
How Can We Know What Language Models Know?

Zhengbao Jiang1∗ Frank F. Xu1∗ Jun Araki2 Graham Neubig1

1Language Technologies Institute, Carnegie Mellon University
2Bosch Research North America

{zhengbaj,fangzhex,gneubig}@cs.cmu.edu jun.araki@us.bosch.com

Abstract

Recent work has presented intriguing results

examining the knowledge contained in lan-

guage models (LMs) by having the LM fill

in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are

usually manually created, and quite possibly

sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately

predicting the correct profession. Because of

this, given an inappropriate prompt, we might

fail to retrieve facts that the LM does know,

and thus any given prompt only provides a

lower bound estimate of the knowledge con-

tained in an LM. In this paper, we attempt to

more accurately estimate the knowledge con-

tained in LMs by automatically discovering

better prompts to use in this querying process.

Specifically, we propose mining-based and

paraphrasing-based methods to automatically

generate high-quality and diverse prompts,

as well as ensemble methods to combine

answers from different prompts. Extensive

experiments on the LAMA benchmark for

extracting relational knowledge from LMs

demonstrate that our methods can improve

accuracy from 31.1% to 39.6%, providing

a tighter lower bound on what LMs know.

We have released the code and the resulting

LM Prompt And Query Archive (LPAQA) at

https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text

understanding by formulating queries in natural

language and either generating textual answers

directly (McCann et al., 2018; Radford et al.,

2019), or assessing multiple choices and picking

the most likely one (Zweig and Burges, 2011;

Rajani et al., 2019). For example, LMs have been

used to answer factoid questions (Radford et al.,

2019), answer common sense queries (Trinh and

Le, 2018; Sap et al., 2019), or extract factual

knowledge about relations between entities

(Petroni et al., 2019; Baldini Soares et al.,

2019). Regardless of the end task, the knowledge

contained in LMs is probed by providing a prompt,

and letting the LM either generate the continuation

of a prefix (e.g., ‘‘Barack Obama was born in ’’),

or predict missing words in a cloze-style template

(e.g., ‘‘Barack Obama is a by profession’’).

However, while this paradigm has been used to

achieve a number of intriguing results regarding

the knowledge expressed by LMs, they usually

rely on prompts that were manually created

based on the intuition of the experimenter. These

manually created prompts (e.g., ‘‘Barack Obama

was born in ’’) might be sub-optimal because

LMs might have learned target knowledge from

substantially different contexts (e.g., ‘‘The birth

place of Barack Obama is Honolulu, Hawaii.’’)

during their training. Thus it is quite possible that

a fact that the LM does know cannot be retrieved

due to the prompts not being effective queries

for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained

1Some models we use in this paper, e.g., BERT (Devlin

et al., 2019), are bi-directional, and do not directly define

probability distribution over text, which is the underlying

definition of an LM. Nonetheless, we call them LMs for

simplicity.

423

Transactions of the Association for Computational Linguistics, vol. 8, pp. 423–438, 2020. https://doi.org/10.1162/tacl a 00324
Action Editor: Timothy Baldwin. Submission batch: 12/2019; Revision batch: 3/2020; Published 7/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:zhengbaj@cs.cmu.edu
mailto:fangzhex@cs.cmu.edu
mailto:gneubig@cs.cmu.edu
mailto:jun.araki@us.bosch.com
https://github.com/jzbjyb/LPAQA
https://doi.org/10.1162/tacl_a_00324

Figure 1: Top-5 predictions and their log probabilities

using different prompts (manual, mined, and para-

phrased) to query BERT. Correct answer is underlined.

in LMs, and in fact, LMs may be even more

knowledgeable than these initial results indicate.

In this paper we ask the question: ‘‘How can

we tighten this lower bound and get a more

accurate estimate of the knowledge contained in

state-of-the-art LMs?’’ This is interesting both

scientifically, as a probe of the knowledge that

LMs contain, and from an engineering perspective,

as it will result in higher recall when using LMs

as part of a knowledge extraction system.

In particular, we focus on the setting of Petroni

et al. (2019) who examine extracting knowledge

regarding the relations between entities (defini-

tions in § 2). We propose two automatic methods

to systematically improve the breadth and quality

of the prompts used to query the existence of a

relation (§ 3). Specifically, as shown in Figure 1,

these are mining-based methods inspired by pre-

vious relation extraction methods (Ravichandran

and Hovy, 2002), and paraphrasing-based meth-

ods that take a seed prompt (either manually

created or automatically mined), and paraphrase

it into several other semantically similar expres-

sions. Further, because different prompts may

work better when querying for different subject-

object pairs, we also investigate lightweight

ensemble methods to combine the answers from

different prompts together (§ 4).

