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Abstract

Recent progress in the task of Grammatical

Error Correction (GEC) has been driven by

addressing data sparsity, both through new

methods for generating large and noisy pre-

training data and through the publication of

small and higher-quality finetuning data in the

BEA-2019 shared task. Building upon recent

work in Neural Machine Translation (NMT),

we make use of both kinds of data by deriving

example-level scores on our large pretraining

data based on a smaller, higher-quality dataset.

In this work, we perform an empirical study

to discover how to best incorporate delta-log-

perplexity, a type of example scoring, into a

training schedule for GEC. In doing so, we per-

form experiments that shed light on the func-

tion and applicability of delta-log-perplexity.

Models trained on scored data achieve state-

of-the-art results on common GEC test sets.

1 Introduction

Grammatical Error Correction (GEC), the task of

automatically correcting errors in written text, can

be framed as a translation task from ‘bad grammar’

to ‘good grammar.’ This framing has enabled

GEC to borrow models and techniques from

the vast literature in machine translation (MT).

Neural approaches have dominated recent state-

of-the-art advances in GEC, and have been shown

to be more effective in direct comparison with

non-neural methods (Chollampatt and Ng, 2018;

Junczys-Dowmunt et al., 2018). Nevertheless,

GEC continues to pose a challenge for data-reliant

neural models, given that the publicly available

training data is relatively limited, with the largest

corpus numbering only 2M examples (Mizumoto

et al., 2012). Therefore, much recent work in GEC

has focused on diverse methods to address data

sparsity by supplementing available annotated cor-

pora with much larger pretraining data (Ge et al.,

2018a; Kasewa et al., 2018; Lichtarge et al.,

2019; Grundkiewicz et al., 2019; Zhao et al.,

2019). A contrasting approach to addressing data

sparsity in GEC has been explored in the Building

Educational Application (BEA) 2019 Shared Task

on Grammatical Error Correction (Bryant et al.,

2019). The task introduced the Write and Improve

training set, a new high-quality annotated corpus

numbering only∼34k examples (referred to in this

work as BEA-19 train), and encouraged explora-

tion of low-resource methods by organizing two

tracks specifically for data-restricted competition.

Despite the relatively small size, many approaches

using the BEA-19 train data achieved better

results on common GEC test sets than previous

approaches that did not have access to this small

but high-quality data (Bryant et al., 2019).

In the context of neural MT (NMT), models

have been shown to be sensitive to noise in the

training data (Khayrallah and Koehn, 2018).

Although much effort has been dedicated to

methods which either filter or downweight noisy

pretraining data in NMT (Junczys-Dowmunt,

2018), less attention has thus far been paid in GEC.

To the best of our knowledge, previously explored

techniques for filtering pretraining data in GEC

are limited to hand-engineered heuristic cutoffs

(Grundkiewicz and Junczys-Dowmunt, 2014) and

n-gram language model filtering (Ge et al., 2018a).

Recent work in NMT (Wang et al., 2018) pre-

sents a training technique for scoring the ‘noise’

of training data by employing a much smaller,

higher-quality ‘trusted’ dataset. The authors de-

scribe a curriculum-style training over data scored

by this metric, and demonstrate significant im-

provements over a baseline. We refer to this score

as delta-log-perplexity (∆ppl).

2 Contributions of this Work

This work presents an empirical study of training

strategies for GEC in multiple dimensions. Using

a standard training setup (without scoring), we

explore arrangements of GEC corpora into pre-

training and finetuning data, establishing a strong
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baseline. We then apply data scoring via ∆ppl to

the GEC task, demonstrating the value of ∆ppl

as a heuristic for example quality. By comparing

multiple plausible methods for applying ∆ppl, we

gain some insight into the interpretation and

practical applicability of the metric. We train on

the scored data via four simple methods that

instantiate different intuitions about how to treat

a heuristic score for data quality. We demon-

strate performance gains for various strategies

incorporating scoring into the training, and present

state-of-the-art results on the CoNLL-14 (Ng et al.,

2014) and JFLEG (Napoles et al., 2017) test sets.

3 Related Work

In recent GEC work, most approaches pretrain

on some synthetic data and then finetune on the

union of multiple annotated data sources, with

some variation in which datasets are included for

fine-tuning (Grundkiewicz et al., 2019; Lichtarge

et al., 2019). In a thorough study of incorporating

generated pseudo-data into GEC training, Kiyono

et al. (2019) report that this typical pretrain-

finetune setup scales with size of pretraining data

better than a setup in which all data is trained

on simultaneously. Choe et al. (2019) describe a

‘sequential transfer learning’ approach in which

the pretrained model, finetuned on all available

annotated data, is finetuned again separately for

each test set. A thorough review of the GEC field

is made by Wang et al. (2020).

Data selection in MT has been performed along

two dimensions: domain-relevance and denoising.

Multiple researchers (Moore and Lewis, 2010;

Axelrod et al., 2011; van der Wees et al., 2017)

have used the difference in cross-entropy between

two language models as a criteria for the selection

of in-domain sentences. In contrast, Wang et al.

(2018) and Junczys-Dowmunt (2018) have used

data selection for denoising. Recently, Wang et al.

(2019) demonstrate that a co-curriculum training

for dynamic selection of data that is both clean and

in-domain, can outperform independent selection

along each of the two dimensions.

