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Abstract

The conventional paradigm in speech trans-

lation starts with a speech recognition step to

generate transcripts, followed by a translation

step with the automatic transcripts as input.

To address various shortcomings of this

paradigm, recent work explores end-to-end

trainable direct models that translate without

transcribing. However, transcripts can be an

indispensable output in practical applications,

which often display transcripts alongside the

translations to users.

We make this common requirement explicit

and explore the task of jointly transcribing and

translating speech. Although high accuracy

of transcript and translation are crucial, even

highly accurate systems can suffer from incon-

sistencies between both outputs that degrade

the user experience. We introduce a method-

ology to evaluate consistency and compare

several modeling approaches, including the

traditional cascaded approach and end-to-end

models. We find that direct models are poorly

suited to the joint transcription/translation

task, but that end-to-end models that feature

a coupled inference procedure are able to

achieve strong consistency. We further intro-

duce simple techniques for directly optimizing

for consistency, and analyze the resulting

trade-offs between consistency, transcription

accuracy, and translation accuracy.1

1 Introduction

Speech translation (ST) is the task of translating

acoustic speech signals into text in a foreign

language. According to the prevalent framing of

ST (e.g., Ney, 1999), given some input speech

1We release human annotations of consistency under

https://github.com/apple/ml-transcript

-translation-consistency-ratings.

x, ST seeks an optimal translation t̂ ∈ T , while

possibly marginalizing over transcripts s ∈ S:

t̂ =argmax
t∈T

{P (t | x)} (1)

≈ argmax
t∈T

{

∑

s∈S

PMT (t | s)PASR (s | x)

}

.

According to this formulation, ST models

primarily focus on translation quality, while tran-

scription receives less emphasis. In contrast, prac-

tical ST user interfaces often display transcripts

to the user alongside the translations. A typical

example is a two-way conversational ST applica-

tion that displays the transcript to the speaker for

verification, and the translation to the conversa-

tion partner (Hsiao et al., 2006). Therefore, there

is a mismatch between this practical requirement

and the prevalent framing as described above.

While traditional ST models often do commit

to a single automatic speech recognition (ASR)

transcript that is then passed on to a machine

translation (MT) component (Stentiford and Steer,

1988; Waibel et al., 1991), researchers have

undertaken much effort to mitigate resulting error

propagation issues by developing models that

avoid making decisions on transcripts. Recent

examples include direct models (Weiss et al.,

2017) that bypass transcript generation, and

lattice-to-sequence models (Sperber et al., 2017)

that translate the ASR search space as a whole.

Despite their merits, such models may not be ideal

for scenarios that display both a translation and a

corresponding transcript to users.

In this paper, we replace Eq. 1 by a joint

transcription/translation objective to reflect this

requirement:

ŝ, t̂ = argmax
s∈S,t∈T

{P (s, t | x)} . (2)

This change in perspective has significant

implications not only on model design but also
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Figure 1: Example of lexical inconsistencies we

encountered when generating transcript and translation

independently. Although the transcript correctly con-

tains replay, the German translation (mistakenly)

chooses ersetzen (English: replace). The inconsistency

is explained by the acoustic similarity between replay

and replace, which is not obvious to a monolingual

user.

Figure 2: Illustration of surface-level consistency

between English transcript and German translation.

Only translation 1 spells both named entities (Bill Gross

and eSolar) consistently, and the German translation

Solarthermaltechnologie (translation 1) is preferred

over Solarwärme-Technologie (translation 2), by itself

a correct choice but less similar on the surface level.

on evaluation. First, besides translation accuracy,

transcription accuracy becomes relevant and

equally important. Second, the issue of consistency

between transcript and translation becomes

essential. For example, let us consider a naive

approach of transcribing and translating with two

completely independent, potentially erroneous

models. These independent models would ex-

pectedly produce inconsistencies, including in-

consistent lexical choice caused by acoustic or

linguistic ambiguity (Figure 1), and inconsistent

spelling of named entities (Figure 2). Even if

output quality is high on average, such incon-

sistencies may considerably degrade the user

experience.

Our contributions are threefold: First, we

introduce the notion of consistency between

transcripts and translations and propose methods

to assess consistency quantitatively. Second, we

survey and extend existing models, and develop

novel training and inference schemes, under the

hypothesis that both joint model training and a

coupled inference procedure are desirable for our

goal of accurate and consistent models. Third,

we provide a comprehensive analysis, comparing

accuracy and consistency for a wide variety of

model types across several language pairs to

determine the most suitable models for our task

and analyze potential trade-offs.

2 Evaluation Beyond Accuracy—The

Need for Consistency

To better understand the desiderata of models

that perform transcription and translation, it is

helpful to discuss how one should evaluate such

models. A first step is to evaluate transcription

accuracy and translation accuracy in isolation. For

this purpose, we can use well-established evalua-

tion metrics such as word error rate (WER) for

transcripts and BLEU (Papineni et al., 2002)

for translations. When considering scenarios in

which both transcript and translation are dis-

played, consistency is an essential additional re-

quirement.2 Let us first clarify what we mean by

this term.

