
Sketch-Driven Regular Expression Generation

from Natural Language and Examples

Xi Ye♦ Qiaochu Chen♦ Xinyu Wang♠ Isil Dillig♦ Greg Durrett♦

♦Department of Computer Science, The University of Texas at Austin
♠Computer Science and Engineering Department, University of Michigan, Ann Arbor

{xiye,qchen,isil,gdurrett}@cs.utexas.edu
xwangsd@umich.edu

Abstract

Recent systems for converting natural lan-

guage descriptions into regular expressions

(regexes) have achieved some success, but

typically deal with short, formulaic text and

can only produce simple regexes. Real-world

regexes are complex, hard to describe with

brief sentences, and sometimes require exam-

ples to fully convey the user’s intent. We

present a framework for regex synthesis in this

setting where both natural language (NL) and

examples are available. First, a semantic parser

(either grammar-based or neural) maps the nat-

ural language description into an intermediate

sketch, which is an incomplete regex contain-

ing holes to denote missing components. Then

a program synthesizer searches over the regex

space defined by the sketch and finds a regex

that is consistent with the given string exam-

ples. Our semantic parser can be trained purely

from weak supervision based on correct-

ness of the synthesized regex, or it can leverage

heuristically derived sketches. We evaluate on

two prior datasets (Kushman and Barzilay,

2013; Locascio et al., 2016) and a real-world

dataset from Stack Overflow. Our system

achieves state-of-the-art performance on the

prior datasets and solves 57% of the real-world

dataset, which existing neural systems com-

pletely fail on.1

1 Introduction

Regular expressions (regexes) are widely used in

various domains, but are notoriously difficult to

write: regex is one of the most popular tags of

1Code and data available at https://github.com

/xiye17/SketchRegex/.

posts on Stack Overflow, with over 200,000

posts. Recent research has attempted to build se-

mantic parsers that can translate natural language

descriptions into regexes, via rule-based tech-

niques (Ranta, 1998), semantic parsing (Kushman

and Barzilay, 2013), or seq-to-seq neural network

models (Locascio et al., 2016; Zhong et al., 2018a;

Park et al., 2019). Although this prior work has

achieved relatively high accuracy on benchmark

datasets, trained models still do not generalize to

real-world applications: These benchmarks de-

scribe simple regexes with short natural language

descriptions and limited vocabulary.

Real-world regexes are more complex in terms

of length and tree-depth, requiring natural lan-

guage descriptions that are longer and more com-

plicated (Zhong et al., 2018b). Moreover, these

descriptions may be under-specified or ambigu-

ous. One way to supplement such descriptions is

by including positive/negative examples of strings

for the target regex to match. In fact, such exam-

ples are typically provided by users posting ques-

tions on Stack Overflow. Previous methods cannot

leverage the guidance of examples at test time

beyond naive postfiltering.

In this paper, we present a framework to

exploit both natural language and examples for

regex synthesis by means of a sketch. Rather

than directly mapping the natural language into a

concrete regex, we first parse the description into

an intermediate representation, called a sketch,

which is an incomplete regular expression that

contains holes to denote missing components.

This representation allows our parser to recognize

partial structure and fragments from the natural

language without fully committing to the regex’s

syntax. We then use an off-the-shelf program

synthesizer, mildly customized for our task, to

679

Transactions of the Association for Computational Linguistics, vol. 8, pp. 679–694, 2020. https://doi.org/10.1162/tacl a 00339
Action Editor: Luke Zettlemoyer. Submission batch: 3/2020; Revision batch: 7/2020; Published 10/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:xiye@cs.utexas.edu
mailto:qchen@cs.utexas.edu
mailto:isil@cs.utexas.edu
mailto:gdurrett@cs.utexas.edu
mailto:xwangsd@umich.edu
https://github.com/xiye17/SketchRegex/
https://github.com/xiye17/SketchRegex/
https://doi.org/10.1162/tacl_a_00339

Figure 1: Our regex synthesis approach from language and positive/negative examples. Natural language is parsed

into a sketch using a semantic parser. The finished sketch (the root node of the tree) is passed to a program

synthesizer, which searches over programs consistent with the sketch and examples. Each leaf node in the search

tree is a concrete regex; we return the first one consistent with all the examples.

produce a regex consistent with both the sketch

and the provided examples. Critically, this two-

stage approach modularizes the language interpre-

tation and program synthesis, allowing us to freely

swap out these components.

We evaluate our framework on several English

datasets. Because these datasets vary in scale,

we consider two sketch generation approaches:

neural network-based with a seq-to-seq model

(Luong et al., 2015) or grammar-based with a

semantic parser (Berant et al., 2013). We use two

large-scale datasets from past work, the KB13

dataset of Kushman and Barzilay (2013) and the

TURK dataset of Locascio et al. (2016), augmented

with automatically produced positive/negative

examples for each regex. Our neural sketch model

can exploit these large labeled datasets, allowing

our sketch-driven approach to outperform existing

seq-to-seq methods, even when those methods are

modified to take advantage of examples.

To test our model in a more realistic setting,

we also evaluate on a dataset of real-world regex

synthesis problems from Stack Overflow. These

problems organically have English language

descriptions and paired examples that the user

wrote to communicate their intent. This dataset

is small, only 62 examples; to more robustly

handle this setting without large-scale training

data, we instantiate our sketch framework with

a grammar-based semantic parser. Our approach

can solve 57% of the benchmarks, where existing

deep learning approaches solve less than 10%.

More data is needed, but this dataset can motivate

further work on more challenging regex synthesis

problems.

2 Regex Synthesis Framework

In this section, we illustrate how our regex

synthesis framework works using a real-world

example from a Stack Overflow post.2 In this

post, the user describes the desired regex as

‘‘the max number of digits before comma is 15

then accept at max 3 numbers after the comma.’’

Additionally, the user provides eight positive/

negative examples to further specify their intent.

In this instance, the NL description is under-

specified: The description doesn’t clearly say

whether the decimal part is compulsory, and a

period (.) is mistakenly described as a comma.

These issues in NL pose problems for systems

attempting to directly generate the target regex

based only on the description.

Figure 1 shows how our framework handles

this example. The natural language description is

first parsed into a sketch by a semantic parser,

which in this case is grammar-based (Section 3.2)

but could also be neural in nature (Section 3.1).

The purpose of the sketch is to capture useful

2https://stackoverflow.com/questions

/19076566/regular-expression-that-validates

-decimal-18-3.

680

https://stackoverflow.com/questions/19076566/regular-expression-that-validates-decimal-18-3
https://stackoverflow.com/questions/19076566/regular-expression-that-validates-decimal-18-3
https://stackoverflow.com/questions/19076566/regular-expression-that-validates-decimal-18-3

components from the description as well as the

high-level structure of the regex. For example,

the sketch in Figure 1 depicts the target regex as

the concatenation of two regexes, where the first

regex likely involves composition of <num> and

<,> in some way. We later feed this sketch,

together with positive/negative examples, into

the synthesizer, which enumeratively instantiates

holes with constructs from our regex DSL until a

consistent regex is found.