4 Methods

4.1 Delta-Log-Perplexity

4.1.1 Background

Wang et al. (2018) present a metric defined as

the difference in log-probability of an individual

training example before and after improving a

pretrained model by finetuning on a small trusted

dataset. Wang et al. use this metric to order

the pretrain data, and train a new model via a

curriculum-style strategy using this ordering. In

their setup, this metric is interpreted as measuring

‘noise’, describing the change in log probability

of an example between a noisy pretrained model

and its ‘denoised’ finetuned counterpart. Because

log perplexity for an example is the negative

of the log-probability, we refer to this score as

‘delta-log-perplexity’(∆ppl).1

4.1.2 Calculation

In the most general case, ∆ppl describes the

change in a model’s log perplexity for an indivi-

dual example between two checkpoints in model

training. If the first checkpoint (with parameteri-

zation θ
−) is sampled after model convergence

on a base dataset D−, and the second checkpoint

(θ+), after further finetuning on a second target

dataset D+, then the ∆ppl between those models

for a given example (composed of input, output

pair (i, o)) should suggest which of the datasets the

example is more similar to, from the perspective

of the successive models θ− and θ
+.

∆ppl(i, o; θ−, θ+) = log p(o|i; θ−)−log p(o|i; θ+)
(1)

In the course of this work, we make use of
the relative ordering of examples from the scored
dataset D

−
∆ when sorted by their ∆ppl scores,

rather than the actual ∆ppl score values.2 We
refer to this quantity as ‘delta-perplexity-rank’:

D−∆ = {(i, o,∆ppl(i, o))|(i, o) ∈ D−}

δppl(i, o;D−∆) = 1−
%ile rank(∆ppl(i, o);D−∆)

100
(2)

‘%ile rank’ refers to percentile rank. δppl has

range [0,1], and is computed such that the example

with the most negative ∆ppl will have the highest

δppl score of 1. The median example will have a

δppl of 0.5.

4.1.3 Explanation

Any example drawn from D
+ should trivially

be expected to have a negative ∆ppl because

1Note that ∆ppl is a difference between log perplexities,

not between the example perplexities themselves.
2This allows us to implement curriculum-style data se-

lection and directly weight examples using the same score.
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Input: base dataset D−, target dataset D+

Result: ∆ppl-scored base dataset D−∆
δppl-scored base dataset Dδ

θ
−← train new model on D−

θ
+← finetune θ

− on D+

D
−
∆← {}

for example x ∈ D− do

ppl−x ←− log p(x.o|x.i, θ−)

ppl+x ←− log p(x.o|x.i, θ−)

x.∆ppl← (ppl+x − ppl−x )

D
−
∆
←D

−
∆
∪ x

end

D
−
δ ← {}

for scored example x ∈ D
−
∆

do

x.δppl← 1 −
%ile rank(x.∆ppl,D−

∆
)

100

D
−
δ ←D

−
δ ∪ x

end

Algorithm 1: Score base data with ∆ppl, and

calculate δppl for each sentence pair. The sym-

bols x.i and x.o refer to the input and output

sequences of the example.

θ
+ has just been trained directly upon the exact

example, whereas θ− has never seen the example

before. The negative ∆ppl can be explained by

suggesting θ
+ has begun to memorize the specific

examples in D
+.

Scoring examples drawn from D
− reveals the

value of the technique; both checkpoints have

been trained on D
− and no example in D

− was

present during further training onD+, so the ∆ppl

reflects the general changes learned during the

transition from θ
− to θ

+. Examples from D
− that

are similar to examples from D
+ can be expected

to have relatively lower log perplexity for θ
+,

and thus lower ∆ppl. Examples from D
− that are

markedly different from those of D
+ should be

expected to have higher ∆ppl scores.

Although D
− (base data) and D

+ (target data)

refer to the pretraining and fine-tuning datasets,

respectively, in our setup, we note that these two

datasets could be selected according to alternative

criteria. The only requirement is that these sets

differ in terms of some observable qualitative

aspect, for which∆ppl becomes a heuristic. While

in this work we use a target dataset to focus on

example quality, it may also be feasible to employ

a target dataset that differs from the base data

chiefly in domain, and use ∆ppl to negotiate

domain transfer.

4.2 Annealing Strategies

When D
+ is selected to be ‘higher quality’ than

D
−, then the ∆ppl scores of examples drawn

from D
− provide a heuristic for example quality.

Given a heuristic score for example quality, there

are many plausible strategies to incorporate the

score into a training schedule. We explore the

following schemes: [a] Filter the pretraining data

by discarding examples for which δppl < k, where

k is a fixed cutoff parameter. [b] Instead of

discarding data, down-weight the loss on low-

scoring examples during training proportionally to

their rank: weightx = δpplx. A more sophisticated

variation of filtering the data is implemented by

Wang et al. (2018): [c] Define a curriculum by an

exponentially decaying function over training, so

that by the end of training, only the best-scoring

examples remain in the training data.

includex(δpplx, k(t)) =

{

1 if δpplx ≥ k(t)

0 if δpplx < k(t)

where k(t) = 0.5
t

H for training step t and

constant H . To combine the benefits of down-

weighting and the curriculum-style annealing, we

also implement a mixed strategy [d]:

weightx(k(t)) =

{

1 δpplx ≥ k(t)

δpplx δpplx < k(t)

where k(t) = 0.5
t

H for training step t and

constant H .

5 Experiment Setup

5.1 Model

We use the Transformer sequence-to-sequence

model (Vaswani et al., 2017), using the Tensor2

Tensor open-source implementation with the

‘‘transformer clean big tpu’’ setting.3 We use a

32kword piece dictionary (Schuster and Nakajima,

2012). For all training stages we use the Adafactor

optimizer (Shazeer and Stern, 2018).