Definition: Consistency between transcript

and translation is achieved if both are seman-

tically equivalent, with a preference for a

faithful translation approach (Newmark, 1988),

meaning that stylistic, lexical, and grammatical

characteristics should be transferred whenever

fluency is not compromised. Importantly, consis-

tency measures are defined over the space of

both well-formed and erroneous sentence pairs.

In the case of ungrammatical sentence pairs,

consistency may be achieved by adhering to a

literal or word-for-word translation strategy.

Consistency is only loosely related to accuracy,

and can even be in opposition in some cases.

For instance, when a translation error cannot

be avoided, consistency is improved at the cost

of transcription accuracy by placing the back-

translated error in the transcript. Because accuracy

and error metrics assess transcript or translation

quality in isolation, these metrics cannot capture

phenomena that involve the interplay between

transcript and translation.

2Other important ST use cases do not show both tran-

scripts at the same time, such as multilingual movie subtitling.

For such cases, consistency may be less critical.
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2.1 Motivational Use Cases

Although ultimately user studies must assess to

what extent consistency improves user satisfac-

tion, our intention in this paper is to provide a

universally useful notion of consistency that does

not depend too much on specific use cases. Never-

theless, our definition may be most convincing

when put in the context of specific example use

cases.

Lecture Use Case. Here, a person follows

a presentation or lecture-like event, presented in

a foreign language, by reading transcript and trans-

lation on a screen (Fügen, 2008). This person may

have partial knowledge of the source language,

but knows only the target language sufficiently

well. She, therefore, pays attention mainly to the

translation outputs, but may occasionally con-

sult the transcription output in cases where the

translation seems wrong. In this case, quick

orientation can be critical, and inconsistencies

would cause distraction and undermine trust

and perceived transparency of the transcription/

translation service.

Dialog Use Case. Next, consider the scenario

of a dialog between two people who speak differ-

ent languages. One person, the speaker, attempts

to convey a message to the recipient, relying on

an ST service that displays a transcript and a

translation. Here, the transcript is shown to the

speaker, who speaks only the source language, for

purposes of verification and possibly correction.

The translation is shown to the recipient, who

only understands the target language, to convey

the message (Hsiao et al., 2006). We can expect

that if transcript and translation are error-free, then

the message is conveyed smoothly. However,

when the transcript or translation contains errors,

miscommunication occurs. To efficiently recover

from such miscommunication, both parties should

agree on the nature and details of the mistaken

content. In other words, occurring errors are

preferred to be consistent between transcript and

translation.

3 Estimating Consistency

Having argued for consistency as a desirable

property, we now wish to empirically quantify the

level of consistency between a particular model’s

transcripts and translations. To our knowledge,

consistency has not been addressed in the

context of ST before, perhaps because tradi-

tional cascaded models have not been observed

to suffer from inconsistencies in the outputs.

Therefore, we propose several metrics for esti-

mating transcript/translation consistency in this

section. In §7.3, we demonstrate strong agree-

ment of these metrics with human ratings of

consistency.

3.1 Lexical Consistency

Our first metric focuses on semantic equivalency

in general, and consistent lexical choice in

particular, as illustrated in Figure 1. To this

end, we use a simple lexical coverage model

based on word-level translation probabilities.

This approach might also capture some aspects

of grammatical consistency by rewarding the

use of comparable function words. We sum

negative translation log-probabilities for each

utterance: tt→s=−
∑

tj∈t
maxsi∈s log p (tj | si).

We then normalize across the test corpus C
and average over both translation directions:
1
2

(

1
n

∑

(s,t)∈C tt→s+
1
m

∑

(s,t)∈C ts→t

)

, where n

and m denote the number of translated and

transcribed words in the corpus, respectively. In

practice, we use fast align (Dyer et al., 2013)

to estimate probability tables from our training

data. When a word has no translation probability

assigned, including out-of-vocabulary cases, we

use a simple smoothing method by assigning the

lowest score found in the lexicon.

Although it may seem tempting to use a

more elaborate translation model such as an

encoder-decoder model, we deliberately choose

this simple lexical approach. The main reason is

that we need to estimate consistency for potentially

erroneous transcript/translation pairs. In such

cases, we found severe robustness issues when

computing translation scores using a full-fledged

encoder-decoder model.

3.2 Surface Form Consistency

Our consistency definition mentions a preference

for a stylistic similarity between transcript and

translation. One way of assessing stylistic aspects

is to compare transcripts and translations at

the surface level. This is most sensible when

the source and target language are related, and

could help capture phenomena such as consistent

spelling of named entities, or translations using
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words with similar surface form as found in the

transcript. Figure 2 provides an illustration.

We propose to assess surface form consistency

through substring overlap. Our notion of substring

overlap follows CharCut, which was proposed

as a metric for reference-based MT evaluation

(Lardilleux and Lepage, 2017). Following Eq. 2

of that paper, we determine substring insertions,

deletions, and shifts in the translation, when

compared with the transcript, and compute

1 − deletions+insertions+shifts
|s|+|t| . Counts are aggregated

and normalized at corpus level. To avoid

spurious matches, we match only substrings of

at least length n (here: 5), compare in case-

sensitive fashion, and deactivate CharCut’s special

treatment of longest common prefixes/suffixes.

