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Abstract

Word embeddings are the standard model for

semanticandsyntactic representations of words.

Unfortunately, these models have been shown

to exhibit undesirable word associations result-

ing from gender, racial, and religious biases.

Existing post-processing methods for debias-

ing word embeddings are unable to mitigate

gender bias hidden in the spatial arrangement

of word vectors. In this paper, we propose

RAN-Debias, a novel gender debiasing meth-

odology that not only eliminates the bias pre-

sent in a word vector but also alters the

spatial distribution of its neighboring vectors,

achieving a bias-free setting while maintaining

minimal semantic offset. We also propose a

new bias evaluation metric, Gender-based

Illicit Proximity Estimate (GIPE), which

measures the extent of undue proximity in

word vectors resulting from the presence of

gender-based predilections. Experiments based

on a suite of evaluation metrics show that

RAN-Debias significantly outperforms the

state-of-the-art in reducing proximity bias

(GIPE) by at least 42.02%. It also reduces

direct bias, adding minimal semantic distur-

bance, and achieves the best performance in

a downstream application task (coreference

resolution).

1 Introduction

Word embedding methods (Devlin et al., 2019;

Mikolov et al., 2013a; Pennington et al., 2014)

have been staggeringly successful in mapping the

semantic space of words to a space of real-valued

vectors, capturing both semantic and syntactic

∗Authors have contributed equally.

relationships. However, as recent research has

shown, word embeddings also possess a spectrum

of biases related to gender (Bolukbasi et al., 2016;

Hoyle et al., 2019), race, and religion (Manzini

et al., 2019; Otterbacher et al., 2017). Bolukbasi

et al. (2016) showed that there is a disparity in

the association of professions with gender. For

instance, while women are associated more

closely with ‘‘receptionist’’ and ‘‘nurse’’, men

are associated more closely with ‘‘doctor’’ and

‘‘engineer’’. Similarly, a word embedding model

trained on data from a popular social media plat-

form generates analogies such as ‘‘Muslim is

to terrorist as Christian is to civilian’’ (Manzini

et al., 2019). Therefore, given the large scale use of

word embeddings, it becomes cardinal to remove

the manifestation of biases. In this work, we focus

on mitigating gender bias from pre-trained word

embeddings.

As shown in Table 1, the high degree of

similarity between gender-biased words largely

results from their individual proclivity towards

a particular notion (gender in this case) rather

than from empirical utility; we refer to such

proximities as ‘‘illicit proximities’’. Existing

debiasing methods (Bolukbasi et al., 2016;

Kaneko and Bollegala, 2019) are primarily

concerned with debiasing a word vector by mini-

mising its projection on the gender direction.

Although they successfully mitigate direct bias for

a word, they tend to ignore the relationship bet-

ween a gender-neutral word vector and its

neighbors, thus failing to remove the gender bias

encoded as illicit proximities between words

(Gonen and Goldberg, 2019; Williams et al.,

2019). For the sake of brevity, we refer to ‘‘gender-

based illicit proximities’’ as ‘‘illicit proximities’’

in the rest of the paper.
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Word Neighbors

nurse mother12, woman24, filipina31

receptionist housekeeper9, hairdresser15, prostitute69

prostitute housekeeper19, hairdresser41, babysitter44

schoolteacher homemaker2, housewife4, waitress8

Table 1: Words and their neighbors extracted using GloVe (Pennington et al.,

2014). Subscript indicates the rank of the neighbor.

To account for these problems, we propose a

post-processing based debiasing scheme for non-

contextual word embeddings, called RAN-Debias

(Repulsion, Attraction, and Neutralization based

Debiasing). RAN-Debias not only minimizes

the projection of gender-biased word vectors

on the gender direction but also reduces the

semantic similarity with neighboring word vectors

having illicit proximities. We also propose

KBC (Knowledge Based Classifier), a word

classification algorithm for selecting the set

of words to be debiased. KBC utilizes a

set of existing lexical knowledge bases to

maximize classification accuracy. Additionally,

we propose a metric, Gender-based Illicit

Proximity Estimate (GIPE), which quantifies

gender bias in the embedding space resulting from

the presence of illicit proximities between word

vectors.

We evaluate debiasing efficacy on various

evaluation metrics. For the gender relational

analogy test on the SemBias dataset (Zhao et al.,

2018b), RAN-GloVe (RAN-Debias applied to

GloVe word embedding) outperforms the next best

baseline GN-GloVe (debiasing method proposed

by Zhao et al. [2018b]) by 21.4% in gender-

stereotype type. RAN-Debias also outperforms the

best baseline by at least 42.02% in terms of GIPE.

Furthermore, the performance of RAN-GloVe on

word similarity and analogy tasks on a number

of benchmark datasets indicates the addition of

minimal semantic disturbance. In short, our major

contributions1 can be summarized as follows:

• We provide a knowledge-based method

(KBC) for classifying words to be debiased.

• We introduce RAN-Debias, a novel approach

to reduce both direct and gender-based

proximity biases in word embeddings.

1The code and data are released at https://github.

com/TimeTraveller-San/RAN-Debias.

• We propose GIPE, a novel metric to measure

the extent of undue proximities in word

embeddings.

2 Related Work

2.1 Gender Bias in Word Embedding Models

Caliskan et al. (2017) highlighted that human-

like semantic biases are reflected through word

embeddings (such as GloVe [Pennington et al.,

2014]) of ordinary language. They also introduced

the Word Embedding Association Test (WEAT)

for measuring bias in word embeddings. The

authors showed a strong presence of biases in

pre-trained word vectors. In addition to gender,

they also identified bias related to race. For

instance, European-American names are more

associated with pleasant terms as compared to

African-American names.

In the following subsections, we discuss

existing gender debiasing methods based on

their mode of operation. Methods that operate

on pre-trained word embeddings are known as

post-processing methods, and those which aim

to retrain word embeddings by either introducing

corpus-level changes or modifying the training

objective are known as learning-based methods.

2.2 Debiasing Methods (Post-processing)

Bolukbasi et al. (2016) extensively studied gender

bias in word embeddings and proposed two

debiasing strategies—‘‘hard debias’’ and ‘‘soft

debias’’. Hard debias algorithm first determines

the direction that captures the gender information

in the word embedding space using the difference

vectors (e.g., ~he − ~she). It then transforms each

word vector ~w to be debiased such that it

becomes perpendicular to the gender direction

(neutralization). Further, for a given set of word

pairs (equalization set), it modifies each pair such

that ~w becomes equidistant to each word in the pair

(equalization). On the other hand, the soft debias
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algorithm applies a linear transformation to word

vectors, which preserves pairwise inner products

among all the word vectors while limiting the

projection of gender-neutral words on the gender

direction. The authors showed that the former

performs better for debiasing than the latter.