5.2 Data

We train on the public version of the Lang-8

corpus (Mizumoto et al., 2012), the FCE corpus

(Yannakoudakis et al., 2011), and the Cambridge

3https://github.com/tensorflow/tensor2tensor.
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English Write & Improve training split described

in the BEA-2019 shared task (BEA-19 train)

(Bryant et al., 2019).
The Lang-8 corpus is scraped from the social

language learning Web site,4 and is composed of

potentially erroneous sentences from English-

language-learners with crowd-sourced correc-

tions. The corpus includes many sentence pairs

that are noisy or irrelevant to GEC for a variety

of reasons. In contrast, FCE5 and BEA-19 train6

are much smaller corpora that have been carefully

annotated by a small number of professional anno-

tators. Due to their highly curated origin, these

datasets have a much higher proportion of high-

quality GEC-relevant sentence pairs than Lang-8.
For pretraining data, we follow Lichtarge et al.

(2019) in using a large and noisy corpus of edits

crawled from Wikipedia’s publicly available revi-

sion histories (REV). We also use a similar-

sized corpus of sentence pairs, where the target

sentences are drawn from Wikipedia, and the

source sentences are generated via round-trip-

translation through a bridge language (RT)

(Lichtarge et al., 2019). We generate four paral-

lel datasets of equal size by round-trip-translating

the same ‘clean’ sequences through four bridge

languages.7 Both pretraining corpora are further

probabilistically corrupted via character-level

insertions, deletions, transpositions, and replace-

ments. We corrupt each character of REV, which

already contains some ‘natural’ spelling errors, at

a rate of 0.003 per character. For the RT data,

which does not already have spelling errors, we

use a rate of 0.005 per character.
Prior research on GEC has used the NUCLE

corpus (Dahlmeier et al., 2013) for model training.

Our pilot experiments showed that a model pre-

trained on REV/RT yielded similar performance

when fine tuned on either Lang-8 or a combination

of Lang-8 and NUCLE. Because both corpora

contain corrections of sentences written by non-

native speakers, and NUCLE, which has only a

fourth as many sentences as Lang-8, did not give

additional improvements on top of Lang-8, we

decided to exclude the corpus in our experiments

to simplify the presentation.

4https://www.Lang-8.com.
5https://www.cl.cam.ac.uk/research/nl/

bea2019st/data/fce_v2.1.bea19.tar.gz.
6https://www.cl.cam.ac.uk/research/nl/

bea2019st/data/wi+locness v2.1.bea19.tar.gz.
7Japanese, Russian, French, and German, following

Lichtarge et al. (2019).

5.3 Non-Scored Training and Finetuning

When pretraining, we train the Transformer model

for 1M steps. We set the learning rate to 0.01 for

the first 10,000 steps, after which we decrease it

proportionally to the inverse square root of the

number of steps. When finetuning, we set the

learning rate to a constant 3× 10−5. Regardless of

the dataset being used, we run finetuning for ∽30

epochs.

5.4 Scored Training and Finetuning

When applying the scored training strategies to

Lang-8, we discard the base model that was used

in calculating the ∆ppl scores (which was trained

on: Pretrain→ Lang-8), and start a new finetuning

run on the scored Lang-8, from a model initialized

on the same pretraining data.

When applying our scored training strategies to

the much larger pretraining data, rather than start

the model from random initialization and repeat

1M steps of training, we continue training from

the 1M checkpoint of the base model and train

on the scored data for an additional 100,000 steps

(using the same pretraining settings).

5.5 Evaluation

In the course of our experiments, we evaluate

on the development set of the BEA-2019 shared

task (BEA-19 dev), which includes examples from

both W&I and the LOCNESS corpus (Granger,

1998), using the ERRANT scorer (Bryant et al.,

2017). In our analysis (Section 7), we report on the

BEA-19 test, with scores provided by the official

Codalab of the BEA-2019 task.8 We also report on

the popular GEC evaluation corpora: CoNLL-

2014 (Ng et al., 2014) and JFLEG (Napoles et al.,

2017; Heilman et al., 2014), for which we report

F0.5 with the M 2 scorer (Dahlmeier and Ng, 2012)

and the GLEU+ metric (Napoles et al., 2016)

respectively. For BEA-19 dev and BEA-19 test,

following the conventions of the shared task, we

post-processed the model output with the spaCy

tokenizer.9

For decoding, we use iterative decoding

(Lichtarge et al., 2019) with a beam size of 4.

For each reported test result, we select the model

checkpoint, set the number of decoding itera-

tions, and tune a scalar identity threshold based

8https://competitions.codalab.org/

competitions/20229.
9https://spacy.io/.
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Corpus sentences words

FCE 28K 432K

BEA-19 train 34K 560K

Lang-8 1.9M 25.0M

Wiki revisions (REV) 170M 4.1B

Wiki roundtrip-translated (RT)10 170M 4.1B

Table 1: Training datasets. Wiki refers to

Wikipedia.

on performance on the corresponding develop-

ment sets. Ensemble decoding is computed using

the average (Cromieres et al., 2016) of the logits

of multiple identical Transformers, trained

separately.

6 Experiments

6.1 Standard Training

The datasets presented in Table 1 can be sorted

into three categories by their relative quality. REV

and RT are noisiest, with most data not appearing

relevant to GEC. FCE and BEA-19 train are

cleanest, as they are professionally annotated.

Lang-8 occupies a middle ground, as the data,

which is largely relevant to GEC but scraped from

a crowd-sourced medium, does not rise to the stan-

dard of professional annotation. In light of this, we

combine the single REV dataset with each of the

four RT datasets to produce four large pretraining

datasets, each containing half Wiki revisions and

half round-trip translated data (PRE). All experi-

ments are run for each of these merged datasets,

and all reported figures are the average of those

four models. We also merge the FCE and BEA-19

train into a single finetuning set, which we refer

to as ‘BEA-FCE’ (BF).

We explore three training schemes: including

Lang-8 with the higher-quality annotated data,

including Lang-8 with the pretraining data, and a

two-stage finetuning scheme, with Lang-8 as the

intermediate step.