We describe our semantic parsers in Section 3

and our synthesizer in Section 4.

Regex/Sketch DSL Our regex language

(Figure 2) is similar to the one presented in

Locascio et al. (2016), but more expressive. Our

DSL adds some additional constructs, such as

Repeat(S,k), repeating a regex S exactly k

times, in our DSL, which is not supported by

Locascio et al. (2016). This DSL is equivalent in

power to standard regular expressions, in that it

can match any regular language.

Our sketch language builds on top of our

regex DSL by adding a new construct called a

‘‘constrained hole’’ (the red rule in Figure 2). Our

sketch DSL introduces an additional grammar

symbol S and the notion of hole �. Holes can

be produced with the rule �{S1, . . . , Sm}, where

each Si on the right-hand side is also a sketch. A

concrete regex r belongs to the space of regexes

defined by a constrained hole if at least one of its

Si defines any concrete regex r, that is, one of the

subtrees in r. Put another way, the regex rooted

at S must contain a subtree that matches at least

one of the Si, but it does not have to match all of

them. However, the synthesizer we use supports

using the Si in its search heuristic to prefer certain

programs. In this fashion, the constraint serves as

a hint for the leaf nodes of the regex, but it only

loosely constraints the structure.

For example, consider the sketch shown in

Figure 1. Here, all programs on the leaf nodes

of the search tree are included in the space of

regexes defined by this sketch. Note that the first

two explored regexes only include some of the

components mentioned in the sketch (e.g., <num>

and RepRange(<num>,1,3)), whereas the

final correct regex happens to include every

mentioned component.

Use of Holes There is no single correct sketch

for a given example. A trivial sketch consisting

of just a single hole could synthesize to a correct

Figure 2: Regex DSL (black) and Sketch DSL (all rules

including the last rule in red). C represents either a

character class such as <let>, <num> or a single

character such as <a>, <1>. k represents an integer.

program if the examples precisely specify the

semantics; this reduces to a pure programming-

by-example setting. A sketch could also make no

use of holes and fully specify a regex, in which

case the synthesizer has no flexibility in its search.
Our process maintains uncertainty over

sketches in both training, by leaving them as latent

variables, and test, by feeding a k-best list of

sketches into our synthesizer. In practice, we ob-

serve a few patterns in how sketches are used.

One successful pattern is when sketches balance

concreteness with flexibility, as shown in Figure 1:

They commit to some high-level details to con-

strain the search space while using holes with

specified components further down in the tree. A

second pattern we observe is when the sketch has

a single hole at the root but enumerates a rich set

of components Si that are likely to appear; this

prefers synthesizing sketches using these subtrees.

3 Semantic Parser

Given a natural language description L =
l1, l2, . . . , lm, our semantic parser generates a

sketch S that encapsulates the user’s intent. When

combined with examples in the synthesizer, this

sketch should yield a regex matching the ground

truth regex. As stated before, our semantic parser

is a modular component of our system, so we

can use different parsers in different settings. We

investigate two paradigms of semantic parser: a

seq-to-seq neural network parser and a grammar-

based parser, as well as two ways of training

the parser: maximum likelihood estimation based

on a pseudo-gold sketch and maximum marginal

likelihood based on whether the sketch leads to

the correct synthesis result.

681

Figure 3: Examples of rules and the parse tree for building one possible derivation. The left side of a rule is

the source sequence of tokens or syntactic categories (marked with a $ sign). The right side specifies the target

syntactic category and then the target derivation or a semantic function (together with arguments) producing it.

$PROGRAM denotes a concrete regex without holes and $SKETCH denotes sketches containing holes. Lexical rule 4

denotes mapping any token of an integer to its value.

3.1 Neural Parser

Following recent work (Locascio et al., 2016),

we use a seq-to-seq model with attention (Luong

et al., 2015) as our neural parser. Here, we treat the

sketch as a sequence of tokens S = s1, s2, . . . , sn
and model P (S|L) autoregressively.

Our encoder is a single-layer bidirectional

LSTM, where the tokens li in the natural language

description are encoded into a sequence of

hidden states h̄i. Our decoder is a single-layer

unidirectional LSTM, initialized with the encoder

final state h̄m. At each timestep t, we concatenate

the decoder hidden state ĥt with a context vector

ct computed based on bilinear attention, and the

probability distribution of the output token st is

given as:

ai,t = softmax (h̄⊤
i Wqĥt) ct =

∑

i

ai,th̄i

p(st|L, s<t) = softmax (Wz[ĥt; ct]),

where ŵi is the embedded word vector of zi. The

final probability for a generating S conditioned on

L is given as p(S|L) =
∏n

t=1 p(st|L, s<t).

3.2 Grammar-Based Parser

We also explore a grammar-based semantic parser

built using SEMPRE (Berant et al., 2013). This

approach is less data-hungry than deep neural net-

works and promises better generalizability, as it is

regulated by a grammar and has fewer parameters,

which makes it less likely to fit annotation artifacts

of crowdsourced datasets.

Given a natural language description, our

semantic parser uses a grammar to construct

possible sketches. The grammar consists of two

sets of rules, lexical rules and compositional rules.

Formally, a grammar rule is of the following form:

α1 . . . αn → c[β]. Such a rule maps the sequence

of tokens or syntactic categories α1 . . . αn into

target derivation β with syntactic category c.

As shown in Figure 3, each lexical rule maps

a word or a phrase in the description to a base

concept in the DSL, including character classes,

string constants, and operators. Compositional

rules generally capture the higher-level DSL con-

structs, specifying how to combine one or more

base concepts to build more complex ones. Our

semantic parser constructs possible derivations

of sketches by recursively applying these rules,

first generating derivations for spans matching the

lexical rules and then combining these with com-

positional rules. Finally, we take the the deriva-

tions over the entire natural language description

with a designated $ROOT category as the final set

of output sketches.

We design our grammar3 according to our

sketch DSL. For all the datasets in evaluation, we

use a unified grammar that consists of approxi-

mately 70 lexical rules and 60 compositional rules.

The size of grammar is reflective of the size

of DSL, because either a terminal of a single

DSL construct needs several rules to specify it

(e.g., both digit or number can present <num>,

and Concat(X,Y) can be described in multiple

ways like X before Y or Y follows X). Despite

the fact that the grammar is hand-crafted, it is

sufficient to cover the fairly narrow domain of

regex descriptions.

3A readable version of grammar is available at https://

github.com/xiye17/SketchRegex/blob/master

/readable grammar.pdf.

682

https://github.com/xiye17/SketchRegex/blob/master/readable_grammar.pdf
https://github.com/xiye17/SketchRegex/blob/master/readable_grammar.pdf
https://github.com/xiye17/SketchRegex/blob/master/readable_grammar.pdf

Our parser allows skipping arbitrary tokens

(Figure 3), resulting in a large number of

derivations. We define a log-linear model to place

a distribution over derivations Z ∈ D(L) given

description L: pθ(Z|L) = exp(θ⊤φ(L,Z))∑
Z′∈D(L) exp(θ

⊤φ(L,Z ′))

where θ is the vector of parameters to be learned,

and φ(L,Z) is a feature vector extracted from

the derivation and description. The features used

in our semantic parser are standard features in

the SEMPRE framework and mainly characterize

the relation between description and applied

composition, including indicators when rule r is

fired over a span containing token l, indicators of

whether a particular rule r is fired, and indicators

of rule bigrams in the tree.