However, to determine the set of words for

debiasing, a support vector machine (SVM)

classifier is used, which is trained on a small

set of seed words. This makes the accuracy of the

approach highly dependent on the generalization

of the classifier to all remaining words in the

vocabulary.

Kaneko and Bollegala (2019) proposed a post-

processing step in which the given vocabulary

is split into four classes—non-discriminative

female-biased words (e.g., ‘‘bikini’’, ‘‘lipstick’’),

non-discriminative male-biased words (e.g.,

‘‘beard’’, ‘‘moustache’’), gender-neutral words

(e.g., ‘‘meal’’, ‘‘memory’’), and stereotypical

words (e.g., ‘‘librarian’’, ‘‘doctor’’). A set of

seed words is then used for each of the categories

to train an embedding using an encoder in a

denoising autoencoder, such that gender-related

biases from stereotypical words are removed,

while preserving feminine information for non-

discriminative female-biased words, masculine

information for non-discriminative male-biased

words, and neutrality of the gender-neutral words.

The use of the correct set of seed words is

critical for the approach. Moreover, inappropriate

associations between words (such as ‘‘nurse’’ and

‘‘receptionist’’) may persist.

Gonen and Goldberg (2019) showed that current

approaches (Bolukbasi et al., 2016; Zhao et al.,

2018b), which depend on gender direction for

the definition of gender bias and directly target

it for the mitigation process, end up hiding the

bias rather than reduce it. The relative spatial

distribution of word vectors before and after

debiasing is similar, and bias-related information

can still be recovered.

Ethayarajh et al. (2019) provided theoretical

proof for hard debias (Bolukbasi et al., 2016)

and discussed the theoretical flaws in WEAT

by showing that it systematically overestimates

gender bias in word embeddings. The authors

presented an alternate gender bias measure, called

RIPA (Relational Inner Product Association), that

quantifies gender bias using gender direction.

Further, they illustrated that vocabulary selection

for gender debiasing is as crucial as the debiasing

procedure.
Zhou et al. (2019) investigated the presence

of gender bias in bilingual word embeddings and

languages which have grammatical gender (such

as Spanish and French). Further, they defined

semantic gender direction and grammatical gender

direction used for quantifying and mitigating

gender bias. In this paper, we only focus on

languages that have non-gendered grammar (e.g.,

English). Our method can be applied to any such

language.

2.3 Debiasing Methods (Learning-based)

Zhao et al. (2018b) developed a word vector

training approach, called Gender-Neutral Global

Vectors (GN-GloVe) based on the modification

of GloVe. They proposed a modified objective

function that aims to confine gender-related

information to a sub-vector. During the optimi-

zation process, the objective function of GloVe is

minimized while simultaneously, the square of

Euclidean distance between the gender-related

sub-vectors is maximized. Further, it is empha-

sized that the representation of gender-neutral

words is perpendicular to the gender direction.

Being a retraining approach, this method cannot

be used on pre-trained word embeddings.

Lu et al. (2018) proposed a counterfactual data-

augmentation (CDA) approach to show that

gender bias in language modeling and coreference

resolution can be mitigated through balancing the

corpus by exchanging gender pairs like ‘‘she’’

and ‘‘he’’ or ‘‘mother’’ and ‘‘father’’. Similarly,

Hall Maudslay et al. (2019) proposed a learning-

based approach with two enhancements to

CDA—a counterfactual data substitution method

which makes substitutions with a probability of

0.5 and a method for processing first names based

upon bipartite graph matching.

Bordia and Bowman (2019) proposed a gender-

bias reduction method for word-level language

models. They introduced a regularization term

that penalizes the projection of word embeddings

on the gender direction. Further, they proposed

metrics to measure bias at embedding and corpus

level. Their study revealed considerable gender

bias in Penn Treebank (Marcus et al., 1993) and

WikiText-2 (Merity et al., 2018).

2.4 Word Embeddings Specialization

Mrkšić et al. (2017) defined semantic special-

ization as the process of refining word vectors
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to improve the semantic content. Similar to the

debiasing procedures, semantic specialization

procedures can also be divided into post-

processing (Ono et al., 2015; Faruqui and Dyer,

2014) and learning-based (Rothe and Schütze,

2015; Mrkšić et al., 2016; Nguyen et al., 2016)

approaches. The performance of post-processing

based approaches is shown to be better than

learning-based approaches (Mrkšić et al., 2017).

Similar to the ‘‘repulsion’’ and ‘‘attraction’’

terminologies used in RAN-Debias, Mrkšić

et al. (2017) defined ATTRACT-REPEL algorithm, a

post-processing semantic specialization process

which uses antonymy and synonymy constraints

drawn from lexical resources. Although it is

superficially similar to RAN-Debias, there are a

number of differences between the two ap-

proaches. Firstly, the ATTRACT-REPEL algorithm

operates over mini-batches of synonym and

antonym pairs, while RAN-Debias operates on

a set containing gender-neutral and gender-biased

words. Secondly, the ‘‘attract’’ and ‘‘repel’’ terms

carry different meanings with respect to the

algorithms. In ATTRACT-REPEL, for each of the pairs

in the mini-batches of synonyms and antonyms,

negative examples are chosen. The algorithm then

forces synonymous pairs to be closer to each other

(attract) than from their negative examples and

antonymous pairs further away from each other

(repel) than from their negative examples. On

the other hand, for a given word vector, RAN-

Debias forces it away from its neighboring word

vectors (repel) which have a high indirect bias

while simultaneously forcing the post-processed

word vector and the original word vector together

(attract) to preserve its semantic properties.

3 Proposed Approach

Given a set of pre-trained word vectors {~wi}
|V |
i=1

over a vocabulary set V, we aim to create a

transformation {~wi}
|V |
i=1 → { ~w′ i}

|V |
i=1 such that

the stereotypical gender information present in

the resulting embedding set are minimized with

minimal semantic offset. We first define the

categories into which each word w ∈ V is

classified in a mutually exclusive manner. Table 2

summarizes important notations used throughout

the paper.

• Preserve set (Vp): This set consists of

words for which gender carries semantic

Notation Denotation

~w Vector corresponding to a word w

~wd Debiased version of ~w

V Vocabulary set

Vp The set of words which are preserved

during the debiasing procedure

Vd The set of words which are subjected

to the debiasing procedure

D Set of dictionaries

di A particular dictionary from the set D

~g Gender direction

Db(~w) Direct bias of a word w.

β( ~w1, ~w2) Indirect bias between a pair of words

w1 and w2.

η(~w) Gender-based proximity bias

of a word w

Nw Set of neighboring words of a word w

Fr( ~wd) Repulsion objective function

Fa( ~wd) Attraction objective function

Fn( ~wd) Neutralization objective function

F ( ~wd) Multi-objective optimization function

KBC Knowledge Based Classifier

BBN Bias Based Network

GIPE Gender-based Illicit Proximity

Estimate

Table 2: Important notations and denotations.

importance; such as names, gendered pro-

nouns and words like ‘‘beard’’ and ‘‘bikini’’

that have a meaning closely associated with

gender. In addition, words that are non-

alphabetic are also included as debiasing

them will be of no practical utility.