6.2 Applying Delta-log-perplexity

For experiments [2] and [3] of the standard training

setup (Table 2), we apply delta-log-perplexity

scoring. For the multistage finetuning setup, we

explore arrangements of base (D−) and target

(D+) datasets that ensure that D+ is smaller and

10For each of the four bridge languages. The ‘clean’ target

sentences are the shared between the four.

Training Data BEA-19 dev F0.5

1
PRE 24.0

→ (Lang-8 ∪ BF) 46.3

2
(PRE ∪ Lang-8) 32.4

→ BF 51.4

3
PRE→ Lang-8 42.5

→ BF 51.5

Table 2: Comparing pretrain-finetune arrange-

ments. The arrow indicates finetuning.

Training Data
BEA-19 dev

F 0.5 ∆ vs unscored

A
(PRE ∪ Lang-8)BF 44.9 +12.5

→ BF 51.8 +0.4

B

PREBF 37.0 +6.8

→ Lang-8 43.3 +0.8

→ BF 51.7 +0.2

C

PRE 24.0 —

→ Lang-8
BF

47.2 +4.7

→ BF 51.9 +0.4

D
PREBF → Lang-8

BF
48.0 +5.5

→ BF 52.3 +0.8

Table 3: Comparing scoring arrangements. Bold

indicates a base dataset for which ∆ppl scores

have been calculated, the subscript denotes the

target dataset used, e.g., in A, the scores are

calculated for PRE ∪ Lang-8 using BF as the

target. All scored datasets are trained via soft

down-weighting. The final column indicates the

change in F0.5 over the unscored setup at the same

training stage (absolute values in Table 2).

higher-quality than D
−. For these experiments,

we use the soft-weighting training strategy ([b]

in Section 4.2), as it is has no tunable hyper-

parameters and does not discard any data. Results

are shown in Table 3.

6.3 Training With Scored Examples

Given a set of training data for which each example

has an associated heuristic ‘quality’ score, there

are many plausible options for incorporating that

score into a training schedule. For the best-

performing scoring arrangement, [D] in Table 3,

we repeat the scored training stage in order to

compare the following strategies for incorporating

scores in training.
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Training Data
Training Strategy

unscored hard soft hard-cclm soft-cclm

i
PREBF (soft)→ Lang-8

BF
* 43.3 49.0 48.0 45.8 47.9

→ BF 51.7 52.1 52.3 51.8 52.4

ii

PREBF * 24.0 45.7 37.0 47.7 36.9

→ Lang-8
BF

(soft) 42.5 48.1 48.4 48.6 48.0

→ BF 51.5 51.8 52.4 52.3 52.2

Table 4: Comparing training strategies for PREBF , and Lang-8BF , following setup

(D) in Table 3. The asterisk indicates the training stage that is being varied in each

experiment. In (ii) all models are finetuned on Lang-8BF using the soft strategy. The

hard strategies filter out all examples with positive ∆ppl, which leaves 37% of the

dataset remaining for both PREBF , and Lang-8BF . The curriculum strategies anneal

down to the best 5% of the dataset, following (Wang et al., 2018).

Figure 1: A comparison of the log-perplexity of base and target models (a), the corresponding histogram across

the ∆ppl axis (b), and the relative proportions of the three datasets in each δppl percentile (c), for 30k examples
sampled from PRE ∪ Lang-8

BF
such that 10k examples were selected from REV, RT, and Lang-8 respectively.

The histogram (b) x-axis has been reversed to align the ‘best’ examples (with the lowest ∆ppl) towards the right,

copying the alignment of the δppl plot (c); for the scatter plot (a), the best examples are towards the bottom-right.
The δppl scores shown (c) are the values actually used by the various training strategies.

(a) hard Filter by preset rank-score cutoff

(b) soft Down-weight loss by rank-score

(c) hard-cclm Curriculum-style filtering

(d) soft-cclm Curriculum-style down-weighting

Results are shown in Table 4. We note that Wang

et al. (2018) used the hard-cclm strategy for

noise-filtering in NMT.

7 Analysis

7.1 Understanding ∆ppl Scores

Training a model on PRE ∪ Lang-8BF ([A] in

Table 3) achieves a +12.5 F0.5 gain over a

model trained on the same unscored dataset, and

outperforms a model trained on PRE→ Lang-8 by

+2.4F0.5 on BEA-19 dev ([3] in Table 2). Figure 1

explores the characteristics of the ∆ppl scores for

the merged dataset, with examples labeled by their

original source dataset (REV, RT, or Lang-8).

The scatter plot (a) offers some insight into

how ∆ppl works. Strikingly, all data clusters

tightly around the diagonal on which ∆ppl=0.

Almost all examples with negative ∆ppl also

have low ppl+ as well. Variance in ∆ppl between

examples is much less than variance in ppl+. The

scatter plot yields distinct shapes for each of the

datasets, and the percentile-rank plot (c) (which

depicts the relative proportions of each dataset

per percentile bin) shows that the datasets have

drastically different scoring profiles. Lang-8, RT

and REV have 52%, 30%, and 66% examples with

negative (good) ∆ppl respectively, and Lang-

8 carries a disproportionate share of the most
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Dataset Example ppl+ ∆ppl

REV

a It comprises gives birth to 3 genera. 2.44 −0.25

b They also can also live in desert and forest areas. 0.1 −0.14

c It included 10 tracks, half of them with Joe on vocals. 0.07 −0.05

d
The threee churches in the latter parish , at Rathgaroguie, Cushintown

3.89 0.06
and Terrerath, cater for has a population of approximately 2500.

e
Browsing by subject, for example, is was possible as is was restricting searches

0.42 0.12
to a particular subject or type of resource.