3.3 Training

For both the neural and grammar-based parsers,

we can train the model parameters in two ways.

MLE Maximum likelihood estimation maxi-

mizes the probability of mapping the description

to a corresponding gold sketch S∗:

argmax
θ

∑

(S∗,L)

log pθ(S
∗ | L).

Gold sketches are not defined a priori; however,

we describe ways to heuristically derive them in

Section 5.2.

MML For a given natural language description

and regex pair, multiple syntactically different

sketches can yield semantically equivalent

regexes. We can therefore maximize the marginal

likelihood of generating a sketch that leads us

to the semantically correct regex, instead of a

generating a particular gold sketch. Namely, we

learn the parameters by maximizing:

argmax
θ

∑

(r∗,L)

log
∑

S

1[synth(S) = r∗]pθ(S | L)

where r∗ is the ground truth regex and synth

denotes running the synthesizer. Computing the

sum over all sketches is intractable, so we sample

sketches from beam search to approximate the

gradients (Guu et al., 2017).

4 Program Synthesizer

In this section, we describe the program syn-

thesizer, which takes as input a sketch and a set of

examples and returns a regex that is consistent with

the given examples. Specifically, our synthesizer

explores the space of programs defined by the

sketch while additionally being guided by the

examples.

Enumerative Synthesis from Sketches We use

an enumeration-based program synthesizer that is

a generalized version of the regex synthesizer

proposed by Lee et al. (2016). Given a program

sketch and a set of positive/negative examples,

the synthesizer searches the space of programs

that can be instantiated by the given sketch and

returns a concrete regex that accepts all positive

examples and rejects all negative examples.

Specifically, the synthesizer instantiates each

hole with our DSL constructs or the components

for the hole. If a hole is instantiated with a DSL

terminal such as <num> or <let>, the hole will

just be replaced by the terminal. If a hole is

instantiated using a DSL operator, the hole will

first be replaced by this operator, we introduce

new holes for its arguments, and we require the

components for at least one of the holes to be the

original holes’ components. See Figure 1 for an

example of regexes that could be instantiated from

the given sketch.

Whenever the synthesizer produces a complete

instantiation of the sketch (i.e., a concrete regex

with no holes), it returns this regex if it is also

consistent with the examples (accepts all positive

and rejects all negative examples). Otherwise, the

synthesizer moves on to the next program in the

sketch language. The synthesizer terminates when

it either finds a regex consistent with the examples

or it has exhausted every possible instantiation of

the sketch up to depth d.

Our synthesizer differs from that of Lee et al.

(2016) in two main ways. First, their regex lan-

guage is extremely restricted, only allowing the

characters 0 and 1 (a binary alphabet). Second,

their technique enumerates DSL programs from

scratch, whereas our synthesizer performs enu-

meration based on an initial sketch. This signif-

icantly reduces the search space and therefore

allows us to synthesize complex regexes much

more quickly.

Enumeration Order Our synthesizer maintains

a worklist of partial programs to complete, and

enumerates complete programs in increasing order

of depth. Specifically, at each step, we pop the

683

Dataset KB13 TURK SO

size 824 10, 000 62
#. unique words 207 557 301
Avg. NL length 8 12 25
Avg. regex size 5 5 13
Avg. regex depth 3 2 4

Table 1: Statistics of our datasets. Compared

with KB13 and TURK, STACKOVERFLOW

contains more sophisticated descriptions and

regexes.

next partial program with the highest overlap with

our sketch, expand the hole given possible comple-

tions, and add the resulting partial programs

back to the worklist. When a partial program is

completed (i.e., no holes), it is checked against the

provided examples. The program will be returned

to the user if it is consistent with all the examples,

otherwise the worklist algorithm continues.

Note that in this search algorithm, constrained

holes are not just hard constraints on the search

but are also used to score partial programs, favor-

ing programs using more constructs derived from

the natural language. This scoring helps the

model prioritize programs that are more congruent

with the natural language, lead to more accurate

synthesis.

5 Datasets

We evaluate our framework on two datasets

from prior work, KB13 and TURK, and a new

dataset, STACKOVERFLOW. We list the statistics

about these datasets and a typical example

from each of them in Table 1 and Figure 4,

respectively. Because our framework requires

string examples which are absent in the existing

datasets, we introduce a systematic way to gene-

rate positive/negative examples from ground truth

regexes.

KB13 KB13 (Kushman and Barzilay, 2013) was

created with crowdsourcing in two steps. First,

workers from Amazon Mechanical Turk wrote the

original English language descriptions to describe

a subset of the lines in a file. Then, a set of pro-

grammers from oDesk are required to write the

corresponding regex for each of these language

descriptions. In total, 834 pairs of description and

regex are generated.

Turk Locascio et al. (2016) collected the larger-

scale TURK dataset to investigate the performance

Figure 4: Examples of natural language description

from each of the three datasets. TURK tends to be very

formulaic, while STACKOVERFLOW is longer and much

more complex.

of deep neural models on regex generation. Be-

cause it is challenging and expensive to hire crowd

workers with domain knowledge, the authors uti-

lize a generate-and-paraphrase procedure instead.

Specifically, 10,000 instances are randomly sam-

pled from a predefined manually crafted grammar

that synchronously generates both regexes and

synthetic English language descriptions. The syn-

thetic descriptions are then paraphrased by work-

ers from Amazon Mechanical Turk.

The generate-and-paraphrase procedure is an

efficient way to obtain description-regex pairs,

but it also leads to several issues that we find in

the dataset. The paraphrase procedure inherently

limits the originality in natural language, leading

to artificial descriptions. In addition, because the

regexes are stochastically generated without being

validated, many of them are syntactically correct

but semantically meaningless. For instance, the

regex \b(<vow>)&(<num>)\b for the descrip-

tion lines with words containing a vowel and a

number is a valid regex but does not match any

string values. These null regexes account for

around 15% of the data. Moreover, other regexes

have formulaic descriptions since their semantics

are randomly made up (more examples can be

found in Section 6).

5.1 StackOverflow

To explore regex generation in real-word settings,

we collect a new dataset consisting of posts on

Stack Overflow. We search posts tagged as regex

on Stack Overflow and then filter the collected

posts with two rules: (1) the post should include

both an English language description as well as

positive/negative examples; (2) the post should

not contain abstract concepts (e.g., ‘‘months’’,

‘‘US phone numbers’’) or visual formatting (e.g.,

684

‘‘AB-XX-XX’’) in the description. We collected

62 posts4 that contain both description and regex

using our rules. In addition, we slightly preprocess

the description by fixing typos and marking string

constants, as has done in prior datasets (Locascio

et al., 2016).