• Debias set (Vd): This set consists of all the

words in the vocabulary that are not pre-

sent in Vp. These words are expected to be

gender-neutral in nature and hence subjected

to debiasing procedure. Note that Vd not

only consists of gender-stereotypical words

(‘‘nurse’’, ‘‘warrior’’, ‘‘receptionist’’, etc.),

but also gender-neutral words (‘‘sky’’,

‘‘table’’, ‘‘keyboard’’, etc.).

3.1 Word Classification Methodology

Prior to the explanation of our method, we present

the limitations of previous approaches for word

classification. Bolukbasi et al. (2016) trained a

linear SVM using a set of gender-specific seed

words, which is then generalized on the whole

embedding set to identify other gender-specific
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Method Prec Rec F1 AUC-ROC Acc

SVM 97.20 59.37 73.72 83.98 78.83

RIPA 60.60 53.40 56.79 59.51 59.35

KBC 89.65 81.25 85.24 86.25 85.93

Table 3: Comparison between our proposed method (KBC), RIPA- (Ethayarajh et al.,

2019), and SVM- (Bolukbasi et al., 2016) based word classification methods via

precision (Prec), recall (Rec), F1-score (F1), AUC-ROC, and accuracy (Acc).

words. However, such methods rely on training a

supervised classifier on word vectors, which are

themselves gender-biased. Because such classi-

fiers are trained on biased data, they catch onto

the underlying gender-bias cues and often mis-

classify words. For instance, the SVM classifier

trained by Bolukbasi et al. (2016) misclassifies

the word ‘‘blondes’’ as gender-specific, among

others. Further, we empirically show the inabil-

ity of a supervised classifier (SVM) to generalize

over the whole embedding using various metrics

in Table 3.

Taking into consideration this limitation, we

propose the Knowledge Based Classifier (KBC)

that relies on knowledge bases instead of word

embeddings, thereby circumventing the addition

of bias in the classification procedure. Moreover,

unlike RIPA (Ethayarajh et al., 2019), our ap-

proach does not rely on creating a biased direction

that may be difficult to determine. Essentially,

KBC relies on the following assumption.

Assumption 1 If there exists a dictionary d such

that it stores a definition d[w] corresponding to a

word w, then w can be defined as gender-specific

or not based on the existence or absence of a

gender-specific reference s ∈ seed in the defini-

tion d[w], where the set seed consists of gender-

specific references such as {‘‘man’’, ‘‘woman’’,

‘‘boy’’, ‘‘girl’’}.

Algorithm 1 formally explains KBC. We denote

each if condition as a stage and explain it below:

• Stage 1: This stage classifies all stop words

and non-alphabetic words as Vp. Debiasing

such words serve no practical utility; hence

we preserve them.

• Stage 2: This stage classifies all words

that belong to either names set or seed set

as Vp. Set names is collected from open

Algorithm 1: Knowledge Based Classifier

(KBC)

Input : V : vocabulary set, isnonaphabetic(w):
checks for non-alphabetic words

seed: set of gender-specific words

stw: set of stop words

names: set of gender-specific names

D: set of dictionaries, where for a

dictionary di ∈ D, di[w] represents the

definition of a word w.

Output: Vp: set of words that will be preserved,

Vd: set of words that will be debiased

1 Vp = {}, Vd = {}
2 for w ∈ V do

3 if w ∈ stw or isnonalphabetic(w) then

4 Vp ← Vp ∪ {w}
5 else if w ∈ names ∪ seed then

6 Vp ← Vp ∪ {w}
7 else if |{di : di ∈ D &

w ∈ di & ∃s : s ∈ seed ∩ di[w]}| > |D|/2
then

8 Vp ← Vp ∪ {w}

9 Vd ← Vd ∪ {w : w ∈ V \ Vp}
10 return Vp, Vd

source knowledge base.2 Set seed consists of

gender-specific reference terms. We preserve

names, as they hold important gender infor-

mation (Pilcher, 2017).

• Stage 3: This stage uses a collection of

dictionaries to determine whether a word

is gender-specific using Assumption 1. To

counter the effect of biased definitions arising

from any particular dictionary, we make a

decision based upon the consensus of all

dictionaries. A word is classified as gender-

specific and added to Vp if and only if

more than half of the dictionaries classify

it as gender-specific. In our experiments,

we employ WordNet (Miller, 1995) and

2https://github.com/ganoninc/fb-

gender-json.
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the Oxford dictionary. As pointed out by

Bolukbasi et al. (2016), WordNet consists of

few definitions that are gender-biased such

as the definition of ‘‘vest’’; therefore, by

utilizing our approach, we counter such cases

as the final decision is based upon consensus.

The remaining words that are not preserved by

KBC are categorized into Vd. It is the set of words

that are debiased by RAN-Debias later.

3.2 Types of Gender Bias

First, we briefly explain two types of gender bias

as defined by Bolukbasi et al. (2016) and then

introduce a new type of gender bias resulting from

illicit proximities in word embedding space.

• Direct Bias (Db): For a word w, the direct

bias is defined by

Db(~w,~g) = |cos(~w,~g)|
c

where, ~g is the gender direction measured by

taking the first principal component from the

principal component analysis of ten gender

pair difference vectors, such as ( ~he − ~she) as

mentioned in (Bolukbasi et al., 2016), and c
represents the strictness of measuring bias.

• Indirect Bias (β): The indirect bias between

a given pair of words w and v is defined by

β(~w,~v) =
(~w.~v − cos(~w⊥, ~v⊥))

~w.~v

Here, ~w and ~v are normalized. ~w⊥ is orthogonal

to the gender direction ~g: ~w⊥ = ~w − ~wg, and ~wg

is the contribution from gender: ~wg = (~w.~g)~g.

Indirect bias measures the change in the inner

product of two word vectors as a proportion of

the earlier inner product after projecting out the

gender direction from both the vectors. A higher

indirect bias between two words indicates a strong

association due to gender.

• Gender-based Proximity Bias (η): Gonen

and Goldberg (2019) observed that the exist-

ing debiasing methods are unable to com-

pletely debias word embeddings because the

relative spatial distribution of word embed-

dings after the debiasing process still encap-

sulates bias-related information. Therefore,

we propose gender-based proximity bias that

aims to capture the illicit proximities arising

between a word and its closest k neighbors

due to gender-based constructs. For a given

word wi ∈ Vd, the gender-based proximity

bias ηwi
is defined as:

ηwi
=
|N b

wi
|

|Nwi
|

(1)

where

Nwi
= argmax

V ′:|V ′|=k

(cos( ~wi, ~wk) : wk ∈ V ′ ⊆ V ),

N b
wi

= {wi : β( ~wi, ~wk) > θs, wk ∈ Nwi
}, and θs

is a threshold for indirect bias.