f She drove a blue Ford SUV. 1.36 0.14

g The circle is complete. Fr. 2.65 2.06

RT

h In winter, the sport was hockey. 0.1 −0.2

i Nearly a thousand people was were injured. 0.01 −0.16

j This section provides only provides a brief overview of some translated versions. 0.16 −0.08

k The sets are now depleted out of print. 0.12 0.06

l In 1902 , they held a garden party on the grounds of the Rose Bay Cottage. 0.23 0.1

m This meant a reduction of the runtime by resulted in a 25 minutes run time reduction. 1.19 0.15

n The bad case was Adverse weather is the third largest cause of accidents. 2.0 0.5

Lang-8

o Please check it whether the way of speaking is right. 0.09 −0.18

p So, can’t government make up for holiday gaps 0.43 −0.12

q I really enjoyed watching the movie , although I never read the manga. 0.14 −0.08

r I am worry worried about their damages of mind mental well-being. 1.03 −0.003

s I always wake up 6 AM every days a.m.everyday and then I go to college. 1.05 0.11

t First The first time, He applogized apologized to me, 0.5 0.12

u I often use the google translation translator. 1.33 0.27

Table 5: Examples from PRE ∪ Lang-8BF . Italicized text represents differences between source and

target. Strikethroughs represent deletions and bold text represents insertions.

extreme examples in either direction. Inspecting

individual examples helps to elucidate why.

In Table 5 we draw individual examples from

PRE ∪ Lang-8BF alongside their ppl+ and ∆ppl

scores. The examples exhibit some characteristics

particular to the methodology of their origination.

7.1.1 Wikipedia Revisions

Some of the REV examples [d,f,g] demonstrate the

shortcomings of the dataset; significant additions

or deletions of information with no grammatical

content. Although most such examples have

positive (bad) ∆ppl, it is noteworthy that example

[d], which seems catastrophically out-of-domain,

has a better ∆ppl than [e], which simply

changes the tense of the sentence. ppl+ is

much higher for examples that have significant

information change. This explains why the REV

data in the scatter plot extends thinly along the

∆ppl=0 diagonal; REV contains many examples

with information change, for which both source

and target are grammatically correct. For these

examples, absolute value of both ppl+ and ppl−

is large, but the change in ∆ppl is relatively

small. This demonstrates a shortcoming of using

only ∆ppl as a heuristic for example quality:

REV has a higher percentage of ‘good’ examples

than Lang-8 according to ∆ppl, but many of

those examples actually have large ppl+, and do

not capture grammatical changes. Example [a]

illustrates a related failure case; it has high ppl−,

but according to ∆ppl alone, is the ‘best’ example

in the table.

7.1.2 Roundtrip-Translations

The roundtrip-translated data does not suffer

from large information changes, except when

the meaning is so garbled as to produce a

semantically irreconcilable sequence, as in [n].

As a result, the distribution of RT examples has

lower ppl+ than that of REV. However, many

examples include re-arrangements or re-phrasings

that are out of scope for the task of GEC [k,

m]; of the 10k sampled examples, only 30% have

‘good’ (negative) ∆ppl. Interestingly, in example

[l], passing a sequence through two translation

models introduced a reasonably placed comma

in what should have been the ‘corrupted’ source

sequence; removing this comma yields a bad∆ppl

score.
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7.1.3 Lang-8

Most Lang-8 examples, for better or worse, do

involve grammatically relevant changes to the

source sequence. Lang-8 contains many sentence

pairs that contain some bad or awkward changes,

and these examples perform poorly according to

∆ppl [s, u]. Interestingly, partial corrections, even

apparently good ones, also perform poorly [t].

This may be a result of the relatively complete

nature of the corrections made in BF, in which

few if any target sequences appear to need further

correction.

7.2 Training Strategies

The scored training strategies (Table 4) explore

approaches to making use of an example-

level quality heuristic that accommodate distinct

intuitions about how to treat the data. Filtering

out examples beforehand (hard) follows the

intuition that bad examples only hurt performance

and should be excluded. Down-weighting the

loss (soft) modifies the relative importance of

examples, but avoids throwing any out, main-

taining the value of having a large dataset. The

‘curriculum’-style counterparts of each apply the

same logic, while incorporating (albeit in a hard-

coded manner) the intuition that the value of some

examples changes over the course of training.

It is worthwhile to note that the optimal strategy,

even among these simple hard-coded strategies,

is a function of the characteristics of the dataset

in question. The hard-cclm strategy is worst for

Lang-8BF , where it gradually isolates a small

portion of an already small dataset, but is best for

PREBF , which is so large that 5% of the dataset

is still considerable. Also, much of what is lost

in the ‘bad’ portion of PREBF is lower-quality

data than that which exists in Lang-8BF , which

may explain both why hard-cclm does so well

for PREBF and why soft-cclm, which does not

throw out the large portion of bad examples, does

relatively poorly.

The hard strategy outperforms both soft and

soft-cclm for the first stage of both experiments,

but the advantage disappears following finetuning

on BF. This suggests that cutting out the ‘worst’

examples entirely, while beneficial in the scored

training stage, may prevent a sort of regularization

that is beneficial to the ultimate finetuned model.

That all strategies similarly outperform the

baseline suggests that ∆ppl is a robust heuristic

Dataset proportion examples learning rate

full 60011 3× 10−5

∼1/2 29998 3× 10−5

∼1/4 15121 25× 10−6

∼1/8 7608 1× 10−7

∼1/16 3749 1× 10−7

∼1/32 1841 1× 10−7

∼1/64 905 1× 10−7

Table 6: Successive halves of the BF dataset

used in Figure 2. Proportion of FCE and BEA-

19 train is held constant during down-sampling.