We note that surface form consistency is less

suited to language pairs that use different alpha-

bets, and leave it to future work to explore alter-

natives, such as the assessment of cross-lingual

phonetic similarity in such cases.

3.3 Correlation of Transcription/Translation

Error

This third metric bases consistency on well-

established accuracy metrics or error metrics.

We posit that a necessary (though not sufficient)

condition for consistency is that the accuracy

of the transcript should be correlated with the

accuracy of the translation, where both are

measured against some respective gold standard.

We therefore propose to assess consistency

through computing statistical correlation between

utterance-level error metrics for transcript and

translation.

Specifically, for a test corpus of size N , we

compute Kendall’s τ coefficient across utterance-

level error metrics. On the transcript side, we use

utterance-level WER as the error metric. Because

BLEU is a poor utterance-level metric, we make

use of CharCut on the translation side, which has

been shown to correlate well with human judgment

at utterance level (Lardilleux and Lepage, 2017).

Formally, we compute:

kendall τ

(

WER
clipped

1:N ,CharCut1:N

)

. (3)

Because CharCut is clipped above 1, we

also apply clipping to utterance-level WER for

stability.

Figure 3: Dialog use case. Whenever the transcript or

the translation has errors, additional effort is needed.

3.4 Combined Metric for Dialog Task

The previous metrics estimate consistency in a

fashion that is complementary to accuracy, such

that it is possible to achieve good consistency

despite poor accuracy. This allows trading off

accuracy against consistency, depending on spe-

cific task requirements. Here, we explore a particu-

lar instance of such a task-specific trade-off that

arises naturally through the formulation of a

communication model. We consider a dialog

situation (§2.1), and assume that communication

will be successful if and only if both transcript and

translation do not contain significant deviations

from some reference, as motivated in Figure 3.

Conceptually, the main difference to §3.3 is

that here we penalize, rather than reward, the

bad/bad situation (Figure 3). To estimate the prob-

ability of some generated transcript and translation

allowing successful communication, given refer-

ence transcript and translation, we thus require

that both the transcript and the translation are

sufficiently accurate. For utterance with index k:

P (succk | ref) = P (sk ok ∩ tk ok | ref)

= P (sk ok | ref)× P (tk ok | sk, ref)

≈ P (sk ok | ref)× P (tk ok | ref)

(4)

We then use utterance-level accuracy metrics

as a proxy, computing accuracy (sk) = 1−

WER
clipped

k , accuracy (tk) = 1−CharCutk. For

a test corpus of size N we compute corpus-level

scores as 1
N

∑

1≤k≤N P (succk).

4 Models for Transcription and

Translation

We now turn to discuss model candidates for

consistent transcription and translation of speech

(Figures 4–5). We hypothesize that there are two

desirable model characteristics in our scenario.

First, motivated by Eq. 2, models may achieve

better consistency by performing joint inference,

in the sense that no independence assumption
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Figure 4: Cascaded and direct model types.

Figure 5: Joint models, featuring both coupled inference

and end-to-end training.

between transcript and translation are made. We

call this characteristic coupled inference. Second,

shared representations through end-to-end (or

joint) training may be of advantage in our scenario.

We introduce several model variants, and also

discuss whether they match these characteristics.

4.1 Model Basics

For a fair comparison, we keep the underlying

architectural details as similar as possible across

compared model types. All models are based

on the attentional encoder-decoder framework

(Bahdanau et al., 2015). For audio encoders, we

roughly follow Chiu et al. (2018)’s multilayer

bidirectional LSTM model, which encodes log-

Mel speech features that are stacked and down-

sampled by a factor of 3 before being consumed

by the encoder. When a model requires a text

encoder (§4.2), we utilize residual connections

and feed-forward blocks similar to Vaswani et al.

(2017), although for simplicity we use LSTMs

(Hochreiter and Schmidhuber, 1997) rather than

self-attention in all encoder (and decoder) compo-

nents. Similarly, decoder components use residual

blocks of (unidirectional) LSTMs and feed-

forward components (Domhan, 2018).

For ease of reference, we use enc(·) to refer

to the encoder component that transforms speech

inputs (or embedded text inputs) into a hidden

encoder representations, dec(·) to refer to

the attentional decoder component that pro-

duces hidden decoder states auto-regressively,

and SoftmaxOut(·) to refer to the output

softmax layer that models discrete output token

probabilities. We will subscript components with

the parameter sets π, φ to indicate cases in which

model components are separately parametrized.

4.2 Cascaded Model (CASC)

The cascaded model (Figure 4a) represents ST’s

traditional approach of using separately trained

ASR and MT models (Stentiford and Steer,

1988; Waibel et al., 1991). Here, we use modern

sequence-to-sequence ASR and MT components.

CASC runs a speech input x1:l through an ASR

model

g1:l = encφ(x1:l)

ui = decφ(u<i, g1:l, si−1)

P (si | s<i, x1:l) = SoftmaxOutφ(ui),

(5)

decodes the best hypothesis transcript ŝ, and then

applies a separate MT model

h1:l = encπ(ŝ)

vi = decπ(v<i,h1:l, ti−1)

P (ti | t<i, ŝ) = SoftmaxOutπ(vi)

(6)

to generate a translation.