We experiment on the LAMA benchmark

(Petroniet al., 2019), which is an English-language

benchmark devised to test the ability of LMs to

retrieve relations between entities (§ 5). We first

demonstrate that improved prompts significantly

improve accuracy on this task, with the one-best

prompt extracted by our method raising accuracy

from 31.1% to 34.1% on BERT-base (Devlin et al.,

2019), with similar gains being obtained with

BERT-large as well. We further demonstrate that

using a diversity of prompts through ensembling

further improves accuracy to 39.6%. We perform

extensive analysis and ablations, gleaning insights

both about how to best query the knowledge

stored in LMs and about potential directions for

incorporating knowledge into LMs themselves.

Finally, we have released the resulting LM Prompt

And Query Archive (LPAQA) to facilitate future

experiments on probing knowledge contained in

LMs.

2 Knowledge Retrieval from LMs

Retrieving factual knowledge from LMs is quite

different from querying standard declarative

knowledge bases (KBs). In standard KBs, users

formulate their information needs as a structured

query defined by the KB schema and query

language. For example, SELECT ?y WHERE

{wd:Q76 wdt:P19 ?y} is a SPARQL query

to search the birth place of Barack Obama. In

contrast, LMs must be queried by natural language

prompts, such as ‘‘Barack Obama was born in ’’,

and the word assigned the highest probability in

the blank will be returned as the answer. Unlike

deterministic queries on KBs, this provides no

guarantees of correctness or success.

While the idea of prompts is common to

methods for extracting many varieties of knowl-

edge from LMs, in this paper we specifically

follow the formulation of Petroni et al. (2019),

where factual knowledge is in the form of triples

〈x, r, y〉. Here x indicates the subject, y indicates

the object, and r is their corresponding relation.

To query the LM, r is associated with a cloze-style

prompt tr consisting of a sequence of tokens, two

of which are placeholders for subjects and objects

(e.g., ‘‘x plays at y position’’). The existence of

the fact in the LM is assessed by replacing x with

the surface form of the subject, and letting the

model predict the missing object (e.g., ‘‘LeBron

James plays at position’’):2

ŷ = argmax
y′∈V

PLM(y′|x, tr),

2We can also go the other way around by filling in the

objects and predicting the missing subjects. Since our focus

is on improving prompts, we choose to be consistent with

Petroni et al. (2019) to make a fair comparison, and leave

exploring other settings to future work. Also notably, Petroni

et al. (2019) only use objects consisting of a single token, so

we only need to predict one word for the missing slot.

424

where V is the vocabulary, and PLM(y′|x, tr)
is the LM probability of predicting y′ in the

blank conditioned on the other tokens (i.e., the

subject and the prompt).3 We say that an LM has

knowledge of a fact if ŷ is the same as the ground-

truth y. Because we would like our prompts to

most effectively elicit any knowledge contained

in the LM itself, a ‘‘good’’ prompt should trigger

the LM to predict the ground-truth objects as often

as possible.

In previous work (McCann et al., 2018; Radford

et al., 2019; Petroni et al., 2019), tr has been

a single manually defined prompt based on the

intuition of the experimenter. As noted in the

introduction, this method has no guarantee of

being optimal, and thus we propose methods that

learn effective prompts from a small set of training

data consisting of gold subject-object pairs for

each relation.

3 Prompt Generation

First, we tackle prompt generation: the task of gen-

erating a set of prompts {tr,i}
T
i=1 for each relation

r, where at least some of the prompts effectively

trigger LMs to predict ground-truth objects. We

employ two practical methods to either mine

prompt candidates from a large corpus (§ 3.1)

or diversify a seed prompt through paraphrasing

(§ 3.2).

3.1 Mining-based Generation

Our first method is inspired by template-

based relation extraction methods (Agichtein and

Gravano, 2000; Ravichandran and Hovy, 2002),

which are based on the observation that words

in the vicinity of the subject x and object y in a

large corpus often describe the relation r. Based

on this intuition, we first identify all the Wikipedia

sentences that contain both subjects and objects

of a specific relation r using the assumption of

distant supervision, then propose two methods to

extract prompts.