Although STACKOVERFLOW only includes 62

examples, the number of unique words in the

dataset is higher than that in KB13 (Table 1).

Moreover, its average description length and

regex size are substantially higher than those of

previous datasets, which indicates the complexity

of regexes used in real-world settings and the

sophistication of language used to describe them.

5.2 Dataset Preprocessing

Generating Positive/Negative Examples The

STACKOVERFLOW dataset organically has positive/

negative examples, but, for the other datasets, we

need to generate examples to augment the existing

datasets. We use the automaton library (Møller,

2017) for this purpose. For positive examples,

we first convert the ground truth regex into

an automaton and generate strings by sampling

values consistent with paths leading to accepting

states in the automaton. For negative examples,

we take the negation of the ground truth regex,

convert it into an automaton, and follow the same

procedure as generating the positive examples.

To ensure a diverse set of examples, we limit the

number of times that we visit each transition so

that the example generator avoids taking the same

transitions repeatedly. For each of these datasets,

we generate 10 positive and 10 negative examples.

This is comparable to what was used in past work

(Zhong et al., 2018a) and it is generally hard to

automatically generate a smaller set of ‘‘corner

cases’’ that humans would write.

Generating Heuristic Sketches Our approach

does not require any notion of a gold sketch and

can operate from weak supervision only. However,

we can nevertheless derive pseudogold sketches

using a heuristic and train with MLE to produce

these in order to examine the effects of injecting

human prior knowledge into learning. We gen-

erate pseudogold sketches from ground truth

regexes as follows. For any regex whose Abstract

4These posts are filtered from roughly 1,000 top posts.

Despite the fact that more data is available on the Web site,

we only view the top posts because the process requires

significant human involvement.

Syntax Tree (AST) has depth > 1, we replace

the operator at the root with a constrained hole

and the components for this hole are arguments

of the original operator. For example, the gold

sketch for regex concat(<num>,<let>) is

�{<num>,<let>}. For regexes with depth 1, we

just wrap the ground truth regex within a

constrained hole; for example, the gold sketch for

the regex <num> is �{<num>}. We apply this

method to TURK and KB13.

For the smaller STACKOVERFLOW dataset, we

explored a more heavily supervised approach

where we manually labeled gold sketches based

on information from the gold sketch that we

judged to be unambiguous about the ground truth

regex. For example, the description ‘‘The input

box should accept only if either (1) first 2 let-

ters alpha + 6 numeric or (2) 8 numeric’’

is labeled with the sketch Or(�{Repeat(<let>,

2),Repeat(<num>,6)}, �{Repeat(<num>),

8))}, which clearly reflects both the user’s intent

and the compositional structure.

6 Experiments

Setup We implement all neural models in

PYTORCH (Paszke et al., 2019). While training

with MLE, we use the Adam optimizer (Kingma

and Ba, 2015) with a learning rate of 1e-3 and a

batch size of 25. We train our models until the loss

on the development set converges. When training

with MML, we set the learning rate to be 1e-4 and

use beam search with beam size 10 to approximate

the gradients.

We build our grammar-based parsers on top

of the SEMPRE framework (Berant et al., 2013).

We use the same grammar for all three datasets.

On datasets from prior work, we train our

learning-based models with the training set. On

STACKOVERFLOW, we use 5-fold cross-validation as

described in Section 5 because of the limited data

size. Our grammar-based parser is always trained

for 5 epochs with a batch size of 50 and use a

beam size of 200 when trained with MML.

During the testing phase, we produce a k-best

list of sketches for a given NL description and

run the synthesizer on each sketch in parallel.

For a single sketch, the synthesizer either finds

an example-consistent regex or running out of

a specified time budget (timeout). We pick the

output of the highest-ranked sketch yielding an

example-consistent regex as the answer. For KB13

685

and TURK, we set the beam size k to be 20 and

set the timeout of synthesizer to be 2s. For the more

challenging STACKOVERFLOW dataset, we synthe-

size top 25 sketches and set the timeout to be 30s.

In the experiments, the average time to synthesize

a single sketch for a single benchmark in TURK,

KB13, and STACKOVERFLOW is 0.4s, 0.8s, and 10.8s,

respectively, and we synthesize the k-best lists in

parallel using 10 threads.

6.1 Evaluation: KB13 and TURK

Baselines: Prior Work + Translation-based

Approaches We compare our approach against

several baselines. DEEPREGEX directly translates

language descriptions with a seq-to-seq model

without looking at the examples using the MLE

objective. Note that we compare against both

reported numbers from Locascio et al. (2016)

as well as our own implementation of this

(DEEPREGEX
MLE), which outperforms the original

by 0.9% and 2.0% on KB13 and TURK, respect-

ively; we use this version in all other reported

experiments.

SEMREGEX (Zhong et al., 2018a)5 uses the same

model as DEEPREGEX but is trained to maximize

semantic correctness of the gold regex, rather than

having to produce an exact match. We implement

a similar technique using maximum marginal

likelihood training to optimize for semantic

correctness (DEEPREGEX
MML).

Note that none of these methods assumes access

to examples to check correctness at test time. To

compare these methods to our setting, we extend

them in order to exploit examples: we produce

the model’s k-best list of solutions, then take the

highest element in the k-best list consistent with

the examples as the answer. We apply this method

to both types of training to yield DEEPREGEX
MLE+

FILTER and DEEPREGEX
MML+FILTER.

Sketch-Driven We evaluate three broad types

of our sketch-driven models.

Our No Training approaches only use untrained

sketch procedures. As an example-only baseline,

we include the results using an EMPTY SKETCH (a

single hole), relying entirely on the synthesizer.

We also use a variant of GRAMMARSKETCH method

where we heuristically prefer sketch derivations

5Upon consultation with the authors of SEMREGEX (Zhong

et al., 2018a), we were not able to reproduce the results of

their model. Therefore, we only include the printed numbers

of semantic accuracy on the prior datasets.

that cover as many words in the input sentence as

possible (GRAMMARSKETCH (MAX COVERAGE)).

In the No Sketch Supervision setting, we

assume no access to labeled sketch data. However,

it is challenging to train a neural sketch parser

from randomly initialized parameters purely with

the MML objective. We therefore warm start the

neural models using GRAMMARSKETCH (MAX

COVERAGE): We rank the sketches by their coverage

of the input sentence, and take the highest-

coverage sketch which synthesizes to the correct

ground truth regex (if one can be found) as a

gold sketch for warm-starting. We can train with

the MLE objective for a few epochs and then

continue with MML training (DEEPREGEX
MML).

As a comparison, we can also evaluate the

model trained only with MLE with these sketches

(DEEPREGEX
MLE).

Models in the Pseudogold Sketches setting

follow the approach described in the previous

paragraph, but uses the pseudogold sketches

described in Section 5.2 instead of bootstrapping

with the grammar-based approach.

