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Abstract

Confidently making progress on multilingual

modeling requires challenging, trustworthy

evaluations. We present TYDI QA—a question

answering dataset covering 11 typologically

diverse languages with 204K question-answer

pairs. The languages of TYDI QA are diverse

with regard to their typology—the set of

linguistic features each language expresses—-

such that we expect models performing well

on this set to generalize across a large num-

ber of the world’s languages. We present a

quantitative analysis of the data quality and

example-level qualitative linguistic analyses

of observed language phenomena that would

not be found in English-only corpora. To pro-

vide a realistic information-seeking task and

avoid priming effects, questions are written

by people who want to know the answer, but

don’t know the answer yet, and the data is

collected directly in each language without the

use of translation.

1 Introduction

When faced with a genuine information need,

everyday users now benefit from the help of

automatic question answering (QA) systems on

a daily basis with high-quality systems integrated

into search engines and digital assistants. Their

questions are information-seeking—they want to

know the answer, but don’t know the answer yet.

Recognizing the need to align research with the

impact it will have on real users, the community

has responded with datasets of information-

seeking questions such as WikiQA (Yang et al.,

2015), MS MARCO (Nguyen et al., 2016), QuAC

Pronounced tie dye Q. A.—like the colorful t-shirt.
␆Project design ␅Modeling ␄Linguistic analysis ␃Data quality.

(Choi et al., 2018), and the Natural Questions

(NQ) (Kwiatkowski et al., 2019).

However, many people who might benefit from

QA systems do not speak English. The lan-

guages of the world exhibit an astonishing breadth

of linguistic phenomena used to express mean-

ing; the World Atlas of Language Structures

(Comrie and Gil, 2005; Dryer and Haspelmath,

2013) categorizes over 2,600 languages1 by 192

typological features including phenomena such

as word order, reduplication, grammatical mean-

ings encoded in morphosyntax, case markings,

plurality systems, question marking, relativiza-

tion, and many more. If our goal is to build

models that can accurately represent all human

languages, we must evaluate these models on data

that exemplifies this variety.

In addition to these typological distinctions,

modeling challenges arise due to differences in the

availability of monolingual data, the availability

of (expensive) parallel translation data, how

standardized the writing system is variable spacing

conventions (e.g., Thai), and more. With these

needs in mind, we present the first public large-

scale multilingual corpus of information-seeking

question-answer pairs—using a simple-yet-novel

data collection procedure that is model-free and

translation-free. Our goals in doing so are:

1. to enable research progress toward building

high-quality question answering systems in

roughly the world’s top 100 languages;2 and

2. to encourage research on models that behave

well across the linguistic phenomena and data

scenarios of the world’s languages.

We describe the typological features of TYDI

QA’s languages and provide glossed examples

1Ethnologue catalogs over 7,000 living languages.
2Despite only containing 11 languages, TYDI QA covers

a large variety of linguistic phenomena and data scenarios.
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of some relevant phenomena drawn from the

data to provide researchers with a sense of the

challenges present in non-English text that their

models will need to handle (Section 5). We also

provide an open-source baseline model3 and a

public leaderboard4 with a hidden test set to track

community progress. We hope that enabling such

intrinsic and extrinsic analyses on a challenging

task will spark progress in multilingual modeling.

The underlying data of a research study can

have a strong influence on the conclusions that

will be drawn: Is QA solved? Do our models

accurately represent a large variety of languages?

Attempting to answer these questions while

experimenting on artificially easy datasets may

result in overly optimistic conclusions that lead

the research community to abandon potentially

fruitful lines of work. We argue that TYDI QA will

enable the community to reliably draw conclusions

that are aligned with people’s information-seeking

needs while exercising systems’ ability to handle

a wide variety of language phenomena.

2 Task Definition

TYDI QA presents a model with a question along

with the content of a Wikipedia article, and

requests that it make two predictions:

1. Passage Selection Task: Given a list of the

passages in the article, return either (a) the

index of the passage that answers the question

or (b) NULL if no such passage exists.

2. Minimal Answer Span Task: Given the full

text of an article, return one of (a) the start

and end byte indices of the minimal span

that completely answers the question; (b)

YES or NO if the question requires a yes/no

answer and we can draw a conclusion from

the passage; (c) NULL if it is not possible to

produce a minimal answer for this question.

Figure 1 shows an example question-answer

pair. This formulation reflects that information-

seeking users do not know where the answer

to their question will come from, nor is it always

obvious whether their question is even answerable.

3github.com/google-research-datasets/

tydiqa.
4ai.google.com/research/tydiqa.

Figure 1: An English example from TYDI QA. The

answer passage must be selected from a list of passages

in a Wikipedia article while the minimal answer is

some span of bytes in the article (bold). Many questions

have no answer.

3 Data Collection Procedure

Question Elicitation: Human annotators are

given short prompts consisting of the first 100

characters of Wikipedia articles and asked to write

questions that (a) they are actually interested

in knowing the answer to, and (b) that are not

answered by the prompt (see Section 3.1 for

the importance of unseen answers). The prompts

are provided merely as inspiration to generate

questions on a wide variety of topics; annotators

are encouraged to ask questions that are only

vaguely related to the prompt. For example, given

the prompt Apple is a fruit. . . , an annotator

might write What disease did Steve Jobs die of?

We believe this stimulation of curiosity reflects

how questions arise naturally: People encounter

a stimulus such as a scene in a movie, a dog on

the street, or an exhibit in a museum and their

curiosity results in a question.