Middle-word Prompts Following the observa-

tion that words in the middle of the subject and

object are often indicative of the relation, we

3We restrict to masked LMs in this paper because the

missing slot might not be the last token in the sentence and

computing this probability in traditional left-to-right LMs

using Bayes’ theorem is not tractable.

directly use those words as prompts. For exam-

ple, ‘‘Barack Obama was born in Hawaii’’ is

converted into a prompt ‘‘x was born in y’’

by replacing the subject and the object with

placeholders.

Dependency-based Prompts Toutanova et al.

(2015) note that in cases of templates where words

do not appear in the middle (e.g., ‘‘The capital of

France is Paris’’), templates based on syntactic

analysis of the sentence can be more effective for

relation extraction. We follow this insight in our

second strategy for prompt creation, which parses

sentences with a dependency parser to identify

the shortest dependency path between the subject

and object, then uses the phrase spanning from

the leftmost word to the rightmost word in the

dependency path as a prompt. For instance, the

dependency path in the above example is ‘‘France
pobj
←−− of

prep
←−− capital

nsubj
←−− is

attr
−−→ Paris’’, where

the leftmost and rightmost words are ‘‘capital’’

and ‘‘Paris’’, giving a prompt of ‘‘capital of x is

y’’.

Notably, these mining-based methods do not

rely on any manually created prompts, and can

thus be flexibly applied to any relation where we

can obtain a set of subject-object pairs. This will

result in diverse prompts, covering a wide variety

of ways that the relation may be expressed in text.

However, it may also be prone to noise, as many

prompts acquired in this way may not be very

indicative of the relation (e.g., ‘‘x, y’’), even if

they are frequent.

3.2 Paraphrasing-based Generation

Our second method for generating prompts is more

targeted—it aims to improve lexical diversity

while remaining relatively faithful to the original

prompt. Specifically, we do so by performing

paraphrasing over the original prompt into other

semantically similar or identical expressions. For

example, if our original prompt is ‘‘x shares a

border with y’’, it may be paraphrased into ‘‘x

has a common border with y’’ and ‘‘x adjoins y’’.

This is conceptually similar to query expansion

techniques used in information retrieval that refor-

mulate a given query to improve retrieval perfor-

mance (Carpineto and Romano, 2012).

Although many methods could be used for

paraphrasing (Romano et al., 2006; Bhagat and

Ravichandran, 2008), we follow the simple

425

method of using back-translation (Sennrich et al.,

2016; Mallinson et al., 2017) to first translate

the initial prompt into B candidates in another

language, each of which is then back-translated

into B candidates in the original language. We

then rank B2 candidates based on their round-

trip probability (i.e., Pforward(t̄|t̂) · Pbackward(t|t̄),
where t̂ is the initial prompt, t̄ is the translated

prompt in the other language, and t is the final

prompt), and keep the top T prompts.

4 Prompt Selection and Ensembling

In the previous section, we described methods to

generate a set of candidate prompts {tr,i}
T
i=1 for

a particular relation r. Each of these prompts may

be more or less effective at eliciting knowledge

from the LM, and thus it is necessary to decide

how to use these generated prompts at test time. In

this section, we describe three methods to do so.

4.1 Top-1 Prompt Selection

For each prompt, we can measure its accuracy of

predicting the ground-truth objects (on a training

dataset) using:

A(tr,i) =
∑
〈x,y〉∈R δ(y=arg maxy′ PLM(y′|x,tr,i))

|R| ,

where R is a set of subject-object pairs with

relation r, and δ(·) is Kronecker’s delta function,

returning 1 if the internal condition is true and

0 otherwise. In the simplest method for querying

the LM, we choose the prompt with the highest

accuracy and query using only this prompt.

4.2 Rank-based Ensemble

Next we examine methods that use not only

the top-1 prompt, but combine together multiple

prompts. The advantage to this is that the LM may

have observed different entity pairs in different

contexts within its training data, and having

a variety of prompts may allow for elicitation

of knowledge that appeared in these different

contexts.

Our first method for ensembling is a parameter-

free method that averages the predictions of the

top-ranked prompts. We rank all the prompts

based on their accuracy of predicting the objects

on the training set, and use the average log

probabilities4 from the top K prompts to calculate

the probability of the object:

s(y|x, r) =

K∑

i=1

1

K
logPLM(y|x, tr,i), (1)

P (y|x, r) = softmax(s(·|x, r))y, (2)

where tr,i is the prompt ranked at the i-th position.

Here, K is a hyper-parameter, where a small K

focuses on the few most accurate prompts, and a

large K increases diversity of the prompts.