Results Table 2 summarizes our experimental

results on these two datasets. Note that reported

accuracy is semantic accuracy, which measures

the functional equivalence of the regex compared

to the ground truth. First, we find a significant

performance boost by filtering the output of our

DEEPREGEX variants using examples (11.2% on

KB13 and 21.5% on TURK when applying this to

DEEPREGEX
MLE), indicating the utility of examples

in verifying the produced regexes.

However, our sketch-driven approach outper-

forms these previous approaches even when they

are extended to benefit from examples. We

achieve new state-of-the-art results on both

datasets, with slightly stronger performance when

pseudogold sketches are used. The results are

particularly striking in terms of consistency (frac-

tion of regexes produced consistent with the

examples). Because we allow uncertainty in the

sketches and use examples to guide the construc-

tion of regexes, our framework achieves 50% or

more relative reduction in the rate of inconsistent

regexes compared with DEEPREGEX+FILTER base-

line (91.7% and 92.8% on the two datasets), which

may fail if no consistent sketch is in the k-best

list.

686

KB13 TURK

Acc Consistent Acc Consistent

Prior Work:

DEEPREGEX (Locascio et al.) 65.6% − 58.2% −
SEMREGEX 78.2% − 62.3% −

Translation-Based Approaches:

DEEPREGEX
MLE 66.5% − 60.3% −

DEEPREGEX
MML 68.2% − 62.4% −

DEEPREGEX
MLE + FILTER 77.7% 89.0% 82.8% 92.0%

DEEPREGEX
MML + FILTER 80.1% 91.7% 84.3% 92.8%

Sketch-Driven (No Training):

EMPTY SKETCH 15.5% 18.4% 21.0% 34.4%

GRAMMARSKETCH (MAX COVERAGE) 68.0% 76.7% 60.2% 78.8%

Sketch-Driven (No Sketch Supervision):

DEEPSKETCH
MLE 76.2% 88.8% 74.6% 92.8%

DEEPSKETCH
MML 82.5% 94.2% 84.3% 95.8%

Sketch-Driven (Pseudogold Sketches):

GRAMMARSKETCH 72.8% 85.4% 69.4% 87.4%

DEEPSKETCH
MLE

PSEUDOGOLD 84.0% 95.3% 85.4% 98.4%

DEEPSKETCH
MML

PSEUDOGOLD 86.4% 96.3% 86.2% 98.9%

Table 2: Results on datasets from prior work. We evaluate on both accuracy (Acc) and the

fraction of regexes produced consistent (Consistent) with the positive/negative examples. Our

sketch-driven approaches outperform prior approaches even when those are modified to use

examples. Our approach can leverage heuristic pseudogold sketches, but does not require

them. Our DEEPSKETCH models achieve the best results, but even our grammar-based method

(GRAMMARSKETCH) outperforms past systems that do not use examples.

We also find that our GRAMMARSKETCH approach,

trained with pseudogold sketches, achieves nearly

70% accuracy on both datasets, which is better

than DEEPREGEX. This indicates the generalizabil-

ity of this approach. The performance of GRAM-

MARSKETCH lags that of DEEPREGEX+FILTER and

DEEPSKETCH models, which can be attributed to

the fact that GRAMMARSKETCH is more constrained

by its grammar and is less capable of exploit-

ing large amounts of data compared to neural

approaches.

Finally, we turn to the source of the supervision.

The untrained GRAMMARSKETCH (MAX COVERAGE)

achieves over 60% accuracy on both datasets;

recall that this provides the set of gold sketches

as initial supervision in our warm-started model.

Our sketch-driven approach trained with MML

(DEEPSKETCH
MML) achieves 82.5% on KB13 and

84.3% on TURK, which is comparable with the

performance obtained using pseudogold sketches,

demonstrating that human labeling or curation of

sketches is not required for this technique to work

well.

6.2 Evaluation: Stack Overflow

Additional Baselines It is impractical to train a

deep neural model from scratch on this dataset,

so we modify our approach slightly to compare

against such models. First, we train a model

on TURK and fine-tune it on STACKOVERFLOW

(Transferred Model). Second, we explore a

modified version of the dataset where we rewrite

the descriptions in STACKOVERFLOW to make

them conform to the style of TURK (Curated

Language), as users might do if they were

knowledgeable about the capabilities of the regex

synthesis system they are using. For example,

we manually paraphrase the original description

‘‘write regular expression in C# to validate that

the input does not contain double spaces’’ to

‘‘line that does not contain ‘space’ two or more

times’’, and apply DEEPREGEX+FILTER method on

687

Approach
Top-N Acc

top-1 top-5 top-25

D
¯

EEPREGEX+FILTER

Transferred Model 0% 0% 0%

+Curated Language 0% 0% 6.6%

GRAMMARREGEX+FILTER 3.2% 9.7% 11.3%

EMPTY SKETCH 4.8% − −

DEEPSKETCH

Transferred Model 3.2% 3.2% 4.8%

GRAMMARSKETCH

MAX COVERAGE 16.1% 34.4% 45.2%

MLE, MANUAL SKETCHES 34.4% 48.4% 53.2%

MML, NO SKETCH SUP 31.1% 54.1% 56.5%

Table 3: Results on the STACKOVERFLOW dataset.

The DEEPREGEX method totally fails even when

the examples are generously rewritten to conform

to the model’s ‘‘expected’’ style. Our GRAMMAR-

SKETCH model can do significantly better, with or

without manually labeled sketches.

the curated descriptions (without fine-tuning on

them). Note that this simplifies the inputs for these

baselines considerably by removing variation in

the language.

We also construct a grammar-based regex

parser from our GRAMMARSKETCH model by remov-

ing the grammar rules related to assembling

sketches from regexes. We use our filtering tech-

nique as well and call this the GRAMMARREGEX+

FILTER baseline.

Results Because STACKOVERFLOW is a challeng-

ing dataset, we report the top-N accuracy, where

the model is considered correct if any of the top-N

sketches synthesizes to a correct answer. Table 3

shows the results on this dataset. The transferred

DEEPREGEX model completely fails on these real-

world tasks. Rewriting and curating the language,

we are able to get some examples correct among

the top 25 derivations, but only on very simple

cases. GRAMMARREGEX+FILTER is similarly unable

to do well: this approach is too inflexible given the

complexity of regexes in this dataset. Our trans-

ferred DEEPSKETCH approach is also still limited

here, as the text is too dissimilar from TURK.

Our GRAMMARSKETCH approach, trained without

explicit sketch supervision, achieves a top-1 accu-

racy of 31.1%. Surprisingly, this is comparable to

the performance of GRAMMARSKETCH trained using

manually written sketches, and even outperforms

this model in terms of top-5 and top-25 accuracy.

Figure 5: Accuracy on TURK for different training

set sizes. Our DEEPSKETCH and GRAMMARSKETCH ap-

proaches outperform the DEEPREGEX+FILTER baseline

when training data is limited.

This substantially outperforms all of the baseline

approaches. We attribute this success to the prob-

lem decomposition: Because the sketches pro-

duced can be simpler than the full regex, our

model is much more robust to the complex setting

of this dataset. By examining the problems that

are solved, we find our approach is able to solve

several complicated cases with long descriptions

and sophisticated regexes (e.g., the example in

Figure 1).