With respect to the two desirable characteristics

of a consistent model, notice that CASC uses a

coupled inference procedure, in the sense that

no strong independence assumptions are made

between transcript and translation. CASC may

therefore be a good candidate for consistent
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speech transcription/translation. However, it is

less straightforward to apply end-to-end training

to cascaded models.

4.3 Direct Models

To improve over the cascaded approach, recent

work has focused on end-to-end trainable

models, with direct ST models being the most

prototypical end-to-end model. In the following,

we describe straightforward ways of extending

direct models in order to apply them to our

joint transcription/translation task. Note that

these direct models (Figure 4b–d) generate

transcripts and translations independently at

inference time. In other words, these models do

not support coupled inference, which may degrade

consistency between transcript and translation.

It is worth discussing how our consistent

transcription/translation scenario relates to the

issue of error propagation, an important issue in

ST in which translations are degraded due to poor

transcription decisions. Prior research on direct

ST models has often been motivated by the

observation that direct ST models elegantly avoid

the error propagation problem. However, note that

by shifting perspective to the joint transcription/

translation goal, error propagation loses much of

its relevance. First, error propagation is usually

used to describe the negative effect of intermediate

decisions, but here transcripts no longer function

as intermediates. Second, strategies to mitigate

error propagation often seek to make translations

less influenced by transcription decisions. This is

in conflict with our goal of achieving consistency

between transcript and translation, which calls

for precisely the opposite: Transcription and

translation decisions should strongly depend on

each other.

4.3.1 Independent Direct Model (DIRIND)

A simple way of using direct modeling strategies

for our purposes is to use two independent direct

models, one for transcription, one for translation

(Figure 4b). Specifically, we compute

g1:l = encφ(x1:l)

ui = decφ(u<i, g1:l, si−1)

P (si | s<i, x1:l) = SoftmaxOutφ(ui)

h1:l = encπ(x1:l)

vi = decπ(v<i,h1:l, ti−1)

P (ti | t<i, x1:l) = SoftmaxOutπ(vi).

(7)

We are not aware of prior work using indepen-

dent models for transcription and translation.

We include this model as a contrastive baseline

for the subsequent two models.

4.3.2 Multitask Direct Model (DIRMU)

A major weakness of DIRIND is that transcription

and translation models are trained separately. A

better solution is to follow Weiss et al. (2017)’s

approach and sharing the speech encoder between

transcription and translation models while making

use of multitask training. Compared with Eq. 7,

encφ and encπ would be collapsed into a shared

encoder (Figure 4c). Note that originally, Weiss

et al. (2017) and follow-up works use the transcript

decoder only to aid training and exploit additional

data for ASR as a related task in multitask

learning. However, it is straight-forward to utilize

the transcript decoder during inference for our

purposes.

4.3.3 Shared Direct Model (DIRSH)

We can also take the amount of sharing to the

extreme by sharing all weights, not just encoder

weights. Increasing the number of shared para-

meters may positively impact transcription/

translation consistency. We are not aware of prior

work using this model variant for performing

speech translation. Compared with Eq. 7, both

encφ/encπ and decφ/decπ are collapsed into a

shared encoder and a shared decoder (Figure 4d).

4.4 Joint Models

We previously discussed CASC as a model that

features coupled inference but does not support

end-to-end training. We also discussed several

direct models, some of which support end-to-end

training, but none of which follow a coupled

inference procedure. This section introduces joint

models that support both end-to-end training and

coupled inference.3

4.4.1 Two-Stage Model (2ST)

The two-stage model (Kano et al., 2017) is con-

ceptually close to the cascaded approach but is

end-to-end trainable because continuous transcript

3It is worth noting that the models discussed in §4.4 match

our joint optimization goal exactly: P (t|s,x)P (s|x) =
P (t, s|x). This is in contrast to CASC, which assumes

conditional independence between translation and input

speech, given the transcript. However, we do not expect

this to be of major importance for purposes of generating

consistent transcripts and translations.
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decoder states are passed on to the translation

stage. Following Sperber et al. (2019)’s formula-

tion, we re-use Eq. (5) to model a transcript s and

hidden decoder states um
1 , and then compute

vi = decπ(v<i,u
m
1 )

P (ti | t<i,u1:m) = SoftmaxOutπ(vi).
(8)

Beam search is applied to decode transcripts,

as well as the corresponding hidden decoder

states u1:m that are then translated. Note that

in contrast to our paper, Kano et al. (2017)

and Sperber et al. (2019) treat transcripts only

as intermediate computations and do not report

transcription accuracies.

4.4.2 Triangle Model (TRI)

The triangle model (Anastasopoulos and Chiang,

2018) extends 2ST by adding a second attention

mechanism to the translation decoder that directly

attends to the encoded speech inputs. Eq. 5 is re-

used for transcription, and translations are com-

puted as

vi = decπ(v<i, [u1:m;h1:l], ti−1)

P (ti|t<i,u1:m,x1:l) = SoftmaxOutπ(vi).
(9)

TRI can be seen as combining DIRMU’s advan-

tage of featuring a direct connection between

speech and translation, and 2ST’s advantage of

supporting joint inference. Anastasopoulos and

Chiang (2018) evaluate both transcription and trans-

lation accuracy in a low-resource setting and report

consistent improvements for the latter but less

reliable gains for the former.