Learning rates are tuned based on the test set of

the CoNLL-2013 shared task.

for quality; that all are simple and un-tuned to

the data suggests that there remains headroom for

more sophisticated training strategies to do even

better.

7.3 Scoring With Less Target Data

We observe that scoring any combination of

lower-quality datasets using BF as the target

data leads to large improvements over unscored

pretraining models, and modest performance gains

over those unscored models after finetuning

(Table 3).
We now explore how each of these effects

varies as a function of the target data size. For

the scoring setup with the largest relative gains

over unscored pretraining ([A] in Table 3), we

repeat the same experiment multiple times, but

using nested subsets of BF for both scoring and

finetuning, each half the size of the previous one.

While halving the datasets, we maintain the ratio

of BEA-19 train and FCE data within each subset.

Because using the same finetuning learning rate

would quickly overfit for the smaller datasets,

learning rates were tuned for each subset using the

test set of the CoNLL-2013 shared task (Ng et al.,

2013) (Table 6).

All models are trained via the hard-cclm

strategy, which, prior to finetuning, significantly

outperforms other strategies for training on scored

pretraining data (section ‘ii’ in Table 4). Results

are shown in Figure 2.

7.4 Understanding the Benefits of Scoring

The marginal benefit of scoring the pretraining

data yields a drastic performance gain over
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Figure 2: Performance of scored and unscored pretraining and finetuning as a function of proportion of the target

dataset used. The pretraining dataset is (PRE ∪ Lang-8). Full BF dataset is shown at the far right (n=60011). Each
smaller dataset is a randomly halved subset of the last, with proportion of BEA-19 train / FCE examples held

constant. The smallest subset, (BF randomly halved six times) has 905 examples. Logarithmic lines of best fit are

shown.

unscored pretraining, even for very small amounts

of target data (see Figure 2 and Table 3). This

pretrain gain reflects the value of obliquely

incorporating the information of the target dataset

into the pretraining data via ∆ppl scoring.

Because finetuning on the target dataset directly

incorporates that same information again, this gain

is diminished once the scored models are finetuned

(see "∆ vs unscored" column in Table 3).

However, the benefits of finetuning are limited

by over-fitting to the finetuning dataset, which

is likely to occur given that it is substantially

smaller (≈ 1M words) than pretraining data (≈ 8B

words). Thus the scored pretrained model, which

has already incorporated some of the information

of the target dataset without yet having seen any

of the specific examples therein, is able to make

better use of the finetuning set before the harm

of over-fitting outweighs the benefit of further

training. This difference explains why even after

finetuning, the models with scored training stages

outperform the unscored models, though by less

than if directly comparing the scored and unscored

stages themselves.

In Figure 2, the marginal benefit of scoring for

the 30k dataset size is +0.5 F0.5, compared with

+0.9 F0.5 for doubling the size of the finetuning

data (without scoring). For tasks constrained by

the availability of high-quality data, and for which

labeling costs are high, scoring noisy pretraining

data may be a thrifty path to performance gains.

7.5 Test Set Results

We evaluate our best unscored and scored systems

at all stages of training on BEA-19 test, CoNLL-14,

and JFLEG. Results are shown in Table 7. Results

for BEA-19 test are provided by the official

Codalab competition of the BEA-2019 shared

task, where this work qualifies as Unrestricted

because of its reliance on additional parallel data

like the Wikipedia revisions pretraining dataset.

Because the most competitive results in the

BEA-2019 task were submitted to the Restricted

track, the results of this work are not perfectly

comparable to most recent and competitive GEC

publications. Additionally, many of the cited

works make use of the NUCLE dataset (Dahlmeier

et al., 2013), which was not used in this work.

Nonetheless, it is useful to contextualize the

results within the scope of recent progress in

GEC. A comparison to recent prior work is made

in Table 8. This work achieves state-of-the-art

results for the JFLEG and CoNLL-14 test sets,

and obtains competitive results on BEA-19 test.

8 Future Work

The huge jump in performance between unscored

and scored pretraining data demonstrates the

possibility of making much more effective use of

large and noisy datasets through the incorporation

of example-level quality scores. While ∆ppl is

one such score, there is significant room for
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Training Strategy BEA-19 test CoNLL-14 test JFLEG test

Prec. Rec. F0.5 (ERRANT) Prec. Rec. F0.5 (M 2) GLEU+

unscored

PRE 35.7 41.7 36.8 44.6 36.2 42.6 54.1

→ Lang-8 62.7 52.4 60.3 64.0 42.8 58.3 62.5

→ BF 67.4 61.7 66.1 67.6 44.3 61.1 63.6

ensemble 74.1 64.3 71.9 72.6 46.7 65.3 64.7

scored

PREBF (soft) 56.6 47.1 54.4 61.6 38.2 54.8 59.4

→ Lang-8BF (soft) 68.0 57.8 65.7 68.6 44.7 62.0 63.7

→ BF 67.6 62.5 66.5 69.4 43.9 62.1 63.8

ensemble 75.4 64.7 73.0 74.7 46.9 66.8 64.5

PREBF (soft)→ Lang-8 64.1 52.2 61.3 66.0 41.8 59.2 62.5

→ BF 66.8 61.5 65.7 68.3 45.4 62.0 63.6

ensemble 71.7 67.4 70.8 71.2 49.9 65.6 64.9

Table 7: Test set evaluation results. For each test set, the finetuning checkpoint selected, the identity-

correction threshold, and the number of rounds of iterative decoding are tuned to the respective dev sets.

BEA-19 test results are provided via the Codalab competition website of the BEA-2019 shared task. Each

non-ensemble row represents the average of four models, whose construction is described in Section 6.

The ensembles combine the four models from the preceding row.