6.3 Detailed Analysis

Data Efficiency In Figure 5, we explicitly eval-

uate the data efficiency of our techniques, com-

paring the performance of DEEPREGEX+FILTER,

GRAMMARSKETCH, and DEEPSKETCH on TURK. When

the data size is extremely limited (no more

than 500), our GRAMMARSKETCH approach is

much better than the DEEPREGEX+FILTER baseline.

Our DEEPSKETCH approach is more flexible

and achieves stronger performance for larger

training data sizes, consistently outperforming the

DEEPREGEX+FILTER baseline as the training data

size increases. More importantly, the difference is

particularly obvious when the size of training data

is relatively small, in which case correct regexes

are less likely to exist in the DEEPREGEX generated

k-best lists due to lack of supervision. By contrast,

it is easier to learn the mapping from the language

to effective sketches, which are simpler than gold

regexes.

Overall, these results indicate that DEEPREGEX,

as a technique, is only effective when large training

sets are available, even for a relatively simple set

of natural language expressions.

688

4 6 8 10

DEEPREGEX+FILTER 79.5 81.0 82.3 82.8

GRAMMARSKETCH 59.4 64.4 67.6 69.5

DEEPSKETCH 71.8 78.6 82.7 85.4

Table 4: Performance on TURK varying the

number of positive/negative examples. Because

our synthesizer depends on sufficient examples

to constrain the semantics, our sketch-based

approaches require a certain number of examples

to work well.

1 3 5 10 20

DEEPREGEX+FILTER 60.3 73.2 76.8 80.3 82.8

GRAMMARSKETCH 58.3 65.0 67.1 68.9 69.5

DEEPSKETCH 69.4 79.7 82.3 84.3 85.4

Table 5: Performance on TURK under different

beam sizes.

Impact of Number of Examples We show how

the number of positive/negative examples impacts

the performance on TURK in Table 4. Our sketch-

driven techniques rely on examples to search for

the desired regexes in the synthesizer step, and

therefore are inferior to DEEPREGEX+FILTER when

only limited number of examples are provided.

However, as more examples are included, our

sketch-driven approaches are more effective in

taking advantage of the multi-modality than

simply filtering the outputs (DEEPREGEX+FILTER).

Note that in the STACKOVERFLOW setting, we

evaluate on sets of examples provided by actual

users, and find that users typically provide enough

examples for our model to be in an effective

regime.

Impact of Beam Size We study the effect of

varying beam size on the performance on TURK

in Table 5. DEEPSKETCH outperforms DEEPREGEX+

FILTER by a substantial gap with smaller beam

sizes, as we naturally allow uncertainty using the

holes in sketches. Note that using larger beam sizes

is important for DEEPSKETCH because we feed the

entire k-best list to the synthesizer instead of the

top sketch only.

6.4 Examples of Success And Failure Pairs

TURK We now analyze the output of the DEEP-

REGEX+FILTER and DEEPSKETCH. Figure 6 provides

some success pairs that DEEPSKETCH solves while

Figure 6: Examples of success and failure pairs from

TURK and STACKOVERFLOW. On pairs (a) and (b), our

DEEPSKETCH is robust to the issues existing in natural

language descriptions. On pairs (c) and (d), our ap-

proach fails due to the unrealistic semantics of the

desired regexes. GRAMMARSKETCH succeeds in solving

some complex pairs in STACKOVERFLOW, including (e)

and (f). However, (g) and (h) fail because of insufficient

examples or overly concise descriptions.

DEEPREGEX+FILTER does not. Examples of success

pairs suggest that our approach can deal with

under-specified descriptions. For instance, in pair

(a) from Figure 6, the language is ungrammatical

(3 more instead of 3 or more) and also ambiguous:

Should the target string consist of only capital

letters, or could it have capital letters as well as

something else? Our approach is able to recover

the faithful semantics using sketch and examples,

whereas DEEPREGEX fails to find the correct regex.

In pair (b), the description is fully clear but

DEEPREGEX still fails because the phrase none of

rarely appears in the training data. Our approach

can solve this pair because it is less sensitive to

the description.

We also give some examples of failure cases

for our model. These are particularly common in

cases of unnatural semantics. For instance, the

regex in pair (c) accepts any string except the

689

string truck (because ∼ (truck) matches any

string but truck). The semantics are hard to pin

down with examples, but the correct regex is

also artificial and unlikely to appear in real word

applications. Our DEEPSKETCH fails on this pair

because the synthesizer fails to catch the at least 7

times constraint when strings that have fewer than

7 characters can also be accepted (since without

truck can match the empty string). DEEPREGEX is

able to produce the ground-truth regex in this case,

but this is only because the formulaic description

is easy enough to translate directly into a regex.

STACKOVERFLOW We show some solved and

unsolved examples using GRAMMARSKETCH from

the STACKOVERFLOW dataset. Our approach can

successfully deal with multiple-sentence inputs

like pairs (e) and (f). They both contain multiple

sentences with each one describing certain a

component or constraint, which seems to be a

common pattern of describing real world regexes.

Our approach is effective for this structure because

the parser can extract fragments from each

sentence and hand them to the synthesizer for

completion.

Some failure cases are due to lack of corner-

case examples. For example, the description from

pair (g) doesn’t explicitly specify whether the

decimal part is required and there are no corner-

case negative examples that provide this clue.

Our synthesizer mistakenly treats the decimal part

as an option, failing to match the ground truth.

In addition, pair (h) is an example in which the

natural language description is too concise for the

grammar parser to generate a useful sketch.

7 Related Work

Other NL and Program Synthesis There has

been recent interest in synthesizing programs

from natural language. One line of work uses

either grammar-based or neural semantic parsing

to synthesize programs. Particularly, several

techniques have been proposed to translate natural

language to SQL queries (Yaghmazadeh et al.,

2017; Iyer et al., 2017; Suhr et al., 2018), ‘‘if-

this-then-that’’ recipes (Quirk et al., 2015), bash

commands (Lin et al., 2018), Java expressions

(Gvero and Kuncak, 2015) and more. Our work

is different from prior work in that it utilizes

input-output examples in addition to natural lan-

guage. Although several past approaches use both

natural language and examples (Kulal et al., 2019;

Polosukhin and Skidanov, 2018; Zhong et al.,

2020), they only use the examples to verify

the generated programs, whereas our approach

heavily engages examples when searching for the

instantiation of sketches to make the synthesizer

more efficient.

Another line of work has focused on exploring

which deep learning techniques are most effective

for directly predicting programs from natural

language. Recent work has built encoder-decoder

models to generated logical forms or programs

represented by sequences (Dong and Lapata,

2016), and ASTs (Rabinovich et al., 2017; Yin and

Neubig, 2017; Iyer et al., 2019; Shin et al., 2019).

However, some of the most challenging code

settings such as the Hearthstone dataset (Ling

et al., 2016) only evaluates the produced strings

by exact match accuracy or BLEU score, rather

than executing the programs on real data as we do.