Our question elicitation process is similar to

QuAC in that question writers see only a small

snippet of Wikipedia content. However, QuAC

annotators were requested to ask about a particular

entity while TYDI QA annotators were encouraged

to ask about anything interesting that came to

mind, no matter how unrelated. This allows the

question writers even more freedom to ask about

topics that truly interest them, including topics not

covered by the prompt article.

Article Retrieval: A Wikipedia article5 is then

paired with each question by performing a

Google search on the question text, restricted

to the Wikipedia domain for each language, and

selecting the top-ranked result. To enable future

use cases, article text is drawn from an atomic

Wikipedia snapshot of each language.6

5We removed tables, long lists, and info boxes from the

articles to focus the modeling challenge on multilingual text.
6Each snapshot corresponds to an Internet Archive URL.
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Answer Labeling: Finally, annotators are

presented with the question/article pair and asked

first to select the best passage answer—a

paragraph7 in the article that contains an

answer—or else indicate that no answer is possible

(or that no single passage is a satisfactory answer).

If such a passage is found, annotators are asked to

select, if possible, a minimal answer: A character

span that is as short as possible while still forming

a satisfactory answer to the question; ideally, these

are 1–3 words long, but in some cases can span

most of a sentence (e.g., for definitions such as

What is an atom?). If the question is asking for a

Boolean answer, the annotator selects either YES

or NO. If no such minimal answer is possible, then

the annotators indicate this.

3.1 The Importance of Unseen Answers

Our question writers seek information on a

topic that they find interesting yet somewhat

unfamiliar. When questions are formed without

knowledge of the answer, the questions tend

to contain (a) underspecification of questions,

such as What is sugar made from?—Did the

asker intend a chemical formula or the plants

it is derived from?—and (b) mismatches of the

lexical choice and morphosyntax between the

question and answer since the question writers

are not cognitively primed to use the same words

and grammatical constructions as some unseen

answer. The resulting question-answer pairs avoid

many typical artifacts of QA data creation such

as high lexical overlap, which can be exploited

by machine learning systems to artificially inflate

task performance.8

We see this difference borne out in the leader-

boards of datasets in each category: datasets

where question writers saw the answer are mostly

solved—for example, SQuAD (Rajpurkar et al.,

2016, 2018) and CoQA (Reddy et al., 2019);

datasets whose question writers did not see

the answer text remain largely unsolved—for

example, the Natural Questions (Kwiatkowski

et al., 2019) and QuAC. Similarly, Lee et al. (2019)

found that question answering datasets in which

questions were written while annotators saw the

7Or other roughly paragraph-like HTML element.
8Compare these information-seeking questions with

carefully crafted reading comprehension or trivia questions

that should have an unambiguous answer. There, expert

question askers have a different purpose: to validate the

knowledge of the potentially expert question answerer.

answer text tend to be easily defeated by TF-IDF

approaches that rely mostly on lexical overlap

whereas datasets where question-writers did not

know the answer benefited from more powerful

models. Put another way, artificially easy datasets

may favor overly simplistic models.

Unseen answers provide a natural mechanism

for creating questions that are not answered by

the text since many retrieved articles indeed do

not contain an appropriate answer. In SQuAD 2.0

(Rajpurkar et al., 2018), unanswerable questions

were artificially constructed.

3.2 Why Not Translate?

One approach to creating multilingual data is to

translate an English corpus into other languages,

as in XNLI (Conneau et al., 2018). However,

the process of translation—including human

translation—tends to introduce problematic

artifacts to the output language such as preserving

source-language word order as when translating

from English to Czech (which allows flexible word

order) or the use of more constrained language

by translators (e.g., more formal). The result is

that a corpus of so-called Translationese may

be markedly different from purely native text

(Lembersky et al., 2012; Volansky et al., 2013;

Avner et al., 2014; Eetemadi and Toutanova, 2014;

Rabinovich and Wintner, 2015; Wintner, 2016).

Questions that originate in a different language

may also differ in what is left underspecified or

in what topics will be discussed. For example,

in TYDI QA, one Bengali question asks What

does sapodilla taste like?, referring to a fruit

that is unlikely to be mentioned in an English

corpus, presenting unique challenges for transfer

learning. Each of these issues makes a translated

corpus more English-like, potentially inflating the

apparent gains of transfer-learning approaches.

Two recent multilingual QA datasets have used

this approach. MLQA (Lewis et al., 2019) includes

12k SQuAD-like English QA instances; a subset

of articles are matched to six target language

articles via a multilingual model and the associated

questions are translated. XQuAD (Artetxe et al.,

2019) includes 1,190 QA instances from SQuAD

1.1, with both questions and articles translated

into 10 languages.9 Compared with TYDI QA,

these datasets are vulnerable to Translationese

9XQuAD translators see English questions and passages

at the same time, priming them to use similar words.
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while MLQA’s use of a model-in-the-middle to

match English answers to target language answers

comes with some risks: (1) of selecting answers

containing machine-translated Wikipedia content;

and (2) of the dataset favoring models that are

trained on the same parallel data or that use a

similar multilingual model architecture.

3.3 Document-Level Reasoning

TYDI QA requires reasoning over lengthy articles

(5K–30KB avg., Table 4) and a substantial portion

of questions (46%–82%) cannot be answered

by their article. This is consistent with the

information-seeking scenario: the question asker

does not wish to specify a small passage to scan for

answers, nor is an answer guaranteed. In SQuAD-

style datasets such as MLQA and XQuAD, the

model is provided only a paragraph that always

contains the answer. Full documents allow TYDI

QA to embrace the natural ambiguity over correct

answers, which is often correlated with difficult,

interesting questions.