The intuition behind this is as follows. The

set Nwi
consists of the top k neighbors of wi

calculated by finding the word vectors having

the maximum cosine similarity with wi. Further,

N b
wi
⊆ Nwi

is the set of neighbors having indirect

bias β greater than a threshold θs, which is a

hyperparameter that controls neighbor deselec-

tion on the basis of indirect bias. The lower is

the value of θs, the higher is the cardinality of set

N b
wi

. A high value of |N b
wi
| compared to |Nwi

|
indicates that the neighborhood of the word is

gender-biased.

3.3 Proposed Method–RAN-Debias

We propose a multi-objective optimization based

solution to mitigate both direct3 and gender-based

proximity bias while adding minimal impact to

the semantic and analogical properties of the word

embedding. For each word w ∈ Vd and its vector

~w ∈ R
h, where h is the embedding dimension,

we find its debiased counterpart ~wd ∈ R
h by

solving the following multi-objective optimiza-

tion problem:

argmin
~wd

(

Fr( ~wd), Fa( ~wd), Fn( ~wd)
)

(2)

We solve this by formulating a single objective

F ( ~wd) and scalarizing the set of objectives using

the weighted sum method as follows:

F ( ~wd) = λ1.Fr( ~wd) + λ2.Fa( ~wd) + λ3.Fn( ~wd)

such that λi ∈ [0, 1] and
∑

i

λi = 1

(3)

F ( ~wd) is minimized using the Adam (Kingma and

Ba, 2015) optimized gradient descent to obtain the

optimal debiased embedding ~wd.

3Though not done explicitly, reducing direct bias also

reduces indirect bias as stated by Bolukbasi et al. (2016).
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As shown in the subsequent sections, the range

of objective functions Fr, Fa, Fn (defined later) is

[0, 1]; thus we use the weights λi for determining

the relative importance of one objective function

over another.

3.3.1 Repulsion

For any word w ∈ Vd, we aim to minimize the

gender bias based illicit associations. Therefore,

our objective function aims to ‘‘repel’’ ~wd from

the neighboring word vectors which have a high

value of indirect bias (β) with it. Consequently,

we name it ‘‘repulsion’’ (Fr) and primarily define

the repulsion set Sr to be used in Fr as follows.

Definition 1 For a given word w, the repulsion

set Sr is defined as Sr = {ni : ni ∈ Nw and

β(~w, ~ni) > θr}, where Nw is the set of top

100 neighbors obtained from the original word

vector ~w.

Because we aim to reduce the unwanted

semantic similarity between ~wd and the set of

vectors Sr, we define the objective function Fr as

follows.

Fr(~wd) =





∑

niǫSr

∣

∣

∣

∣

cos(~wd, ~ni)

∣

∣

∣

∣





/

|Sr| ,

Fr(~wd) ∈ [0, 1]

For our experiments, we find that θr = 0.05
is the appropriate threshold to repel majority of

gender-biased neighbors.

3.3.2 Attraction

For any word w ∈ Vd, we aim to minimize the

loss of semantic and analogical properties for its

debiased counterpart ~wd. Therefore, our objective

function aims to attract ~wd towards ~w in the

word embedding space. Consequently, we name

it ‘‘attraction’’ (Fa) and define it as follows:

Fa(~wd) = | cos(~wd, ~w)− cos(~w, ~w)|/2

= | cos(~wd, ~w)− 1|/2, Fa(~wd) ∈ [0, 1]

3.3.3 Neutralization

For any word w ∈ Vd, we aim to minimize its

bias towards any particular gender. Therefore, the

objective functionFn represents the absolute value

of dot product of word vector ~wd with the gender

direction ~g (as defined by Bolukbasi et al., 2016).

Consequently, we name it ‘‘neutralization’’ (Fn)

and define it as follows:

Fn(~wd) = |cos(~wd, ~g)|, Fn ∈ [0, 1]

3.3.4 Time Complexity of RAN-Debias

Computationally, there are two major components

of RAN-Debias:

1. Calculate neighbors for each word w ∈ Vd

and store them in a hash table. This has a

time complexity of O(n2) where n = |Vd|.

2. Debias each word using gradient descent,

whose time complexity is O(n).

The overall complexity of RAN-Debias is O(n2),
that is, quadratic with respect to the cardinality of

debias set Vd.

3.4 Gender-based Illicit Proximity Estimate

(GIPE)

In Section 3.2, we defined the gender proximity

bias (η). In this section, we extend it to the

embedding level for generating a global estimate.

Intuitively, an estimate can be generated by simply

taking the mean of ηw, ∀w ∈ Vd. However, this

computation assigns equal importance to all ηw
values, which is an oversimplification. A word

w may itself be in the proximity of another

word w
′
∈ Vd through gender-biased associations,

thereby increasing ηw′ . Such cases in which w
increases ηw′ for other words should also be

taken into account. Therefore, we use a weighted

average of ηw, ∀w ∈ V for determining a global

estimate. We first define a weighted directed

network, called Bias Based Network (BBN). The

use of a graph data structure makes it easier to

understand the intuition behind GIPE.

Definition 2 Given a set of non gender-specific

words W , bias based network is a directed graph

G = (V,E), where nodes represent word vectors

and weights of directed edges represent the indi-

rect bias (β) between them. The vertex set V and

edge set E are obtained according to Algorithm 2.

For each word wi in W , we find N , the set

of top n word vectors having the highest cosine

similarity with ~wi (we keep n to be 100 to reduce

computational overhead without compromising on

quality). For each pair ( ~wi, ~wk), where wk ∈ N , a

directed edge is assigned from wi to wk with the

edge weight being β( ~wi, ~wk). In case the given
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Figure 1: (a): A sub-graph of BBN formed by Algorithm 2 for GloVe (Pennington et al., 2014) trained on

2017-January dump of Wikipedia; we discuss the structure of the graph with respect to the word ‘‘nurse’’. We

illustrate four possible scenarios with respect to their effect on GIPE, with θs = 0.05: (b) An edge with β < θs
may not contribute to γi or ηwi

; (c) An outgoing edge may contribute to ηwi
only; (d) An incoming edge may

contribute to γi only; (e) Incoming and outgoing edges may contribute to γi and ηwi
respectively. Every node pair

association can be categorized as one of the aforementioned four cases.

Algorithm 2: Compute BBN for the given set

of word vectors

Input : ξ: word embedding set,

W : set of non gender-specific

words,

n: number of neighbors

Output: G: bias based network

1 V = [ ], E = [ ]
2 for xi ∈ W do

3 N = argmax
ξ′:|ξ′|=n

(cos(~xi, ~xk) : xk ∈ ξ′ ⊆ ξ)

V.insert(xi)
4 for xk ∈ N do

5 E.insert (xi, xk, β (~xi, ~xk))
6 V.insert (xk)

7 G = (V, E)

8 return G

embedding is a debiased version, we use the non-

debiased version of the embedding for computing

β( ~wi, ~wk). Figure 1 portrays a sub-graph in BBN.