BEA-19 test CoNLL-14 test JFLEG test

F0.5 (ERRANT) F0.5 (M 2) GLEU+

single model

(Kiyono et al., 2019) 64.2 61.3 59.7

(Lichtarge et al., 2019) — 56.8 61.6

(Xu et al., 2019) — 60.9 60.8

(Omelianchuk et al., 2020) 72.4 65.3 —

this work - unscored 66.1 61.1 63.6

this work - scored 66.5 62.1 63.8

ensemble

(Choe et al., 2019) 69.1 60.3 —

(Ge et al., 2018b) — 61.3 62.4

(Grundkiewicz et al., 2019) 69.5 64.2 61.2

(Kiyono et al., 2019) 70.2 65.0 61.4

(Lichtarge et al., 2019) — 60.4 63.3

(Xu et al., 2019) 66.6 63.2 62.6

(Omelianchuk et al., 2020) 73.7 66.5 —

this work - unscored 71.9 65.3 64.7

this work - scored 73.0 66.8 64.9

Table 8: Comparison of test set evaluation results to prior work, showing the best reported result for

each test set in each cited work. Cited values for different test sets do not necessarily represent the

same model.

improvement, as seen in the example-level analy-

sis in Section 7. Other methods for scoring in-

dividual examples should be explored.

In our scored training, we have presented

hard-coded training strategies selected for their

simplicity. These un-tuned strategies are easy to

implement, but do not represent optimal uses of

an example-level heuristic score. The fact that

there is such variability between them in the

two experiments of Table 4 suggests that training

methods that are sensitive to the particularities

of the scored dataset and the model may be

able to make much better use of the same

scored data. For example, a training scheme that,

during training, dynamically decided which data to

include or exclude (or how to weight the included

data) could be expected to outperform our hard-

coded strategies and hyperparameters. A training

strategy along these lines has been implemented

successfully by Kumar et al. (2019) for NMT.
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These two complementary directions of future

work, the development of new example-level

quality heuristics and the techniques to apply them

in scored training, present an intriguing path for

future exploration.
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Montréal, Canada. Association for Computa-

tional Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei

Wu. 2013. Building a large annotated corpus

of learner English: The NUS corpus of learner

English. In Proceedings of the Eighth Work-

shop on Innovative Use of NLP for Build-

ing Educational Applications, pages 22–31,

Atlanta, Georgia. Association for Computational

Linguistics.

Tao Ge, Furu Wei, and Ming Zhou. 2018a.

Fluency boost learning and inference for neural

grammatical error correction. In Proceedings

of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1:

Long Papers), pages 1055–1065, Melbourne,

Australia. Association for Computational

Linguistics.

Tao Ge, Furu Wei, and Ming Zhou. 2018b.

Reaching human-level performance in auto-

matic grammatical error correction: An empiri-

cal study. CoRR, abs/1807.01270.

Sylviane Granger. 1998. The computer learner

corpus: A versatile new source of data for SLA

research. In Sylviane Granger, editor, Learner

English on Computer, pages 3–18, Addison

Wesley Longman, London and New York.

Roman Grundkiewicz and Marcin Junczys-

Dowmunt. 2014. The wiked error corpus: A

corpus of corrective wikipedia edits and its

application to grammatical error correction.

AdamPrzepiórkowski and Maciej Ogrodniczuk,

editors, In Advances in Natural Language

Processing – Lecture Notes in Computer

644



Science, volume 8686, pages 478–490.

Springer.

Roman Grundkiewicz, Marcin Junczys-

Dowmunt, and Kenneth Heafield. 2019. Neural

grammatical error correction systems with

unsupervised pre-training on synthetic data. In

Proceedings of the Fourteenth Workshop on

Innovative Use of NLP for Building Educational

Applications, pages 252–263, Florence, Italy.

Association for Computational Linguistics.

Michael Heilman, Aoife Cahill, Nitin Madnani,

Melissa Lopez, Matthew Mulholland, and

Joel Tetreault. 2014. Predicting grammaticality

on an ordinal scale. In Proceedings of the

52nd Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short

Papers), pages 174–180, Baltimore, Maryland.

Association for Computational Linguistics.

Marcin Junczys-Dowmunt. 2018. Dual condi-

tional crossentropy filtering of noisy parallel

corpora. In Proceedings of the Third Confer-

ence on Machine Translation: Research Papers,

Brussels, Belgium. Association for Computa-

tional Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,

Shubha Guha, and Kenneth Heafield. 2018.

Approaching neural grammatical error correc-

tion as a low-resource machine translation task.

In Proceedings of the 2018 Conference of the

North American Chapter of the Association

for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long Papers),

pages 595–606, New Orleans, Louisiana. Asso-

ciation for Computational Linguistics.

Sudhanshu Kasewa, Pontus Stenetorp, and

Sebastian Riedel. 2018. Wronging a right: Gen-

erating better errors to improve grammatical

error detection. In Proceedings of the 2018

Conference on Empirical Methods in Natural

Language Processing, pages 4977–4983, Brus-

sels, Belgium. Association for Computational

Linguistics.

Huda Khayrallah and Philipp Koehn. 2018. On

the impact of various types of noise on neural

machine translation. In Proceedings of the

Second Workshop on Neural Machine Transla-

tion and Generation, Melbourne. Association

for Computational Linguistics.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya

Mizumoto, and Kentaro Inui. 2019. An empiri-

cal study of incorporating pseudo data into

grammatical error correction. In Proceed-

ings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the

9th International Joint Conference on Natu-

ral Language Processing (EMNLP-IJCNLP),

pages 1236–1242, Hong Kong, China. Asso-

ciation for Computational Linguistics.