3.4 Quality Control

To validate the quality of questions, we sampled

questions from each annotator and verified with

native speakers that the text was fluent.10 We also

verified that annotators were not asking ques-

tions answered by the prompts. We provided

minimal guidance about acceptable questions,

discouraging only categories such as opinions

(e.g., What is the best kind of gum?) and conver-

sational questions (e.g., Who is your favorite

football player?).

Answer labeling required more training, par-

ticularly defining minimal answers. For example,

should minimal answers include function words?

Should minimal answers for definitions be full

sentences? (Our guidelines specify no to both).

Annotators performed a training task, requiring

90%+ to qualify. This training task was repeated

throughout data collection to guard against

annotators drifting off the task definition. We

monitored inter-annotator agreement during data

collection. For the dev and test sets,11 a sepa-

rate pool of annotators verified the questions

10Small typos are acceptable as they are representative of

how real users interact with QA.
11Except Finnish and Kiswahili.

and minimal answers to ensure that they are

acceptable.12

4 Related Work

In addition to the various datasets discussed

throughout Section 3, multilingual QA data has

also been generated for very different tasks.

For example, in XQA (Liu et al., 2019a) and

XCMRC (Liu et al., 2019b), statements phrased

syntactically as questions (Did you know that

is the largest stringray?) are given as

prompts to retrieve a noun phrase from an article.

Kenter et al. (2018) locate a span in a document

that provides information on a certain property

such as location.

Prior to these, several non-English multilingual

question answering datasets have appeared,

typically including one or two languages: These

include DuReader (He et al., 2017) and DRCD

(Shao et al., 2018) in Chinese, French/Japanese

evaluation sets for SQuAD created via translation

(Asai et al., 2018), Korean translations of

SQuAD (Lee et al., 2018; Lim et al., 2019),

a semi-automatic Italian translation of SQuAD

(Croce et al., 2018), ARCD—an Arabic reading

comprehension dataset (Mozannar et al., 2019),

a Hindi-English parallel dataset in a SQuAD-like

setting (Gupta et al., 2018), and a Chinese–English

dataset focused on visual QA (Gao et al., 2015).

The recent MLQA and XQuAD datasets also

translate SQuAD in several languages (see

Section 3.2). With the exception of DuReader,

these sets also come with the same lexical overlap

caveats as SQuAD.

Outside of QA, XNLI (Conneau et al.,

2018) has gained popularity for natural language

understanding. However, SNLI (Bowman et al.,

2015) and MNLI (Williams et al., 2018) can

be modeled surprisingly well while ignoring

the presumably critical premise (Poliak et al.,

2018). While NLI stress tests have been created

to mitigate these issues (Naik et al., 2018),

constructing a representative NLI dataset remains

an open area of research.

The question answering format encompasses a

wide variety of tasks (Gardner et al., 2019) ranging

12For questions, we accepted questions with minor typos

or dialect, but rejected questions that were obviously non-

native. For final-pass answer filtering, we rejected answers

that were obviously incorrect, but accept answers that are

plausible.
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from generating an answer word-by-word (Mitra,

2017) or finding an answer from within an entire

corpus as in TREC (Voorhees and Tice, 2000) and

DrQA (Chen et al., 2017).

Question answering can also be interpreted

as an exercise in verifying the knowledge of

experts by finding the answer to trivia questions

that are carefully crafted by someone who

already knows the answer such that exactly

one answer is correct such as TriviaQA and

Quizbowl/Jeopoardy! questions (Ferrucci et al.,

2010; Dunn et al., 2017; Joshi et al., 2017; Peskov

et al., 2019); this information-verifying paradigm

also describes reading comprehension datasets

such as NewsQA (Trischler et al., 2017), SQuAD

(Rajpurkar et al., 2016, 2018), CoQA (Reddy

et al., 2019), and the multiple choice RACE (Lai

et al., 2017). This paradigm has been taken even

further by biasing the distribution of questions

toward especially hard-to-model examples as in

QAngaroo (Welbl et al., 2018), HotpotQA (Yang

et al., 2018), and DROP (Dua et al., 2019). Others

have focused exclusively on particular answer

types such as Boolean questions (Clark et al.,

2019). Recent work has also sought to bridge the

gap between dialog and QA, answering a series of

questions in a conversational manner as in CoQA

(Reddy et al., 2019) and QuAC (Choi et al., 2018).

5 Typological Diversity

Our primary criterion for including languages in

this dataset is typological diversity—that is, the

degree to which they express meanings using

different linguistic devices, which we discuss

below. In other words, we seek to include not

just many languages, but many language families.

Furthermore, we select languages that have

diverse data characteristics that are relevant

to modeling. For example, some languages may

have very little monolingual data. There are many

languages with very little parallel translation data

and for which there is little economic incentive

to produce a large amount of expensive parallel

data in the near future. Approaches that rely

too heavily on the availability of high-quality

machine translation will fail to generalize across

the world’s languages. For this reason, we select

some languages that have parallel training data

(e.g., Japanese, Arabic) and some that have

very little parallel training data (e.g., Bengali,

Kiswahili). Despite the much greater difficulties

involved in collecting data in these languages, we

expect that their diversity will allow researchers

to make more reliable conclusions about how well

their models will generalize across languages.

5.1 Discussion of Languages

We offer a comparative overview of linguistic

features of the languages in TYDI QA in Table 1.

