lingual

representation learning where we also show

representation learned by mBART can be easily

transferred between language without supervised

data.

7 Conclusion

We demonstrate that multilingual de-noising pre-

training is able to significantly improve both

supervised and unsupervised machine translation

at both the sentence level and document level.

We analyze when and how pre-training is most

effective and can be combined with other

approaches such as back-translation. Our results

also show the transfer learning ability of

the learned representations from multilingual

pre-training.

In future work, we will scale-up the current

pre-training to more languages, for example, an

mBART100 model. The size of our model makes

it expensive to deploy in production—future work

will explore pre-training more efficient models.
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