4.4.3 Concatenated Model (CONCAT)

Haghani et al. (2018) propose a sequence-to-

sequence model that produces the concatenation

of two outputs sequences in the context of spoken

language understanding. To our knowledge it

has not been utilized in an ST context before, but

is a very natural fit for our joint transcription/

translation scenario. CONCAT shares both the

encoder and the decoder, leading to improved

compactness:

r1:m+n := s1 . . . smt1 . . . tn

g1:l = enc(x1:l)

ui = dec(u<i, g1:l, ri−1)

P (ri | r<i,x1:l) = SoftmaxOut(ui).

(10)

5 Consistency as Training and

Inference Objectives

Having surveyed models that are suitable for our

task to various degrees, we next explore simple

ways to further improve the consistency of the

generated outputs through adjusting training or

inference objectives.

5.1 Consistency as Training Objective

At training time, we wish to introduce a loss

term that penalizes inconsistent outputs. Whereas

the consistency measures discussed in §3 are all

defined at either the utterance or the corpus level,

we define our loss term at the token level for

convenient integration with the standard cross

entropy loss term. For convenience, we opt to

follow the notion of surface-level consistency

(§3.2), according to which we may encourage

models to assign probability mass to transcript

(subword) tokens that appear in the translation,

and to translated tokens that appear in the

transcript.4

Consider the standard cross entropy loss,

which is computed against the ground-truth label

distribution q(yi) = δyi,y∗
i

for predicted label yi at

target position i, assigning all probability mass to

the reference token y∗i . We modify the ground truth

label distribution for transcript and translation

outputs, respectively:

q′transl(yi) = (1− ǫ)δyi,ti +
ǫ

|s|

∑

w∈s

δyi,w

q′transcr(yi) = (1− ǫ)δyi,si +
ǫ

|t|

∑

w∈t

δyi,w

(11)

This can be seen as an instance of non-uniform

label smoothing with strength ǫ (Szegedy et al.,

2016). In practice, we give this loss term a relative

weight of 0.1 during training, while at the same

time disabling label smoothing. Because this loss

requires access to the complete transcript and

translation, we do not apply it at inference time.

5.2 Consistency as Inference Objective

We can also modify the inference objective to

enforce more consistent outputs. A simple way for

accomplishing this is via n-best rescoring. This

4Similarly to §3, this strategy targets related languages

with shared alphabets, and our results for an English–German

speech translation task are encouraging (§7.4). We leave it to

future work to explore more elaborate solutions.
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is especially convenient when using consistency

measures such as lexical consistency (§3.1), which

can be computed without referring to a gold

standard. Our approach here follows two simple

steps: First, we computen-best lists using standard

beam search. Second, we select the (s, t)-pair

that produces the best lexical consistency score.

Expectedly, this rescoring approach will yield

improved consistency, while possibly degrading

transcript or translation accuracy. Future work

may explore ways for more explicitly balancing

model and consistency scores.

6 Experimental Setup

6.1 Data

We conduct experiments on the MuST-C corpus

(di Gangi et al., 2019), the largest publicly

available ST corpus, containing TED5 talks paired

with English transcripts and translations into

several languages. We present results for German,

Spanish, Dutch, and Russian as the target

language, where the data size is 408–504 hours

of English speech, corresponding to 234K–270K

utterances. In TED, translated subtitles are not

displayed simultaneously with the transcribed

subtitles, and consistency is therefore not inher-

ently required in this data. In practice, however, the

manual translation workflow in TED results in a

sufficient level of consistency between transcripts

and translations. Specifically, transcripts are

generated first, and translators are required to

use the transcript as a starting point while also

referring to the audio.6 We use MuST-C dev for

validation and report results on tst-COMMON.

6.2 Model and Training Details

We make use of the 40-dimensional log Mel

filterbank speech features provided with the

corpus. The only text preprocessing applied to

the training data is subword tokenization using

SentencePiece (Kudo and Richardson, 2018)

with the unigram setting. Following most recent

work on end-to-end ST models, we choose a

relatively small vocabulary size of 1024, with

transcription/translation vocabularies shared. No

additional preprocessing steps are applied for

training, but for transcript evaluation we remove

punctuation and non-speech event markers such

5www.ted.com.
6www.ted.com/participate/translate.

as (laughter), and compute case-insensitive WER.

For translations, we remove non-speech markers

from the decoded outputs and use SacreBleu7

(Post, 2019) to handle tokenization and scoring.

Model hyperparameters are manually tuned

for the highest accuracy with DIRMU, our most

relevant baseline. Unless otherwise noted, the

same hyperparameters are used for all other model

types. Weights for the speech encoder are initial-

ized based on a pre-trained attentional ASR task

that is identical to the ASR part of the direct

multitask model. Other weights are initialized

according to Glorot and Bengio (2010). The

speech encoder is a 5-layer bidirectional LSTM

with 700 dimensions per direction. Attentional

decoders consist of 2 Transformer blocks

(Vaswani et al., 2017) but use 1024-dimensional

unidirectional LSTM instead of self-attention as a

sequence model, except for the CONCAT and DIRSH

for which we increase to 3 layers. For CASC’s MT

model, encoder/decoder both contain 6 layers with

1024-dimensional LSTMs. Subword embeddings

are of size 1024.