To provide a glimpse into the linguistic phenom-

ena that have been documented in the TYDI QA

data, we discuss some of the most interesting

features of each language below. These are by no

means exhaustive, but rather intended to highlight

the breadth of phenomena that this group of

languages covers.

Arabic: Arabic is a Semitic language with short

vowels indicated as typically-omitted diacritics.

Arabic employs a root-pattern system: a sequence

of consonants represents the root; letters vary

inside the root to vary the meaning. Arabic relies

on substantial affixation for inflectional and deri-

vational word formation. Affixes also vary by

grammatical number: singular, dual (two), and

plural (Ryding, 2005). Clitics13 are common

(Attia, 2007).

Bengali: Bengali is a morphologically-rich lan-

guage. Words may be complex due to inflection,

affixation, compounding, reduplication, and the id-

iosyncrasies of the writing system including non-

decomposable consonant conjuncts. (Thompson,

2010).

Finnish: Finnish is a Finno-Ugric language with

rich inflectional and derivational suffixes. Word

stems often alter due to morphophonological

alternations (Karlsson, 2013). A typical Finnish

noun has approximately 140 forms and a verb

about 260 forms (Hakulinen et al., 2004).14

Japanese: Japanese is a mostly non-configu-

rational15 language in which particles are used to

indicate grammatical roles though the verb typi-

cally occurs in the last position (Kaiser et al.,

2013). Japanese uses 4 alphabets: kanji (ideograms

shared with Chinese),hiragana (a phonetic alphabet

13Clitics are affix-like linguistic elements that may carry

grammatical or discourse-level meaning.
14Not counting forms derived through compounding or the

addition of particle clitics.
15Among other linguistics features, ‘non-configurational’

languages exhibit generally free word order.
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LANGUAGE LATIN SCRIPT
a WHITE SPACE

TOKENS

SENTENCE

BOUNDARIES

WORD

FORMATION
b

GENDER
c PRO-DROP

ENGLISH + + + + +d —

ARABIC — + + ++ + +

BENGALI — + + + — +

FINNISH + + + +++ — —

INDONESIAN + + + + — +

JAPANESE — — + + — +

KISWAHILI + + + +++ —e +

KOREAN — +f + +++ — +

RUSSIAN — + + ++ + +

TELUGU — + + +++ + +

THAI — — — + + +

a ‘—’ indicates Latin script is not the conventional writing system. Intermixing of Latin script should still be expected.

b We include inflectional and derivation phenomena in our notion of word formation.

c We limit the gender feature to sex-based gender systems associated with coreferential gendered personal pronouns.
d English has grammatical gender only in third person personal and possessive pronouns.

e Kiswahili has morphological noun classes (Corbett, 1991), but here we note sex-based gender systems.
f In Korean, tokens are often separated by white space, but prescriptive spacing conventions are commonly flouted.

Table 1: Typological features of the 11 languages in TYDI QA. We use + to indicate that this phenomena occurs,

++ to indicate that it occurs frequently, and +++ to indicate very frequently.

for morphology and spelling), katakana (a

phonetic alphabet for foreign words), and the

Latin alphabet (for many new Western terms); all

of these are in common usage and can be found in

TYDI QA.

Indonesian: Indonesian is an Austronesian

language characterized by reduplication of

nouns, pronouns, adjectives, verbs, and numbers

(Sneddon et al., 2012; Vania and Lopez, 2017), as

well as prefixes, suffixes, infixes, and circumfixes.

Kiswahili: Kiswahili is a Bantu language

with complex inflectional morphology. Unlike

the majority of world languages, inflections,

like number and person, are encoded in the

prefix, not the suffix (Ashton, 1947). Noun

modifiers show extensive agreement with the

noun class (Mohamed, 2001). Kiswahili is a pro-

drop language16 (Seidl and Dimitriadis, 1997;

Wald, 1987). Most semantic relations that would

be represented in English as prepositions are

expressed in verbal morphology or by nouns

(Wald, 1987).

Korean: Korean is an agglutinative, predicate-

final language with a rich set of nominal and verbal

suffixes and postpositions. Nominal particles

16Both the subject and the object can be dropped due to

verbal inflection.

express up to 15 cases—including the connective

‘‘and’’/‘‘or’’—and can be stacked in order of

dominance from right to left. Verbal particles

express a wide range of tense-aspect-mood,

and include a devoted ‘‘sentence-ender’’ for

declarative, interrogative, imperative, etc. Korean

also includes a rich system of honorifics. There is

extensive discourse-level pro-drop (Sohn, 2001).

The written system is a non-Latin featural alphabet

arranged in syllabic blocks. White space is used in

writing, but prescriptive conventions for spacing

predicate-auxiliary compounds and semantically

close noun-verb phrases are commonly flouted

(Han and Ryu, 2005).

Russian: Russian is an Eastern Slavic language

using the Cyrillic alphabet. An inflected lan-

guage, it relies on case marking and agreement to

represent grammatical roles. Russian uses

singular, paucal,17 and plural number. Substantial

fusional18 morphology (Comrie, 1989) is used

along with three grammatical genders (Corbett,

1982), extensive pro-drop (Bizzarri, 2015), and

flexible word order (Bivon, 1971).