There is also recent work using neural models

to generate logical forms utilizing a coarse-to-

fine approach (Zettlemoyer and Collins, 2009;

Kwiatkowski et al., 2013; Artzi et al., 2015; Dong

and Lapata, 2018; Wang et al., 2019), which

first generates an abstract logical form and then

concretizes it using neural modules, whereas we

complete the sketch via a synthesizer.

Program Synthesis from Examples Recent

work has studied program synthesis from exam-

ples in other domains (Gulwani, 2011; Alur

et al., 2013; Wang et al., 2016; Feng et al.,

2018). Similar to prior work (Balog et al., 2017;

Kalyan et al., 2018; Odena and Sutton, 2020),

we implement an enumeration-based synthesizer

to search for the target program, but they use

probability distribution of functions or production

rules predicted by neural networks to guide the

search, whereas our work relies on sketches.

Our method is closely related to sketch-based

approaches (Solar-Lezama, 2008; Nye et al., 2019)

in that our synthesizer starts with a sketch. How-

ever, we produce sketches automatically from the

natural language description whereas traditional

sketch-based synthesis (Solar-Lezama, 2008) re-

lies on a user-provided sketch, and our sketches

are hierarchical and constrained compared to other

neural sketch-based approaches (Nye et al., 2019).

8 Conclusion

We have proposed a sketch-driven regular expres-

sion synthesis framework that utilizes both natural

690

language and examples, and we have instantiated

this framework with both a neural and a grammar-

based parser. Experimental results reveal the

artificialness of existing public datasets and

demonstrate the advantages of our approach over

existing research, especially in real-world settings.

Acknowledgments

This work was partially supported by NSF grant

IIS-1814522, NSF grant SHF-1762299, gifts from

Arm and Salesforce, and an equipment grant from

NVIDIA. The authors acknowledge the Texas

Advanced Computing Center (TACC) at The

University of Texas at Austin for providing HPC

resources used to conduct this research. Thanks as

well to our TACL action editor Luke Zettlemoyer

and the anonymous reviewers for their helpful

comments.

References

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin,

M. Raghothaman, S. A. Seshia, R. Singh, A.

Solar-Lezama, E. Torlak, and A. Udupa. 2013.

Syntax-guided synthesis. In 2013 Formal

Methods in Computer-Aided Design (FMCAD).

DOI: https://doi.org/10.1109

/FMCAD.2013.6679385

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer.

2015. Broad-coverage CCG semantic parsing

with AMR. In Proceedings of the Conference

on Empirical Methods in Natural Language

Processing (EMNLP). DOI: https://

doi.org/10.18653/v1/D15-1198

M. Balog, A. L. Gaunt, M. Brockschmidt,

S. Nowozin, and D. Tarlow. 2017. Deepcoder:

Learning to write programs. In Proceedings

of the International Conference on Learning

Representations (ICLR).

Jonathan Berant, Andrew Chou, Roy Frostig,

and Percy Liang. 2013. Semantic parsing on

Freebase from question-answer pairs. In Pro-

ceedings of the Conference on Empirical

Methods in Natural Language Processing

(EMNLP).

Li Dong and Mirella Lapata. 2016. Language to

logical form with neural attention. In Proceed-

ings of the Annual Meeting of the Association

for Computational Linguistics (ACL). DOI:

https://doi.org/10.18653/v1/P16

-1004

Li Dong and Mirella Lapata. 2018. Coarse-to-

fine decoding for neural semantic parsing.

In Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL).

DOI: https://doi.org/10.18653/v1

/P18-1068, PMCID: PMC5995273

Yu Feng, Ruben Martins, Osbert Bastani, and Isil

Dillig. 2018. Program synthesis using conflict-

driven learning. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI).

DOI: https://doi.org/10.1145

/3192366.3192382, PMCID: PMC5882843

Sumit Gulwani. 2011. Automating string pro-

cessing in spreadsheets using input-output

examples. In Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages (POPL). DOI:

https://doi.org/10.1145/1926385

.1926423

Kelvin Guu, Panupong Pasupat, Evan Liu, and

Percy Liang. 2017. From language to programs:

Bridging reinforcement learning and maximum

marginal likelihood. In Proceedings of the

Annual Meeting of the Association for Compu-

tational Linguistics (ACL).

Tihomir Gvero and Viktor Kuncak. 2015.

Synthesizing Java expressions from Free-form

Queries. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages,

and Applications (OOPSLA). DOI:https://

doi.org/10.1145/2814270.2814295

Srinivasan Iyer, Alvin Cheung, and Luke

Zettlemoyer. 2019. Learning programmatic

idioms for scalable semantic parsing. In Pro-

ceedings of the Conference on Empirical

Methods in Natural Language Processing

(EMNLP).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,

Jayant Krishnamurthy, and Luke Zettlemoyer.

2017. Learning a neural semantic parser from

user feedback. In Proceedings of the Annual

Meeting of the Association for Computational

Linguistics (ACL).

691

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995273
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882843
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1145/2814270.2814295

Ashwin Kalyan, Abhishek Mohta, Oleksandr

Polozov, Dhruv Batra, Prateek Jain, and

Sumit Gulwani. 2018. Neural-guided deductive

search for real-time program synthesis from

examples. In International Conference on

Learning Representations (ICLR).

Diederik P. Kingma and Jimmy Ba. 2015. Adam:

A method for stochastic optimization. In Pro-

ceedings of the International Conference on

Learning Representations (ICLR).

Sumith Kulal, Panupong Pasupat, Kartik Chandra,

Mina Lee, Oded Padon, Alex Aiken, and Percy

S. Liang. 2019. Spoc: Search-based pseudocode

to code. In Proceedings of the Conference on

Advances in Neural Information Processing

Systems (NeurIPS).

Nate Kushman and Regina Barzilay. 2013.

Using semantic unification to generate regular

expressions from natural language. In Proceed-

ings of the 2013 Conference of the North

American Chapter of the Association for Com-

putational Linguistics: Human Language

Technologies (NAACL-HLT).

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi,

and Luke Zettlemoyer. 2013. Scaling semantic

parsers with on-the-fly ontology matching. In

Proceedings of the Conference on Empirical

Methods in Natural Language Processing

(EMNLP).

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016.

Synthesizing regular expressions from exam-

ples for introductory automata assignments.

In Proceedings of the 2016 ACM SIGPLAN In-

ternational Conference on Generative Pro-

gramming: Concepts and Experiences (GPCE).

DOI: https://doi.org/10.1145

/2993236.2993244

Xi Victoria Lin, Chenglong Wang, Luke

Zettlemoyer, and Michael D. Ernst. 2018.

NL2Bash: A Corpus and Semantic Parser for

Natural Language Interface to the Linux Oper-

ating System. In Proceedings of the Inter-

national Conference on Language Resources

and Evaluation LREC.

Wang Ling, Phil Blunsom, Edward Grefenstette,

Karl Moritz Hermann, Tomáš Kočiský, Fumin

Wang, and Andrew Senior. 2016. Latent

predictor networks for code generation. In

Proceedings of the Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL).