By representing the set of non gender-specific

words as a weighted directed graph we can use

the number of outgoing and incoming edges for a

node (word wi) for determining ηwi
and its weight

respectively, thereby leading to the formalization

of GIPE as follows.

Definition 3 For a BBN G, the Gender-based

Illicit Proximity Estimate of G, indicated by

GIPE(G) is defined as:

GIPE(G) =

∑|V |
i=1 γiηwi

∑|V |
i=1 γi

where, for a word wi, ηwi
is the gender-based

proximity bias as defined earlier, ǫ is a (small)

positive constant, and γi is the weight, defined as:

γi = 1 + |{vi:(vi,wi) ∈ E,β(~vi, ~wi)> θs}|
ǫ+|{vi:(vi,wi) ∈ E}|

(4)

The intuition behind the metric is as follows.

For a bias based network G, GIPE(G) is the

weighted average of gender-based proximity bias

(ηwi
) for all nodes wi ∈ W , where the weight

of a node is γi, which signifies the importance

of the node in contributing towards the gender-

based proximity bias of other word vectors. γi
takes into account the number of incoming edges

having β higher than a threshold θs. Therefore,

we take into account how the neighborhood of

a node contributes towards illicit proximities

(having high β values for outgoing edges) as

well as how a node itself contributes towards

illicit proximities of other nodes (having high β
values for incoming edges). For illustration, we
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analyze a sub-graph in Figure 1. By incorporating

γi, we take into account both dual (Figure 1e)

and incoming (Figure 1d) edges, which would

not have been the case otherwise. In GloVe

(2017-January dump of Wikipedia), the word

‘‘sweetheart’’ has ‘‘nurse’’ in the set of its top

100 neighbors and β > θs; however, ‘‘nurse’’

does not have ‘‘sweetheart’’ in the set of its top

100 neighbors. Hence, while ‘‘nurse’’ contributes

towards gender-based proximity bias of the word

‘‘sweetheart’’, vice versa is not true. Similarly,

if dual-edge exists, then both γi and ηwi
are

taken into account. Therefore, GIPE considers

all possible cases of edges in BBN, making it a

holistic metric.

4 Experiment Results

We conduct the following performance evaluation

tests:

• We compare KBC with SVM-based

(Bolukbasi et al., 2016) and RIPA-based

(Ethayarajh et al., 2019) methods for word

classification.

• We evaluate the capacity of RAN-Debias

on GloVe (aka RAN-GloVe) for the gender

relational analogy dataset–SemBias (Zhao

et al., 2018b).

• We demonstrate the ability of RAN-GloVe to

mitigate gender proximity bias by computing

and contrasting the GIPE value.

• We evaluate RAN-GloVe on several bench-

mark datasets for similarity and analogy

tasks, showing that RAN-GloVe introduces

minimal semantic offset to ensure quality of

the word embeddings.

• We demonstrate that RAN-GloVe success-

fully mitigates gender bias in a downstream

application - coreference resolution.

Although we report and analyze the

performance of RAN-GloVe in our experiments,

we also applied RAN-Debias to other popular non-

contextual and monolingual word embedding,

Word2vec (Mikolov et al., 2013a) to create RAN-

Word2vec. As expected, we observed similar

results (hence not reported for the sake of brevity),

emphasizing the generality of RAN-Debias. Note

that the percentages mentioned in the rest of the

section are relative unless stated otherwise.

4.1 Training Data and Weights

We use GloVe (Pennington et al., 2014) trained

on the 2017-January dump of Wikipedia, consist-

ing of 322,636 unique word vectors of 300 dimen-

sions. We apply KBC on the vocabulary set V
obtaining Vp and Vd of size 47,912 and 274,724

respectively. Further, judging upon the basis

of performance evaluation tests as discussed

above, we experimentally select the weights in

Equation 3 as λ1=1/8, λ2 = 6/8, and λ3 = 1/8.

4.2 Baselines for Comparisons

We compare RAN-GloVe against the following

word embedding models, each of which is trained

on the 2017-January dump of Wikipedia.

• GloVe: A pre-trained word embedding model

as mentioned earlier. This baseline represents

the non-debiased version of word embed-

dings.

• Hard-GloVe: Hard-Debias GloVe; we use

the debiasing method4 proposed by Bolukbasi

et al., 2016 on GloVe.

• GN-GloVe: Gender-neutral GloVe; we use

the original5 debiased version of GloVe re-

leased by Zhao et al. (2018b).

• GP-GloVe: Gender-preserving GloVe; we

use the original6 debiased version of GloVe

released by Kaneko and Bollegala (2019).

4.3 Word Classification

We compare KBC with RIPA-based (unsuper-

vised) (Ethayarajh et al., 2019) and SVM-based

(supervised) (Bolukbasi et al., 2016) approaches

for word classification. We create a balanced

labeled test set consisting of a total of 704

words, with 352 words for each category—gender-

specific and non gender-specific. For the non

gender-specific category, we select all the 87 neu-

tral and biased words from the SemBias dataset

(Zhao et al., 2018b). Further, we select all 320, 40

and 60 gender-biased occupation words released

by Bolukbasi et al. (2016); Zhao et al. (2018a) and

Rudinger et al. (2018), respectively. After com-

bining and removing duplicate words, we obtain

4https://github.com/tolga-b/debiaswe.
5https://github.com/uclanlp/gn_GloVe.
6https://github.com/kanekomasahiro/gp_

debias.
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Dataset Embedding Definition ↑ Stereotype ↓ None ↓

SemBias

GloVe 80.2 10.9 8.9

Hard-GloVe 84.1 6.4 9.5

GN-GloVe 97.7 1.4 0.9

GP-GloVe 84.3 8.0 7.7

RAN-GloVe 92.8 1.1 6.1

Table 4: Comparison for the gender relational analogy test on the

SemBias dataset. ↑ (↓) indicates that higher (lower) value is better.

352 non gender-specific words. For the gender-

specific category, we use a list of 222 male and

222 female words provided by Zhao et al. (2018b).

We use stratified sampling to under-sample 444

words into 352 words for balancing the classes.

The purpose of creating this diversely sourced

dataset is to provide a robust ground-truth for eval-

uating the efficacy of different word classification

algorithms.

Table 3 shows precision, recall, F1-score,

AUC-ROC, and accuracy by considering gender-

specific words as the positive class and non

gender-specific words as the negative class. Thus,

for KBC, we consider the output set Vp as the

positive and Vd as the negative class.