17Paucal number represents a few instances—between

singular and plural. In Russian, paucal is used for quantities

of 2, 3, 4, and many numerals ending in these digits.
18Fusional morphology expresses several grammatical

categories in one unsegmentable element.
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Figure 2: Finnish example exhibiting compounding,

inflection, and consonant gradation. In the question,

weekdays is a compound. However, in the compound,

week is inflected in the genitive case -n and the change

of kk to k in the stem (a common morphophonological

process in Finnish known as consonant gradation). The

plural is marked on the head of the compound day by

the plural suffix -t. But in the answer, Week is present

as a standalone word in the nominative case (no overt

case marking), but is modified by a compound adjective

composed of seven and days.

Figure 3: Russian example of morphological variation

across question-answer pairs due to the difference in

syntactic context: the entities are identical but have

different representation, making simple string matching

more difficult. The names of the planets are in the

subject (Uran, Uranus-NOM) and object of the prep-

osition (ot zemli, from Earth-GEN) context in the

question. The relevant passage with the answer has the

names of the planets in a coordinating phrase that is an

object of a preposition (me�du Uranom i Zeml��

between Uranus-INSTR and Earth-INSTR). Because the

syntactic contexts are different, the names of the planets

have different case marking.

Figure 4: Arabic example of inconsistent name

spellings; both spellings are correct and refer to the

same entity.

Figure 5: Arabic example of selective diacritization.

Note that the question contains diacritics (short vowels)

to emphasize the pronunciation of AlEumAny (the

specific entity intended) while the answer does not

have diacritics in EmAn.

Figure 6: Arabic example of name de-spacing. The

name appears as AbdulSalam in the question and

Abdul Salam in the answer. This is potentially because

of the visual break in the script between the two parts

of the name. In manual orthography, the presence of

the space would be nearly undetectable; its existence

becomes an issue only in the digital realm.

Figure 7: Arabic example of gender variation of the

word first (Awl vs Al>wlY) between the question and

answer.
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Telugu: Telugu is a Dravidian language.

Orthographically, consonants are fully specified

and vowels are expressed as diacritics if they

differ from the default syllable vowel. Telugu

is an agglutinating, suffixing language (Lisker,

1963; Krishnamurti, 2003). Nouns have 7–8

cases, singular/plural number, and three genders

(feminine, masculine, neuter). An outstanding

feature of Telugu is a productive process

for forming transitives and causative forms

(Krishnamurti, 1998).

Thai: Thai is an analytic language19 despite very

infrequent use of white space: Spacing in Thai is

usually used to indicate the end of a sentence but

may also indicate a phrase or clause break or

appear before or after a number (Dānwiwat, 1987).

5.2 A Linguistic Analysis

While the field of computational linguistics has

remained informed by its roots in linguistics,

practitioners often express a disconnect: Descrip-

tive linguists focus on fascinating complex phe-

nomena, yet datasets that computational linguists

encounter often do not contain such examples.

TYDI QA is intended to help bridge this gap:

we have identified and annotated examples from

the data that exhibit linguistic phenomena that

(a) are typically not found in English and (b) are

potentially problematic for NLP models.

Figure 2 presents the interaction among three

phenomena in a Finnish example, and Figure 3

shows an example of non-trivial word form

changes due to inflection in Russian. Arabic also

exemplifies many phenomena that are likely to

challenge current models including spelling varia-

tion of names (Figure 4), selective diacritization of

words (Figure 5), inconsistent use of whitespace

(Figure 6), and gender variation (Figure 7).

These examples illustrate that the subtasks

that are nearly trivial in English—such as string

matching—can become complex for languages

where morphophonological alternations and com-

pounding cause dramatic variations in word forms.

6 A Quantitative Analysis

At a glance, TYDI QA consists of 204K examples:

166K are one-way annotated, to be used for

19An analytic language uses helper words rather than

morphology to express grammatical relationships. Addi-

tional glossed examples are available at ai.google.com/

research/tydiqa.

QUESTION WORD TYDI QA SQuAD

WHAT 30% 51%

HOW 19% 12%

WHEN 14% 8%

WHERE 14% 5%

(YES/NO) 10% <1%

WHO 9% 11%

WHICH 3% 5%

WHY 1% 2%

Table 2: Distribution of question words

in the English portion of the development

data.

NULL PASSAGE ANSWER MINIMAL ANSWER

85% 92% 93%

Table 3: Expert judgments of annotation

accuracy. NULL indicates how often the

annotation is correct given that an annotator

marked a NULL answer. Passage answer and

minimal answer indicate how often each is

correct given the annotator marked an answer.

training, and 37K are 3-way annotated, comprising

the dev and test sets, for a total of 277K annotations

(Table 4).

6.1 Question Analysis

While we strongly suspect that the relationship

between the question and answer is one of the

best indicators of a QA dataset’s difficulty, we

also provide a comparison between the English

question types found in TYDI QA and SQuAD

in Table 2. Notably, TYDI QA displays a more

balanced distribution of question words.20

6.2 Question-Prompt Analysis

We also evaluate how effectively the annotators

followed the question elicitation protocol of

Section 3. From a sample of 100 prompt–question

pairs, we observed that all questions had 1–2 words

of overlap with the prompt (typically an entity or

word of interest) and none of the questions were

answered by the prompt, as requested. Because

these prompts are entirely discarded in the final

20For non-English languages, it is difficult to provide an

intuitive analysis of question words across languages since

question words can function differently depending on context.
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Train Dev Test