Nicholas Locascio, Karthik Narasimhan, Eduardo

DeLeon, Nate Kushman, and Regina Barzilay.

2016. Neural generation of regular expressions

from natural language with minimal domain

knowledge. In Proceedings of the Conference

on Empirical Methods in Natural Language

Processing (EMNLP). DOI: https://doi

.org/10.18653/v1/D16-1197

Thang Luong, Hieu Pham, and Christopher D.

Manning. 2015. Effectiveapproachesto attention-

based neural machine translation. In Proceed-

ings of the Conference on Empirical Methods-

in Natural Language Processing (EMNLP).

DOI: https://doi.org/10.18653/v1

/D15-1166

Anders Møller. 2017. dk.brics.automaton–finite-

state automata and regular expressions for Java.

http://www.brics.dk/automaton/.

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum,

and Armando Solar-Lezama. 2019. Learning to

infer program sketches. In Proceedings of the

International Conference on Machine Learning

(ICML).

Augustus Odena and Charles Sutton. 2020.

Learning to represent programs with property

signatures. In Proceedings of the International

Conference on Learning Representations

(ICLR).

Jun-U Park, Sang-Ki Ko, Marco Cognetta, and

Yo-Sub Han. 2019. SoftRegex: Generating

regex from natural language descriptions using

softened regex equivalence. In Proceedings of

the Conference on Empirical Methods in Nat-

ural Language Processing and the Interna-

tional Joint Conference on Natural Language

Processing(EMNLP-IJCNLP). DOI:https://

doi.org/10.18653/v1/D19-1677

Adam Paszke, Sam Gross, Francisco Massa,

Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

692

https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1145/2993236.2993244
https://doi.org/10.18653/v1/D16-1197
https://doi.org/10.18653/v1/D16-1197
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D19-1677
https://doi.org/10.18653/v1/D19-1677

Bai, and Soumith Chintala. 2019. PyTorch: An

imperative style, high-performance deep learn-

ing library, Advances in Neural Information

Processing Systems (NeurIPS).

Illia Polosukhin and Alexander Skidanov. 2018.

Neural program search: Solving programming

tasks from description and examples. In

Workshop at the International Conference on

Learning Representations (ICLR Workshop).

Chris Quirk, Raymond Mooney, and Michel

Galley. 2015. Language to code: Learning

semantic parsers for if-this-then-that recipes.

In Proceedings of the Annual Meeting of the

Association for Computational Linguistics and

the International Joint Conference on Natural

Language Processing (EMNLP-IJCAI). DOI:

https://doi.org/10.3115/v1/P15

-1085

Maxim Rabinovich, Mitchell Stern, and Dan

Klein. 2017. Abstract syntax networks for code

generation and semantic parsing. In Proceed-

ings of the Annual Meeting of the Association

for Computational Linguistics (ACL). DOI:

https://doi.org/10.18653/v1/P17

-1105

Aarne Ranta. 1998. A multilingual natural-

language interface to regular expressions. In

Finite State Methods in Natural Language

Processing. DOI: https://doi.org/10

.3115/1611533.1611541

Richard Shin, Miltiadis Allamanis, Marc

Brockschmidt, and Oleksandr Polozov. 2019.

Program synthesis and semantic parsing with

learned code idioms. In Advances in Neural

Information Processing Systems (NeurIPS).

Armando Solar-Lezama. 2008. Program Synthesis

by Sketching. Ph.D. thesis, University of

California at Berkeley.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi.

2018. Learning to map context-dependent sen-

tences to executable formal queries. In Pro-

ceedings of the 2018 Conference of the North

American Chapter of the Association for Com-

putational Linguistics: Human Language Tech-

nologies (NAACL-HLT). DOI: https://

doi.org/10.18653/v1/N18-1203

Bailin Wang, Ivan Titov, and Mirella Lapata.

2019. Learning semantic parsers from denota-

tions with latent structured alignments and

abstract programs. In Proceedings of the Con-

ference on Empirical Methods in Natural

Language Processing and the International

Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP). DOI: https://

doi.org/10.18653/v1/D19-1391,

PMID: 31933765

Xinyu Wang, Sumit Gulwani, and Rishabh Singh.

2016. FIDEX: Filtering Spreadsheet Data Using

Examples. In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages,

and Applications (OOPSLA). DOI:https://

doi.org/10.1145/2983990.2984030

Navid Yaghmazadeh, Yuepeng Wang, Isil

Dillig, and Thomas Dillig. 2017. Sqlizer: Query

synthesis from natural language. Proceed-

ings of the ACM on Programming Languages,

1(OOPSLA):1–26. DOI: https://doi

.org/10.3133887

Pengcheng Yin and Graham Neubig. 2017. A

syntactic neural model for general-purpose

code generation. In Proceedings of the Annual

Meeting of the Association for Computational

Linguistics (ACL).

Luke Zettlemoyer and Michael Collins. 2009.

Learning context-dependent mappings from

sentences to logical form. In Proceedings of

the Joint Conference of the Annual Meeting

of the Association for Computational Lin-

guistics ACL. DOI: https://doi.org

/10.3115/1690219.1690283

Ruiqi Zhong, Mitchell Stern, and Dan Klein.

2020. Semantic scaffolds for pseudocode-to-

code generation. In Proceedings of the Annual

Meeting of the Association for Computational

Linguistics (ACL). DOI: https://doi.org

/10.18653/v1/2020.acl-main.208

Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian

Peng, Tao Xie, Jian-Guang Lou, Ting Liu,

and Dongmei Zhang. 2018a. SemRegex: A

693

https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.3115/1611533.1611541
https://doi.org/10.3115/1611533.1611541
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
https://europepmc.org/article/MED/31933765
https://doi.org/10.1145/2983990.2984030
https://doi.org/10.1145/2983990.2984030
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://doi.org/10.3115/1690219.1690283
https://doi.org/10.3115/1690219.1690283
https://doi.org/10.18653/v1/2020.acl-main.208
https://doi.org/10.18653/v1/2020.acl-main.208

semantics-based approach for generating reg-

ular expressions from natural language spec-

ifications. In Proceedings of the Conference

on Empirical Methods in Natural Language

Processing (EMNLP). DOI: https://doi

.org/10.18653/v1/D18-1189

Zexuan Zhong, Jiaqi Guo, Wei Yang, Tao Xie,

Jian-Guang Lou, Ting Liu, and Dongmei

Zhang. 2018b. Generating regular expressions

from natural language specifications: Are we

there yet? In Workshops at the AAAI Conference

on Artificial Intelligence (AAAI).

694

https://doi.org/10.18653/v1/D18-1189
https://doi.org/10.18653/v1/D18-1189

	Introduction
	Regex Synthesis Framework
	Semantic Parser
	Neural Parser
	Grammar-Based Parser
	Training

	Program Synthesizer
	Datasets
	StackOverflow
	Dataset Preprocessing

	Experiments
	Evaluation: KB13 and Turk
	Evaluation: Stack Overflow
	Detailed Analysis
	Examples of Success And Failure Pairs

	Related Work
	Conclusion