We regularize using LSTM dropout with p =
0.3, decoder input word-type dropout (Gal and

Ghahramani, 2016), and attention dropout, both

p = 0.1. We apply label smoothing with strength

ǫ = 0.1. We optimize using Adam (Kingma and

Ba, 2014) with α = 0.0005, β1 = 0.9, β2 = 0.98,

4000 warm-up steps, and learning rate decay by

using the inverse square root of the iteration.

We set the batch size dynamically based on the

sentence length, such that the average batch size is

128 utterances. The training is stopped when the

validation score has not improved over 3 epochs,

where the validation score is the product of corpus-

level translation BLEU score and corpus-level

transcription word accuracy.

For decoding and generatingn-best lists, we use

beam size 10 and polynomial length normalization

with exponent 1.5. Our implementation is based

on PyTorch (Paszke et al., 2019) and xnmt

(Neubig et al., 2018), and all trainings are done

using single-GPU environments, utilizing Tesla

V100 GPUs with 32 GB memory.

6.3 Human Ratings

To obtain a gold standard to compare our proposed

automatic consistency metrics against, we collect

transcript/translation consistency ratings from

7hash: case.lc+numrefs.1+smooth.4+tok.13a+version.1.4.3.
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Model E2E training t | s

§4.2 CASC – attention

§4.3.1 DIRIND – –

§4.3.2 DIRMU –

§4.3.3 DIRSH –

§4.4.1 TRI attention

§4.4.2 2ST attention

§4.4.3 CONCAT sequential

Table 1: Overview of models and key properties.

All models except CASC/DIRIND are end-to-end

(E2E) trained. Models also differ in whether

translations are conditioned on transcripts

(t|s), and whether conditioning is implemented

through attention or through sequential decoder

states.

human annotators. The annotators are presented

a single transcript/translation pair at a time, and

are asked to judge the consistency on a 4-point

Likert scale. We aimed for a balanced scale which

assigned a score of 4 to cases with no or only

minor mismatch, a score of 3 to indicate a purely

stylistic mismatch, a score of 2 to indicate a partial

semantic mismatch, and a score of 1 to a complete

semantic mismatch. Instructions given to the

annotators include an explanation of the definition

given in §2 along with a table of several examples

for each of the 4 categories. We displayed tran-

scripts and translations in randomized order, so as

to obfuscate the directionality of the translation,

and do not provide the source speech utterances.

Annotators are recruited from an in-house pool

of trusted annotators and required to be proficient

English and German speakers.

For each of the 2641 speech utterances in

the MuST-C English-German test set, we collect

annotations for 8 transcript/translation pairs: 7

system outputs produced by the models in Table 1,

and the reference transcript/translation pairs. Each

transcript/translation item is rated individually and

by at least three different annotators. In total, we

used 58 raters to produce 63412 ratings. We fit a

linear mixed-effects model on the result using the

lme4 package (Bates et al., 2013), which allows

estimating the consistency of the outputs for each

system, while accounting for random effects of

each annotator and of each input sentence. We

refer to Norman (2010) and Gibson et al. (2011)

for a discussion of using mixed-effects models in

the context of Likert-scale ratings.

7 Results

We start by presenting empirical results across

all four language pairs, and will then focus

on English–German to discuss details. Table 1

contrasts the different model types that we

examine.

7.1 Accuracy Comparison

To validate our implementation and to evaluate the

overall model accuracy, Table 2 compares models

across four language pairs. The table confirms

that, except for DIRIND, our models obtain strong

overall accuracies, as compared with prior work on

the same data by Di Gangi et al. (2019).8 Overall,

CASC outperforms CONCAT and the 3 direct models

in terms of WER and BLEU. 2ST/TRI achieve

similar or stronger translation accuracy compared

with CASC. Joint model training (used by all

models except CASC and DIRIND) seems to hurt

transcription accuracy somewhat, although the

differences are often not statistically significant.

This may be caused by an inherent trade-off

between translation and transcription accuracy,

as discussed by He et al. (2011). Finally, CONCAT

achieves favorable transcription accuracies, and

translation accuracies fall between direct models

and non-direct models in most cases.

7.2 Lexical Consistency Comparison

Table 2 also shows results for lexical consistency.

Without exception, 2ST/TRI achieve the best

results, followed by CASC and CONCAT. The direct

models perform poorly in all cases. Given that

CASC is by design a natural choice for joint

transcription/translation, we did not necessarily

expect 2ST/TRI to achieve better consistency. This

encouraging evidence for the versatility of end-to-

end trainable models is also supported by human

ratings (§7.3).