Gaurav Kumar, George Foster, Colin Cherry, and

Maxim Krikun. 2019. Reinforcement learning

based curriculum optimization for neural

machine translation. In Proceedings of the 2019

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long and Short Papers), pages 2054–2061,

Minneapolis, Minnesota. Association for

Computational Linguistics.

Jared Lichtarge, Chris Alberti, Shankar Kumar,

Noam Shazeer, Niki Parmar, and Simon Tong.

2019. Corpora generation for grammatical

error correction. In Proceedings of the 2019

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long and Short Papers), pages 3291–3301,

Minneapolis, Minnesota. Association for

Computational Linguistics.

Tomoya Mizumoto, Yuta Hayashibe, Mamoru

Komachi, Masaaki Nagata, and Yuji

Matsumoto. 2012. The effect of learner corpus

size in grammatical error correction of ESL

writings. In Proceedings of COLING 2012:

Posters, pages 863–872, Mumbai, India. The

COLING 2012 Organizing Committee.

Robert C. Moore and William Lewis. 2010.

Intelligent selection of language model train-

ing data. In Proceedings of the ACL 2010

Conference Short Papers, pages 220–224,

Uppsala, Sweden. Association for Computa-

tional Linguistics.

Courtney Napoles, Keisuke Sakaguchi, Matt Post,

and Joel Tetreault. 2016. GLEU without tuning.

arXiv:1605.02592.

Courtney Napoles, Keisuke Sakaguchi, and Joel

Tetreault. 2017. JFLEG: A fluency corpus and

645



benchmark for grammatical error correction.

In Proceedings of the 15th Conference of the

European Chapter of the Association for Com-

putational Linguistics: Volume 2, Short Papers,

pages 229–234, Valencia, Spain. Association

for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe,

Christian Hadiwinoto, Raymond Hendy

Susanto, and Christopher Bryant. 2013. The

conll-2013 shared task on grammatical error

correction. In CoNLL Shared Task.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe,

Christian Hadiwinoto, Raymond Hendy

Susanto, and Christopher Bryant. 2014. The

CoNLL-2014 shared task on grammatical error

correction. In Proceedings of the Eighteenth

Conference on Computational Natural Lan-

guage Learning: Shared Task, pages 1–14,

Baltimore, Maryland. Association for Compu-

tational Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych,

Artem Chernodub, and Oleksandr

Skurzhanskyi. 2020. Gector – grammatical

error correction: Tag, not rewrite. In Proceed-

ings of the Fifteenth Workshop on Innova-

tive Use of NLP for Building Educational

Applications, Seattle, WA. Association for

Computational Linguistics.

Michael Schuster and Kaisuke Nakajima. 2012.

Japanese and korean voice search. In Proceed-

ings of the IEEE Conference on Acoustics,

Speech and Signal Processing.

Noam Shazeer and Mitchell Stern. 2018. Ada-

factor: Adaptive learning rates with sublinear

memory cost. arXiv:1804.04235.

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. In Advances

in Neural Information Processing Systems,

pages 6000–6010.

Marlies van der Wees, Arianna Bisazza, and

Christof Monz. 2017. Dynamic data selection

for neural machine translation. In Proceed-

ings of the 2017 Conference on Empirical

Methods in Natural Language Processing,

pages 1400–1410, Copenhagen, Denmark.

Association for Computational Linguistics.

Wei Wang, Isaac Caswell, and Ciprian Chelba.

2019. Dynamically composing domain-data

selection with clean-data selection by ‘‘co-

curricular learning’’ for neural machine trans-

lation. In Proceedings of the 57th Annual

Meeting of the Association for Computational

Linguistics, pages 1282–1292, Florence, Italy.

Association for Computational Linguistics.

Wei Wang, Taro Watanabe, Macduff Hughes,

Tetsuji Nakagawa, and Ciprian Chelba. 2018.

Denoising neural machine translation training

with trusted data and online data selection.

In Proceedings of the Third Conference

on Machine Translation: Research Papers,

pages 133–143, Brussels, Belgium. Association

for Computational Linguistics.

Yu Wang, Yuelin Wang, Jie Liu, and Zhuo Liu.

2020. A comprehensive survey of grammar

error correction. 2005.06600.

Shuyao Xu, Jiehao Zhang, Jin Chen, and Long

Qin. 2019. Erroneous data generation for

grammatical error correction. In Proceedings

of the Fourteenth Workshop on Innovative Use

of NLP for Building Educational Applications,

pages 149–158, Florence, Italy. Association for

Computational Linguistics.

Helen Yannakoudakis, Ted Briscoe, and Ben

Medlock. 2011. A new dataset and method for

automatically grading ESOL texts. In Proceed-

ings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human

Language Technologies, pages 180–189, Port-

land, Oregon, USA. Association for Computa-

tional Linguistics.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu

Jia, and Jingming Liu. 2019. Improving

grammatical error correction via pre-training

a copy-augmented architecture with unlabeled

data. In Proceedings of the 2019 Conference of

the North American Chapter of the Associa-

tion for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and

Short Papers), pages 156–165, Minneapolis,

Minnesota. Association for Computational

Linguistics.

646

2005.06600

	Introduction
	Contributions of this Work
	Related Work
	Methods
	Delta-Log-Perplexity
	Background
	Calculation
	Explanation

	Annealing Strategies

	Experiment Setup
	Model
	Data
	Non-Scored Training and Finetuning
	Scored Training and Finetuning
	Evaluation

	Experiments
	Standard Training
	Applying Delta-log-perplexity
	Training With Scored Examples

	Analysis
	Understanding ppl Scores
	Wikipedia Revisions
	Roundtrip-Translations
	Lang-8

	Training Strategies
	Scoring With Less Target Data
	Understanding the Benefits of Scoring
	Test Set Results

	Future Work