Language (1-way) (3-way) (3-way) Avg. Avg. Avg. Avg. % With %With

Question Article Answer Passage Passage Minimal

Tokens Bytes Bytes Candidates Answer Answer

(English) 9,211 1031 1046 7.1 30K 57 47 50% 42%

Arabic 23,092 1380 1421 5.8 14K 114 34 76% 69%

Bengali 10,768 328 334 7.5 13K 210 34 38% 35%

Finnish 15,285 2082 2065 4.9 19K 74 35 49% 41%

Indonesian 14,952 1805 1809 5.6 11K 91 32 38% 34%

Japanese 16,288 1709 1706 — 14K 53 52 41% 32%

Kiswahili 17,613 2288 2278 6.8 5K 39 35 24% 22%

Korean 10,981 1698 1722 5.1 12K 67 67 26% 22%

Russian 12,803 1625 1637 6.5 27K 106 74 64% 51%

Telugu 24,558 2479 2530 5.2 7K 279 32 28% 27%

Thai 11,365 2245 2203 — 14K 171 38 54% 43%

TOTAL 166,916 18,670 18,751

Table 4: Data statistics. Data properties vary depending on languages, as documents on

Wikipedia differ significantly and annotators don’t overlap between languages. We include

a small amount of English data for debugging purposes, though we do not include English

in macro-averaged results, nor in the leaderboard competition. Note that a single character

may occupy several bytes in non-Latin alphabets.

dataset, the questions often have less lexical

overlap with their answers than the prompts.

6.3 Data Quality

In Table 3, we analyze the degree to which

the annotations are correct.21 Human experts22

carefully judged a sample of 200 question–answer

pairs from the dev set for Finnish and Russian.

For each question, the expert indicates (1) whether

or not each question has an answer within the

article—the NULL column, (2) whether or not each

of the three passage answer annotations is correct,

and (3) whether the minimal answer is correct.

We take these high accuracies as evidence that

the quality of the dataset provides a useful and

reliable signal for the assessment of multilingual

question answering models.

Looking into these error patterns, we see that

the NULL-related errors are entirely false positives

(failing to find answers that exist), which would

largely be mitigated by having three answer

annotations. Such errors occur in a variety of

article lengths from under 1,000 words through

large 3,000-word articles. Therefore, we cannot

21We measure correctness instead of inter-annotator

agreement since question may have multiple correct answers.

For example, We have observed a yes/no question where both

YES and NO were deemed correct. Aroyo (2015) discuss the

pitfalls of over-constrained annotation guidelines in depth.
22Trained linguists with experience in NLP data collection.

attribute NULL errors to long articles alone, but we

should consider alternative causes such as some

question–answer matching being more difficult or

subtle.

For minimal answers, errors occur for a large

variety of reasons. One error category is when

multiple dates seem plausible but only one is

correct. One Russian question reads When did

Valentino Rossi win the first title?. Two annotators

correctly selected 1997 while one selected 2001,

which was visually prominent in a large list of

years.

7 Evaluation

7.1 Evaluation Measures

We now turn from analyzing the quality of the data

itself toward how to evaluate question answering

systems using the data. The TYDI QA task’s

primary evaluation measure is F1, a harmonic

mean of precision and recall, each of which is

calculated over the examples within a language.

However, certain nuances do arise for our task.

NULL Handling: TYDI QA is an imbalanced

dataset in terms of whether or not each question

has an answer due to differing amounts of content

in each language on Wikipedia. However, it is

undesirable if a strategy such as always predicting

NULL can produce artificially inflated results—this
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Train Size Passage Answer F1 (P/R) Minimal Answer Span F1 (P/R)

First passage mBERT Lesser Human mBERT Lesser Human

(English) 9,211 32.9(28.4/39.1) 62.5(62.6/62.5) 69.4(63.4/77.6) 44.0(52.9/37.8) 54.4(52.9/56.5)

Arabic 23,092 64.7(59.2/71.3) 81.7(85.7/78.1) 85.4(82.1/89.0) 69.3(74.9/64.5) 73.5(73.6/73.5)

Bengali 10,768 21.4(15.5/34.6) 60.3(61.4/59.5) 85.5(81.6/89.7) 47.7(50.7/45.3) 79.1(78.6/79.7)

Finnish 15,285 35.4(28.4/47.1) 60.8(58.7/63.0) 76.3(69.8/84.2) 48.0(56.7/41.8) 65.3(61.8/69.4)

Indonesian 14,952 32.6(23.8/51.7) 61.4(57.2/66.7) 78.6(72.7/85.6) 51.3(54.5/48.8) 71.1(68.7/73.7)

Japanese 16,288 19.4(14.8/28.0) 40.6(42.2/39.5) 65.1(57.8/74.8) 30.4(42.1/23.9) 53.3(51.8/55.2)

Kiswahili 17,613 20.3(13.4/42.0) 60.2(58.4/62.3) 76.8(70.1/85.0) 49.7(55.2/45.4) 67.4(63.4/72.1)

Korean 10,981 19.9(13.1/41.5) 56.8(58.7/55.3) 72.9(66.3/82.4) 40.1(45.2/36.2) 56.7(56.3/58.6)

Russian 12,803 30.0(25.5/36.4) 63.2(65.3/61.2) 87.2(84.4/90.2) 45.8(51.7/41.2) 76.0(82.0/70.8)

Telugu 24,558 23.3(15.1/50.9) 81.3(81.7/80.9) 95.0(93.3/96.8) 74.3(77.7/71.3) 93.3(91.6/95.2)

Thai 11,365 34.7(27.8/46.4) 64.7(61.8/68.0) 76.1(69.9/84.3) 48.3(54.3/43.7) 65.6(63.9/67.9)

OVERALL 166,916 30.2(23.6/45.0) 63.1(57.0/59.1) 79.9(84.4/74.5) 50.5(41.3/35.3) 70.1(70.8/62.4)

Table 5: Quality on the TYDI QA primary tasks (passage answer and minimal answer) using:

a naı̈ve first-passage baseline, the open-source multilingual BERT model (mBERT), and

a human predictor (Section 7.3). F1, precision, and recall measurements (Section 7.1) are

averaged over four fine-tuning replicas for mBERT.

would indeed be the case if we were to give credit

to a system producing NULL if any of the three

annotators selected a NULL answer. Therefore, we

first use a threshold to select a NULL consensus for

each evaluation example: At least two of the three

annotators must select an answer for the consensus

to be non-NULL. The NULL consensus for the given

task (passage answer, minimal answer) must be

NULL in order for a system to receive credit (see

below) for a NULL prediction.