The SVM-based approach achieves high pre-

cision but at the cost of a low recall. Although

the majority of the words classified as gender-

specific are correct, it achieves this due to the

limited coverage of the rest of gender-specific

words, resulting in them being classified as

non gender-specific, thereby reducing the recall

drastically.

The RIPA approach performs fairly with respect

to precision and recall. Unlike SVM, RIPA is

not biased towards a particular class and results

in rather fair performance for both the classes.

Almost similar to SVM, KBC also correctly

classifies most of the gender-specific words but

in an exhaustive manner, thereby leading to much

fewer misclassification of gender-specific words

as non gender-specific. As a result, KBC achieves

sufficiently high recall.

Overall, KBC outperforms the best baseline by

an improvement of 2.7% in AUC-ROC, 15.6% in

F1-score, and 9.0% in accuracy. Additionally,

because KBC entirely depends on knowledge

bases, the absence of a particular word in them

may result in misclassification. This could be the

reason behind the lower precision of KBC as

compared to SVM-based classification and can be

improved upon by incorporating more extensive

knowledge bases.

4.4 Gender Relational Analogy

To evaluate the extent of gender bias in RAN-

GloVe, we perform gender relational analogy

test on the SemBias (Zhao et al., 2018b)

dataset. Each instance of SemBias contains four

types of word pairs: a gender-definition word

pair (Definition; ‘‘headmaster-headmistress’’),

a gender-stereotype word pair (Stereotype;

‘‘manager-secretary’’) and two other word pairs

which have similar meanings but no gender-based

relation (None; ‘‘treble - bass’’). There are a

total of 440 instances in the semBias dataset,

created by the cartesian product of 20 gender-

stereotype word pairs and 22 gender-definition

word pairs. From each instance, we select a

word pair (a, b) from the four word pairs such

that using the word embeddings under evaluation,

cosine similarity of the word vectors ( ~he − ~she)

and (~a − ~b) would be maximum. Table 4 shows

an embedding-wise comparison on the SemBias

dataset. The accuracy is measured in terms of the

percentage of times each type of word pair is

selected as the top for various instances. RAN-

GloVe outperforms all other post-processing

debiasing methods by achieving at least 9.96% and

82.8% better accuracy in gender-definition and

gender-stereotype, respectively. We attribute this

performance to be an effect of superior vocabulary

selection by KBC and the neutralization objective

of RAN-Debias. KBC classifies the words to be

debiased or preserved with high accuracy, while

the neutralization objective function of RAN-

Debias directly minimizes the preference of a

biased word between ‘‘he’’ and ‘‘she’’; reducing

the gender cues that give rise to unwanted gender-

biased analogies (Table 10). Therefore, although

RAN-GloVe achieves lower accuracy for gender-

definition type as compared to (learning-based)
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Input Embedding
GIPE

θs = 0.03 θs = 0.05 θs = 0.07

Vd

GloVe 0.115 0.038 0.015

Hard-GloVe 0.069 0.015 0.004

GN-GloVe 0.142 0.052 0.022

GP-GloVe 0.145 0.048 0.018

RAN-GloVe 0.040 0.006 0.002

Hd

GloVe 0.129 0.051 0.024

Hard-GloVe 0.075 0.020 0.007

GN-GloVe 0.155 0.065 0.031

GP-GloVe 0.157 0.061 0.027

RAN-GloVe 0.056 0.018 0.011

Table 5: GIPE (range: 0–1) for different values of θs (lower value is better).

GN-GloVe, it outperforms the next best baseline

in Stereotype by at least 21.4%.

4.5 Gender-based Illicit Proximity Estimate

GIPE analyzes the extent of undue gender

bias based proximity between word vectors. An

embedding-wise comparison for various values of

θs is presented in Table 5. For a fair comparison,

we compute GIPE for a BBN created upon our

debias set Vd as well as for Hd, the set of words

debiased by Bolukbasi et al. (2016).

Here, θs represents the threshold as defined

earlier in Equation 4. As it may be inferred from

Equations 1 and 4, upon increasing the value of

θs, for a word wi, the value of both ηwi
and γi

decreases, as a lesser number of words qualifies the

threshold for selection in each case. Therefore, as

evident from Table 5, the value of GIPE decreases

with the increase of θs.

For the input set Vd, RAN-GloVe outperforms

the next best baseline (Hard-GloVe) by at least

42.02%. We attribute this to the inclusion of the

repulsion objective function Fr in Equation 2,

which reduces the unwanted gender-biased

associations between words and their neighbors.

For the input set Hd, RAN-GloVe performs better

than other baselines for all values of θs except for

θs = 0.07 where it closely follows Hard-GloVe.

Additionally,Hd consists of many misclassified

gender-specific words, as observed from the low

recall performance at the word classification test

in Section 4.3. Therefore, the values of GIPE

corresponding to every value of θs for the input

Hd is higher as compared to the values for Vd.

Although there is a significant reduction in

GIPE value for RAN-GloVe as compared to

other word embedding models, word pairs with

noticeable β values still exist (as indicated by non-

zero GIPE values), which is due to the tradeoff

between semantic offset and bias reduction. As a

result, GIPE for RAN-GloVe is not perfectly zero

but close to it.

4.6 Analogy Test

The task of analogy test is to answer the following

question: ‘‘p is to q as r is to ?’’. Mathematically,

it aims at finding a word vector ~ws which has the

maximum cosine similarity with (~wq − ~wp + ~wr).

However, Schluter (2018) highlights some critical

issues with word analogy tests. For instance,

there is a mismatch between the distributional

hypothesis used for generating word vectors

and the word analogy hypothesis. Nevertheless,

following the practice of using word analogy

test to ascertain the semantic prowess of word

vectors, we evaluate RAN-GloVe to provide a fair

comparison with other baselines.

We use Google (Mikolov et al., 2013a) (seman-

tic [Sem] and syntactic [Syn] analogies, containing

a total 19,556 questions) and MSR (Mikolov

et al., 2013b) (containing a total 7,999 syntactic

questions) datasets for evaluating the performance

of word embeddings. We use 3COSMUL (Levy and

Goldberg, 2014) for finding ~ws.

Table 6(a) shows that RAN-GloVe outperforms

other baselines on the Google (Sem and Syn) data-

set while closely following on the MSR dataset.

The improvement in performance can be attributed

to the removal of unwanted neighbors of a word

vector (having gender bias based proximity), while

enriching the neighborhood with those having

empirical utility, leading to a better performance

in analogy tests.
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Embedding
(a) Analogy (b) Semantic

Google-Sem Google-Syn MSR RG MTurk RW MEN SimLex999 AP

GloVe 79.02 52.26 51.49 75.29 64.27 31.63 72.19 34.86 60.70

Hard-GloVe 80.26 62.76 51.59 76.50 64.26 31.45 72.19 35.17 59.95

GN-GloVe 76.13 51.00 49.29 74.11 66.36 36.20 74.49 37.12 61.19

GP-GloVe 79.15 51.55 48.88 75.30 63.46 27.64 69.78 34.02 57.71

RAN-GloVe 80.29 62.89 50.98 76.22 64.09 31.33 72.09 34.36 61.69

Table 6: Comparison of various embedding methods for (a) analogy tests (performance is measured

in accuracy) and (b) word semantic similarity tests (performance is measured in terms of Spearman

rank correlation).