To categorize models regarding inference pro-

cedure and end-to-end training (Table 1), we

observe that coupled inference (all non-direct

models) is most decisive for achieving good con-

sistency, with conditioning on generated tran-

scripts through sequential hidden states (CONCAT)

being less effective than conditioning through

8Concurrent work (Liu et al., 2020) obtains better tran-

scription results, but compiles its own version of the TED

corpus, thus it is unclear to what extent differences can be

attributed to better data filtering strategies, which are known

to be a potential issue in MuST-C.
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EN→DE EN→ES EN→NL EN→RU

Model ↓ WER ↑ BLEU ↓ Lex WER BLEU Lex WER BLEU Lex WER BLEU Lex

SOTA cc 27.0 18.5 – 26.6 22.5 – 26.6 22.2 – 27.0 11.1 –

SOTA dir – 17.3 – – 20.8 – – 18.8 – – 8.5 –

CASC 21.6 19.3 10.4 20.5 25.2 8.4 20.6 23.5 10.1 20.5 13.4 11.3

DIRIND 21.6 11.0 21.1 20.5 16.5 17.8 20.6 14.9 20.9 20.5 3.4 29.0

DIRMU 23.6 18.4 13.9 21.7 24.3 11.6 23.2 22.3 14.3 22.4 13.0 13.9

DIRSH 23.6 19.0 14.7 21.3 24.1 11.5 22.0 22.7 14.2 22.3 13.6 13.6

2ST 22.2 20.1 9.9 21.4 24.2 7.8 22.6 23.4 9.4 21.4 14.0 10.7

TRI 22.2 19.9 9.7 21.0 24.7 7.9 24.4 22.6 8.9 21.2 14.2 10.7

CONCAT 21.9 19.2 12.8 20.6 23.7 10.8 21.9 22.8 12.5 21.5 13.3 13.3

Table 2: Comparison of WER, BLEU, lexical consistency (Lex; §3.1) across several language pairs.

We compare against state-of-the-art (SOTA) results under same data conditions by Di Gangi et al.

(2019), where cc denotes a cascaded model, dir denotes a direct model. Bold font indicates the best

score. Results that are not statistically significantly worse than the best score in the same column are

in italics (pairwise bootstrap resampling (Koehn, 2004), p<0.05).

Transcript Translation Consistency

Model Params. ↓ WER ↑ BLEU ↓ CharCut ↓ Lex ↑ Sur ↑ Cor ↑ Cmb ↑ Human

CASC 223M 21.6 19.2 47.2 10.36 10.65 0.396 0.474 3.119

DIRIND 175M 21.6 11.0 60.3 21.13 5.24 0.346 0.374 2.195

DIRMU 124M 23.6 18.4 48.7 13.89 7.07 0.376 0.457 2.715

DIRSH 106M 23.6 19.0 47.9 14.71 8.54 0.371 0.464 2.776

2ST 122M 22.2 20.1 46.1 9.86 12.08 0.391 0.484 3.170

TRI 141M 22.2 19.9 46.3 9.72 11.54 0.414 0.484 3.192

CONCAT 106M 21.9 19.2 47.1 12.79 9.60 0.387 0.477 2.875

Reference – 0 100 0 12.6 13.3 1 1 3.594

Table 3: Detailed consistency results, including surface form consistency (Sur; §3.2), correlation of

error (Cor; §3.3), and the combined task-specific metric (Cmb; §3.4). Bold font indicates the best

score among automatic outputs. Results that are not statistically significantly worse than the best

score in the same column are in italics.

attention (other non-direct models). End-to-end

training also appears beneficial for consistency

(CASC vs. 2ST/TRI and DIRIND vs. DIRMU/DIRSH).

7.3 Analysis of Consistency Metrics

Table 3 presents more details for English–German

and includes human ratings as gold standard,

along with all four proposed automatic consistency

measures. Note that the reported human ratings

correspond to the intercepts of the linear mixed-

effects model (§6.3). The fitted model estimates

the standard deviation of the random effect for

annotators at 0.28 and for input sentences at 0.37.

All pairwise differences between the systems in

the table are statistically significant (p < 0.01)

according to an ANOVA test.

Encouragingly, lexical and surface form consis-

tencies are aligned, and follow the same trends as

the gold standard. The correlation-based measure

agrees on the inferior consistency of direct

models and the superior consistency of TRI, while

producing slightly different orderings among the

remaining models. According to our combined

dialog-specific measure, TRI/2ST are tied for the

best overall model.

One noteworthy observation is that lexical

consistency of references is far worse than for

2ST/TRI outputs. This contradicts the gold standard

outputs and is possibly caused by both the system

outputs and the lexical consistency score being

overly literal and biased toward high-frequent

outputs. For comparison against references, the

surface form consistency therefore appears to be

a better choice.
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Model WER BLEU ↓ Lex ↑ Sur

TRI 22.2 19.9 9.72 11.54

training 24.0 19.9 9.84 12.09

inference 22.6 19.5 8.79 13.17

DIRMU 23.6 18.4 13.89 7.07

training 23.2 18.9 13.94 7.94

inference 24.0 18.7 12.63 9.29

Table 4: Direct optimization for consistency.

We compare training (§5.1) and inference

(§5.2) approaches. Bold font indicates the

best score.