Passage Selection Task: For questions having

a NULL consensus (see above), credit is given

for matching any of the passage indices selected

by annotators.23 An example counts toward

the denominator of recall if it has a non-

NULL consensus, and toward the denominator

of precision if the model predicted a non-NULL

answer.

Minimal Span Task: For each example, given

the question and text of an article, a system must

predict NULL, YES, NO, or a contiguous span

of bytes that constitutes the answer. For span

answers, we treat this collection of byte index pairs

as a set and compute an example-wise F1 score

between each annotator’s minimal answer and

the model’s minimal answer, with partial credit

assigned when spans are partially overlapping;

the maximum is returned as the score for each

example. For a YES/NO answers, credit is given

23By matching any passage, we effectively take the max

over examples, consistent with the minimal span task.

(a score of 1.0), if any of the annotators indicated

such as a correct answer. The NULL consensus

must be non-NULL in order to receive credit for a

non-NULL answer.

Macro-Averaging: First, the scores for each

example are averaged within a language; we then

average over all non-English languages to obtain

a final F1 score. Measurements on English are

treated as a useful means of debugging rather

than a goal of the TYDI QA task as there is

already plenty of coverage for English evaluation

in existing datasets.

7.2 An Estimate of Human Performance

In this section, we consider two idealized methods

for estimating human performance before settling

on a widely used pragmatic method.

A Fair Contest: As a thought experiment, con-

sider framing evaluation as ‘‘What is the likeli-

hood that a correct answer is accepted as correct?’’

Trivia competitions and game shows take this

approach as they are verifying the expertise

of human answers. One could exhaustively

enumerate all correct passage answers; given

several annotations of high accuracy, we would

quickly obtain high recall. This approach is

advocated in Boyd-Graber (2019).

A Game with Preferred Answers: If our goal is

to provide users with the answers that they prefer.

If annotators correctly choose these preferred

answers, we expect our multi-way annotated

data to contain a distribution peaked around
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these preferred answers. The optimal strategy for

players is then to predict those answers, which are

both preferred by users and more likely to be in

the evaluation dataset. We would expect a large

pool of human annotators or a well-optimized

machine learning system to learn this distribution.

For example, the Natural Questions (Kwiatkowski

et al., 2019) uses a 25-way annotations to construct

a super-annotator, increasing the estimate of

human performance by around 15 points F1.

A Lesser Estimate of Human Performance:

Unfortunately, finding a very large pool of

annotators for 11 languages would be prohibitively

expensive. Instead, we provide a more pessimistic

estimate of human performance by holding out one

human annotation as a prediction and evaluating it

against the other two annotations; we use bootstrap

resampling to repeat this procedure for all

possible combinations of 1 vs. 2 annotators. This

corresponds to the human evaluation methodology

for SQuAD with the addition of bootstrapping to

reduce variance. In Table 5, we show this estimate

of human performance. In cases where annotators

disagree, this estimate will degrade, which may

lead to an underestimate of human performance

since in reality multiple answers could be correct.

At first glance, these F1 scores may appear low

compared to simpler tasks such as SQuAD, yet a

single human prediction on the Natural Questions

short answer task (similar to the TYDI QA minimal

answer task), scores only 57 F1 even with the

advantage of evaluating against five annotations

rather than just two and training on 30X more

English training data.

7.3 Primary Tasks: Baseline Results

To provide an estimate of the difficulty of this

dataset for well-studied state-of-the-art models,

we present results for a baseline that uses the most

recently released multilingual BERT (mBERT)24

(Devlin et al., 2019) in a setup similar to Alberti

et al. (2019), in which all languages are trained

jointly in a single model (Table 5). Additionally, as

a naı̈ve, untrained baseline, we include the results

of a system that always predicts the first passage,

since the first paragraph of a Wikipedia article

often summarizes its most important facts. Across

all languages, we see a large gap between mBERT

and a lesser estimate of human performance

(Section 7.2).

24github.com/google-research/bert.

TYDIQA-GOLDP MLQA XQuAD

(English) 0.38 0.91 1.52

Arabic 0.26 0.61 1.29

Bengali 0.29 — —

Finnish 0.23 — —

Indonesian 0.41 — —

Kiswahili 0.31 — —

Korean 0.19 — —

Russian 0.16 — 1.13

Telugu 0.13 — —

Table 6: Lexical overlap statistics for TYDIQA-

GOLDP, MLQA, and XQuAD showing the

average number of tokens in common between

the question and a 200-character window around

the answer span. As expected, we observe

substantially lower lexical overlap in TYDI QA.

Can We Compare Scores Across Languages?

Unfortunately, no. Each language has its

own unique set of questions, varying quality

and amount of Wikipedia content, quality of

annotators, and other variables. We believe it

is best to directly engage with these issues;

avoiding these phenomena may hide important

aspects of the problem space associated with these

languages.