4.7 Word Semantic Similarity Test

A word semantic similarity task is a measure of

how closely a word embedding model captures

the similarity between two words as compared to

human-annotated ratings. For a word pair, we

compute the cosine similarity between the word

embeddings and its Spearman correlation with the

human ratings. The word pairs are selected from

the following benchmark datasets: RG (Ruben-

stein and Goodenough, 1965), MTurk (Radinsky

et al., 2011), RW (Luong et al., 2013), MEN (Bruni

et al., 2014), SimLex999 (Hill et al., 2015), and

AP (Almuhareb and Poesio, 2005). The results for

these tests are obtained from the word embedding

benchmark package (Jastrzebski et al., 2017).7

Note that it is not our primary aim to achieve

a state-of-the-art result in this test. It is only

considered to evaluate semantic loss. Table 6(b)

shows that RAN-GloVe performs better or fol-

lows closely to the best baseline. This shows

that RAN-Debias introduces minimal semantic

disturbance.

4.8 Coreference Resolution

Finally, we evaluate the performance of RAN-GloVe

on a downstream application task—coreference

resolution. The aim of coreference resolution is to

identify all expressions which refer to the same

entity in a given text. We evaluate the embedding

models on the OntoNotes 5.0 (Weischedel et al.,

2012) and the WinoBias (Zhao et al., 2018a)

benchmark datasets. WinoBias comprises sen-

tences constrained by two prototypical templates

(Type 1 and Type 2), where each template is

further divided into two subsets (PRO and ANTI).

Such a construction facilitates in revealing the

7https://github.com/kudkudak/word-

embeddings-benchmarks.

extent of gender bias present in coreference

resolution models. Although both templates are

designed to assess the efficacy of coreference

resolution models, Type 1 is exceedingly

challenging as compared to Type 2 as it has no

syntactic cues for disambiguation. Each template

consists of two subsets for evaluation—pro-

stereotype (PRO) and anti-stereotype (ANTI).

PRO consists of sentences in which the gendered

pronouns refer to occupations biased towards the

same gender. For instance, consider the sentence

‘‘The doctor called the nurse because he wanted a

vaccine.’’ Stereotypically, ‘‘doctor’’ is considered

to be a male-dominated profession, and the gender

of pronoun referencing it (‘‘he’’) is also male.

Therefore, sentences in PRO are consistent with

societal stereotypes. ANTI consists of the same

sentences as PRO, but the gender of the pronoun

is changed. Considering the same example but by

replacing ‘‘he’’ with ‘‘she’’, we get: ‘‘The doctor

called the nurse because she wanted a vaccine.’’

In this case, the gender of pronoun (‘‘she’’)

which refers to ‘‘doctor’’ is female. Therefore,

sentences in ANTI are not consistent with societal

stereotypes. Due to such construction, gender bias

in the word embeddings used for training the

coreference model would naturally perform better

in PRO than ANTI and lead to a higher absolute

difference (Diff ) between them. While a lesser

gender bias in the model would attain a smaller

Diff, the ideal case produces an absolute difference

of zero.

Following the coreference resolution testing

methodology used by Zhao et al. (2018b), we

train the coreference resolution model proposed

by Lee et al. (2017) on the OntoNotes train

dataset for different embeddings. Table 7 shows

F1-score on OntoNotes 5.0 test set, WinoBias

PRO and ANTI test set for Type 1 template, along
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Embedding OntoNotes PRO ANTI Diff

GloVe 66.5 76.2 46.0 30.2

Hard-GloVe 66.2 70.6 54.9 15.7

GN-GloVe 66.2 72.4 51.9 20.5

GP-GloVe 66.2 70.9 52.1 18.8

RAN-GloVe 66.2 61.4 61.8 0.4

Table 7: F1-Score (in %) in the task of coreference

resolution. Diff denotes the absolute difference between

F1-score on PRO and ANTI datasets.

Input Embedding
GIPE

θs = 0.03 θs = 0.05 θs = 0.07

Vd

AN-GloVe 0.069 0.015 0.004

RA-GloVe 0.060 0.014 0.007

RAN-GloVe 0.040 0.006 0.002

Table 8: Ablation study—GIPE for AN-GloVe and RA-GloVe.

with the absolute difference (Diff ) of F1-scores

on PRO and ANTI datasets for different word

embeddings. The results for GloVe, Hard-GloVe,

and GN-GloVe are obtained from Zhao et al.

(2018b).

Table 7 shows that RAN-GloVe achieves the

smallest absolute difference between scores on

PRO and ANTI subsets of WinoBias, significantly

outperforming other embedding models and

achieving 97.4% better Diff (see Table 7 for

the definition of Diff ) than the next best baseline

(Hard-GloVe) and 98.7% better than the original

GloVe. This lower Diff is achieved by an

improved accuracy in ANTI and a reduced

accuracy in PRO. We hypothesise that the high

performance of non-debiased GloVe in PRO is due

to the unwanted gender cues rather than the desired

coreference resolving ability of the model. Further,

the performance reduction in PRO for the other

debiased versions of GloVe also corroborates

this hypothesis. Despite debiasing GloVe, a

considerable amount of gender cues remain in

the baseline models as quantified by a lower,

yet significant Diff. In contrast, RAN-GloVe is

able to remove gender cues dramatically, thereby

achieving an almost ideal Diff. Additionally, the

performance of RAN-GloVe on the OntoNotes

5.0 test set is comparable with that of other

embeddings.

4.9 Ablation Study

To quantitatively and qualitatively analyze the

effect of neutralization and repulsion in RAN-

Debias, we perform an ablation study. We

examine the following changes in RAN-Debias

independently:

1. Nullify the effect of repulsion by setting

λ1 = 0, thus creating AN-GloVe.

2. Nullify the effect of neutralization by setting

λ3 = 0, thus creating RA-GloVe.

We demonstrate the effect of the absence of

neutralization or repulsion through a comparative

analysis on GIPE and the SemBias analogy test.

The GIPE values for AN-GloVe, RA-GloVe,

and RAN-GloVe are presented in Table 8. We

observe that in the absence of repulsion (AN-

GloVe), the performance is degraded by at least

72% compared to RAN-GloVe. It indicates the

efficacy of repulsion in our objective function

as a way to reduce the unwanted gender-biased

associations between words and their neighbors,

thereby reducing GIPE. Further, even in the ab-

sence of neutralization (RA-GloVe), GIPE is

worse by at least 50% as compared to RAN-

GloVe. In fact, the minimum GIPE is observed for

RAN-GloVe, where both repulsion and neutraliza-

tion are used in synergy as compared to the ab-

sence of any one of them.