7.4 Directly Optimizing for Consistency

Table 4 considers the English–German translation

direction, and examines the effect of using strat-

egies for direct optimization of consistency at

training and inference time (§5). All of the

examined techniques improve consistency, though

often at the cost of degraded accuracy. The

training-time techniques appear more detrimental

to transcription accuracy, and the inference-time

techniques are more detrimental to translation

accuracy. Although DIRMU benefits strongly

from these techniques, it still falls behind TRI’s

consistency. For TRI, on the other hand, surface

form consistency improves to the point where

it almost matches the surface form consistency

between reference transcripts and translations

(3.594, see Table 3).

7.5 Consistency vs. Accuracy

Tables 2 and 3 tend to assign better consistency

scores to models with higher accuracy scores.

We wish to verify whether the trend is owed to

the model characteristics or whether this indicates

that our metrics fail to decouple accuracy and

consistency. To this end, we again focus on

English–German and introduce two new model

variants: First, CINDP performs translation using

CASC, but transcribes with an independently

trained direct model. Expectedly, such a model

shows high accuracy but low consistency, a

hypothesis that is confirmed by results in Table 5,

contrasted against DIRMU. Second, we train a

weaker 2-stage model by using only half the

training data. For such a model, we would expect

lower accuracy but not lower consistency, which is

again confirmed by Table 5, at least to some extent

(lexical consistency is worse, but the correlation

measure improves). These findings indicate that

Consistency

Model WER BLEU Lex Sur Cor Cmb

DIRMU 23.6 18.4 13.9 7.1 .38 .46

CINDP 21.8 19.2 14.6 8.3 .33 .47

2ST 22.2 20.1 9.9 12.1 .39 .48

2ST/2 30.0 16.6 10.9 11.9 .45 .44

Table 5: Consistency vs. accuracy. CINDP

achieves better accuracy than DIRMU, but worse

consistency scores. 2ST/2 is trained on less data

than 2ST, which hurts its accuracy but not its

consistency scores.

Figure 6: Example for inconsistently spelled names

and an inconsistent function word when generating

transcript and translation separately using DIRMU.

accuracy and consistency are in fact reasonably

well decoupled.

7.6 Qualitative Analysis

Manual inspection of the outputs of DIRMU and

TRI for the English–German model confirms our

intuition and the quantitative findings presented

above, namely, that DIRMU suffers from consider-

able consistency issues due to transcripts and

translations being generated separately. Examples

in the decoded test data are in fact easy to spot,

whereas for TRI we do find any consistency

problems. Figures 6–8 show cherry-picked

examples.

8 Related Work

To our knowledge there exists no prior work on

consistency for joint transcription and translation

of speech in particular, or other multitask condi-

tional sequence generation models in general. The

closest related prior work is perhaps Ribeiro et al.

(2019), who analyze the case of contradictory

model outputs in a question answering task

in which multiple different but highly related

questions are shown to the model. Other prior

work examines the trade-off between transcription
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Figure 7: Here, DIRMU makes inconsistent lexical

choices for transcript and translation, leading to a

correct translation despite an incorrect transcript.

Figure 8: This is an example where DIRMU produces

incorrect outputs on both sides, with seemingly

unrelated semantics.

and translation quality in more traditional speech

translation models theoretically (He and Deng,

2011) and empirically (He et al., 2011). Findings

indicate that optimizing for WER does not

necessarily lead to the best translations in a

cascaded speech translation model, which is in

line with the accuracy trade-offs observed in our

experiment. Concurrent work explores synchro-

nous decoding strategies for jointly transcribing

and translating speech, but does not discuss the

issue of consistency (Liu et al., 2020).

With regard to our consistency evaluation

metrics, a closely related line of research is work

on quality estimation and cross-lingual similarity

metrics (Fonseca et al., 2019). An important

difference of transcription/translation consistency

is that for purposes of assessing consistency there

is no directionality, and both input sequences can

be erroneous. It is therefore especially important

for metrics to be robust against errors on both

sides. Moreover, stylistic differences are often not

accounted for in this line of prior work. We note

the similarity of our proposed lexical consistency

metric to work by Popović et al. (2011), and leave

it for future work to explore whether metrics from

other related work can and should be employed to

measure consistency.

Finally, producing transcripts alongside transla-

tions may be framed as producing an explanation

(the transcript) alongside the main output (the

translation). Research on explainable machine

learning systems (Smith-Renner et al., 2020, and

references therein) may shed light on desirable

properties of these explanation from a usability

point of view, as well as questions related to

appropriate user interface design.

9 Conclusion

This paper investigates the task of jointly

transcribing and translating speech, which is

relevant for use cases in which both transcripts and

translations are displayed to users. The main theme

has been the discussion of consistency between

transcripts and translations. To this end, we

proposed a notion of consistency and introduced

techniques to estimate it. We conducted a thorough

comparison across a wide range of models,

both traditional and end-to-end trainable, with

regards to both accuracy and consistency. As

important model ingredients, we found that a

coupled inference procedure, where translations

are conditioned on transcripts through attention,

is particularly helpful. We also found that end-to-

end training improves consistency and translations

but at the cost of degraded transcripts. We further

introduced training and inference techniques that

are effective at further improving consistency,

which we found to also come with some trade-offs.

Future work should examine how consistency

correlates with user experience in practice and

establish specific trade-offs for various use cases.

Moreover, our techniques are applicable to other

multitask use cases that could potentially benefit

from consistent outputs.
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