8 Gold Passage: A Simplified Task

Up to this point, we have discussed the primary

tasks of Passage Selection (SELECTP) and Minimal

Answer Span (MINSPAN). In this section, we

describe a simplified Gold Passage (GOLDP)

task, which is more similar to existing reading

comprehension datasets, with two goals in mind:

(1) more directly comparing with prior work, and

(2) providing a simplified way for researchers

to use TYDI QA by providing compatibility with

existing code for SQuAD, XQuAD, and MLQA.

Toward these goals, the Gold Passage task

differs from the primary tasks in several ways:

• only the gold answer passage is provided

rather than the entire Wikipedia article;

• unanswerable questions have been discarded,

similar to MLQA and XQuAD;

• we evaluate with the SQuAD 1.1 metrics like

XQuAD; and
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TYDIQA-

GOLDP

SQuAD

Zero

Shot

Human

(English) (76.8) (73.4) (84.2)

Arabic 81.7 60.3 85.8

Bengali 75.4 57.3 94.8

Finnish 79.4 56.2 87.0

Indonesian 84.8 60.8 92.0

Kiswahili 81.9 52.9 92.0

Korean 69.2 50.0 82.0

Russian 76.2 64.4 96.3

Telugu 83.3 49.3 97.1

OVERALL 79.0 56.4 90.9

Table 7: F1 scores for the simplified TYDIQA-

GOLDP task v1.1. Left: Fine tuned and evaluated

on the TYDIQA-GOLDP set. Middle: Fine

tuned on SQuAD v1.1 and evaluated on

the TYDIQA-GOLDP dev set, following the

XQuAD zero-shot setting. Right: Estimate

of human performance on TYDIQA-GOLDP.

Models are averaged over five fine tunings.

• Thai and Japanese are removed because the

lack of white space breaks some existing

tools.

To better estimate human performance, only

passages having 2+ annotations are retained.

Of these annotations, one is withheld as a human

prediction and the remainder are used as the gold

set.

8.1 Gold Passage Lexical Overlap

In Section 3, we argued that unseen answers and

no translation should lead to a more complex,

subtle relationship between the resulting questions

and answers. We measure this directly in Table 6,

showing the average number of tokens in common

between the question and a 200-character window

around the answer span, excluding the top 100

most frequent tokens, which tend to be non-

content words. For all languages, we see a

substantially lower lexical overlap in TYDI QA as

compared to MLQA and XQuAD, corpora whose

generation procedures involve seen answers and

translation; we also see overall lower lexical

overlap in non-English languages. We take this as

evidence of a more complex relationship between

questions and answers in TYDI QA.

8.2 Gold Passage Results

In Table 7, we show the results of two experiments

on this secondary Gold Passage task. First, we fine

tune mBERT jointly on all languages of the TYDI

QA gold passage training data and evaluate on

its dev set. Despite lacking several of the core

challenges of TYDI QA (e.g., no long articles, no

unanswerable questions), F1 scores remain low,

leaving headroom for future improvement.

Second, we fine tune on the 100k English-only

SQuAD 1.1 training set and evaluate on the full

TYDI QA gold passage dev set, following the

XQuAD evaluation zero-shot setting. We again

observe very low F1 scores. These are similar

to, though somewhat lower than, the F1 scores

observed in the XQuAD zero-shot setting of

Artetxe et al. (2019). Strikingly, even the English

performance is significantly lower, demonstrating

that the style of question–answer pairs in SQuAD

have very limited value in training a model for

TYDI QA-style questions, despite the much larger

volume of English questions in SQuAD.

9 Recommendations and Future Work

We foresee several research directions where this

data will allow the research community to push

new boundaries, including:

• studying the interaction between morphology

and question–answer matching;

• evaluating the effectiveness of transfer

learning, both for languages where parallel

data is and is not available;

• the usefulness of machine translation in

question answering for data augmentation

and as a runtime component, given varying

data scenarios and linguistic challenges;25

and

• studying zero-shot QA by explicitly not

training on a subset of the provided

languages.

We also believe that a deeper understanding of

the data itself will be key and we encourage further

linguistic analyses of the data. Such insights will

help us understand what modeling techniques will

25Because we believe that MT may be a fruitful research

direction for TYDI QA, we do not release any automatic

translations. In the past, this seems to have stymied innovation

around translation as applied to multilingual datasets.
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be better-suited to tackling the full variety of

phenomena observed in the world’s languages.

We recognize that no single effort will be

sufficient to cover the world’s languages, and

so we invite others to create compatible datasets

for other languages; the universal dependency

treebank (Nivre et al., 2016) now has over 70

languages, demonstrating what the community is

capable of with broad effort.26

Finally, we note that the content required to

answer questions often has simply not been written

down in many languages. For these languages, we

are paradoxically faced with the prospect that

cross-language answer retrieval and translation

are necessary, yet low-resource languages will

also lack (and will likely continue to lack) the

parallel data needed for trustworthy translation

systems.

10 Conclusion

Confidently making progress on multilingual

models requires challenging, trustworthy evalu-

ations. We have argued that question answering is

well suited for this purpose and that by targeting

a typologically diverse set of languages, progress

on the TYDI QA dataset is more likely to general-

ize on the breadth of linguistic phenomena found

throughout the world’s languages. By avoiding

data collection procedures reliant on translation

and multilingual modeling, we greatly mitigate

the risk of sampling bias. We look forward to

the many ways the research community finds to

improve the quality of multilingual models.
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