To illustrate further, Table 9 shows the rank

of neighbors having illicit proximities for three

professions, using different version of debiased

embeddings. It can be observed that the ranks

in RA-GloVe are either close to or further away

from the ranks in AN-GloVe, highlighting the

importance of repulsion in the objective function.

Further, the ranks in RAN-GloVe are the farthest,
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Word Neighbor
Embedding

AN-GloVe RA-GloVe RAN-GloVe

Captain
sir 28 22 52

james 26 30 75

Nurse
women 57 56 97

mother 49 74 144

Farmer
father 22 54 86

son 45 90 162

Table 9: For three professions, we compare the ranks of their

neighbors due to illicit proximities (the values denote the ranks).

Dataset Embedding Definition ↑ Stereotype ↓ None ↓

SemBias

AN-GloVe 93.0 0.2 6.8

RA-GloVe 83.2 7.3 9.5

RAN-GloVe 92.8 1.1 6.1

Table 10: Comparison for the gender relational analogy test on the SemBias

dataset. ↑ (↓) indicates that higher (lower) value is better.

corroborating the minimum value of GIPE as

observed in Table 8.

Table 10 shows that in the absence of neutra-

lization (RA-GloVe), the tendency of favouring

stereotypical analogies increases by an absolute

difference of 6.2% as compared to RAN-

GloVe. On the other hand, through the presence

of neutralization, AN-GloVe does not favor

stereotypical analogies. This suggests that reduc-

ing the projection of biased words on gender

direction through neutralization is an effective

measure to reduce stereotypical analogies within

the embedding space. For example, consider the

following instance of word pairs from the SemBias

dataset: {(widower, widow), (book, magazine),

(dog, cat), (doctor, nurse)}, where (widower,

widow) is a gender-definition word pair while

(doctor, nurse) is a gender-stereotype word pair

and the remaining are of none type as explained in

Section 4.4. During the evaluation, RA-GloVe

incorrectly selects the gender-stereotype word

pair as the closest analogy with (he, she), while

AN-GloVe and RAN-GloVe correctly select the

gender-definition word pair. Further, we observe

that RAN-GloVe is able to maintain the high

performance of AN-GloVe, and the difference

is less (0.2% compared to 1.1%) which is

compensated by the superior performance of

RAN-GloVe over other metrics like GIPE.

Through this ablation study, we understand

the importance of repulsion and neutralization

in the multi-objective optimization function of

RAN-Debias. The superior performance of RAN-

GloVe can be attributed to the synergistic

interplay of repulsion and neutralization. Hence,

in RAN-GloVe we attain the best of both worlds.

4.10 Case Study: Neighborhood of Words

Here we highlight the changes in the neighborhood

(collection of words sorted in the descending

order of cosine similarity with the given word)

of words before and after the debiasing process.

To maintain readability while also demonstrating

the changes in proximity, we only analyze a few

selected words. However, our proposed metric

GIPE quantifies this for an exhaustive vocabulary

set.

We select a set of gender-neutral professions

having high values of gender-based proximity

bias ηwi
as defined earlier. For each of these

professions, in Table 11, we select a set of four

words from their neighborhood for two classes:

• Class A: Neighbors arising due to gender-

based illicit proximities.

• Class B: Neighbors whose proximities are

not due to any kind of bias.

For the words in class A, the debiasing proce-

dure is expected to increase their rank, thereby

decreasing the semantic similarity, while for

words belonging to class B, debiasing procedure

is expected to retain or improve the rank for main-

taining the semantic information.

We observe that RAN-GloVe not only main-

tains the semantic information by keeping the
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Word Class Neighbor
Embedding

GloVe Hard-GloVe GN-GloVe GP-GloVe RAN-GloVe

Captain

A

sir 19 32 34 20 52

james 20 22 26 18 75

brother 34 83 98 39 323

father 39 52 117 40 326

B

lieutenant 1 1 1 1 1

colonel 2 2 2 2 2

commander 3 3 4 3 3

officer 4 5 10 4 15

Nurse

A

woman 25 144 237 16 97

mother 27 71 127 25 144

housekeeper 29 54 28 29 152

girlfriend 32 74 60 31 178

B

nurses 1 1 1 1 1

midwife 2 3 2 3 2

nursing 3 2 3 2 9

practitioner 4 5 4 5 3

Socialite

A

businesswoman 1 1 1 1 6

heiress 2 2 2 2 9

niece 12 18 14 17 78

actress 19 16 38 14 120

B

philanthropist 3 3 3 3 1

aristocrat 4 4 4 4 3

wealthy 5 5 7 5 4

socialites 6 15 5 9 10

Farmer

A

father 12 28 37 13 84

son 21 84 77 26 162

boy 50 67 115 45 105

man 51 50 146 60 212

B

rancher 1 2 1 2 3

farmers 2 1 4 1 1

farm 3 3 5 4 2

landowner 4 4 2 5 5

Table 11: For four professions, we compare the ranks of their class A and class B neighbors with respect to

each embedding. Here, rank represents the position in the neighborhood of a profession, and is shown by

the values under each embedding.

rank of words in class B close to their initial

value but unlike other debiased embeddings, it

drastically increases the rank of words belonging

to class A. However, in some cases like the

word ‘‘Socialite’’, we observe that the ranks of

words such as ‘‘businesswoman’’ and ‘‘heiress’’,

despite belonging to class A, are close to their

initial values. This can be attributed to the high

semantic dependence of ‘‘Socialite’’ on these

words, resulting in a bias removal and semantic

information tradeoff.

5 Conclusion

In this paper, we proposed a post-processing

gender debiasing method called RAN-Debias.

Our method not only mitigates direct bias of a

word but also reduces its associations with other

words that arise from gender-based predilections.

We also proposed a word classification method,

called KBC, for identifying the set of words to

be debiased. Instead of using ‘‘biased’’ word

embeddings, KBC uses multiple knowledge bases

for word classification. Moreover, we proposed

Gender-based Illicit Proximity Estimate (GIPE), a

metric to quantify the extent of illicit proximities

in an embedding. RAN-Debias significantly

outperformed other debiasing methods on a suite

of evaluation metrics, along with the downstream

application task of coreference resolution while

introducing minimal semantic disturbance.
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In the future, we would like to enhance KBC by

utilizing machine learning methods to account for

the words which are absent in the knowledge base.

Currently, RAN-Debias is directly applicable

to non-contextual word embeddings for non-

gendered grammatical languages. In the wake of

recent work such as Zhao et al. (2019), we would

like to extend our work towards contextualized

embedding models and other languages with

grammatical gender like French and Spanish.
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