4.3 Optimized Ensemble

The above method treats the top K prompts

equally, which is sub-optimal given some prompts

are more reliable than others. Thus, we also

propose a method that directly optimizes prompt

weights. Formally, we re-define the score in

Equation 1 as:

s(y|x, r) =

T∑

i=1

Pθr
(tr,i|r) logPLM(y|x, tr,i),

(3)

where Pθr
(tr,i|r) = softmax(θr) is a distribution

over prompts parameterized by θr, a T -sized real-

value vector. For every relation, we learn to score

a different set of T candidate prompts, so the

total number of parameters is T times the number

of relations. The parameter θr is optimized to

maximize the probability of the gold-standard

objects P (y|x, r) over training data.

5 Main Experiments

5.1 Experimental Settings

In this section, we assess the extent to which our

prompts can improve fact prediction performance,

raising the lower bound on the knowledge we

discern is contained in LMs.

Dataset As data, we use the T-REx subset

(ElSahar et al., 2018) of the LAMA benchmark

(Petroni et al., 2019), which has a broader set

of 41 relations (compared with the Google-RE

subset, which only covers 3). Each relation is

associated with at most 1000 subject-object pairs

from Wikidata, and a single manually designed

4Intuitively, because we are combining together scores in

the log space, this has the effect of penalizing objects that are

very unlikely given any certain prompt in the collection. We

also compare with linear combination in ablations in § 5.3.

426

prompt. To learn to mine prompts (§ 3.1), rank

prompts (§ 4.2), or learn ensemble weights (§ 4.3),

we create a separate training set of subject-object

pairs also from Wikidata for each relation that has

no overlap with the T-REx dataset. We denote the

training set as T-REx-train. For consistency with

the T-REx dataset in LAMA, T-REx-train also is

chosen to contain only single-token objects. To

investigate the generality of our method, we also

report the performance of our methods on the

Google-RE subset,5 which takes a similar form

to T-REx but is relatively small and only covers

three relations.

Pörner et al. (2019) note that some facts in

LAMA can be recalled solely based on surface

forms of entities, without memorizing facts. They

filter out those easy-to-guess facts and create a

more difficult benchmark, denoted as LAMA-

UHN. We also conduct experiments on the T-REx

subset of LAMA-UHN (i.e., T-REx-UHN) to

investigate whether our methods can still obtain

improvements on this harder benchmark. Dataset

statistics are summarized in Table 1.

Models As for the models to probe, in our main

experiments we use the standard BERT-base and

BERT-large models (Devlin et al., 2019). We

also perform some experiments with other pre-

trained models enhanced with external entity

representations, namely, ERNIE (Zhang et al.,

2019) and KnowBert (Peters et al., 2019), which

we believe may do better on recall of entities.

Evaluation Metrics We use two metrics to

evaluate the success of prompts in probing

LMs. The first evaluation metric, micro-averaged

accuracy, follows the LAMA benchmark6 in

calculating the accuracy of all subject-object pairs

for relation r:

1

|R|

∑

〈x,y〉∈R

δ(ŷ = y),

where ŷ is the prediction and y is the ground

truth. Then we average across all relations.

However, we found that the object distributions

5https://code.google.com/archive/p/

relation-extraction-corpus/.
6In LAMA, it is called ‘‘P@1.’’ There might be multiple

correct answers for some cases, e.g., a person speaking

multiple languages, but we only use one ground truth. We

will leave exploring more advanced evaluation methods to

future work.

Properties T-REx T-REx-UHN T-REx-train

#sub-obj pairs 830.2 661.1 948.7

#unique subject 767.8 600.8 880.1

#unique objects 150.9 120.5 354.6

object entropy 3.6 3.4 4.4

Table 1: Dataset statistics. All the values are

averaged across 41 relations.

of some relations are extremely skewed

(e.g., more than half of the objects in relation

native language areFrench). This can lead

to deceptively high scores, even for a majority-

class baseline that picks the most common object

for each relation, which achieves a score of 22.0%.

To mitigate this problem, we also report macro-

averaged accuracy, which computes accuracy for

each unique object separately, then averages them

together to get the relation-level accuracy:

1

|uni obj(R)|

∑

y′∈uni obj(R)

∑
〈x,y〉∈R,y = y′ δ(ŷ = y)

|{y|〈x, y〉 ∈ R, y = y′}|
,

where uni obj(R) returns a set of unique objects

from relation r. This is a much stricter metric,

with the majority-class baseline only achieving a

score of 2.2%.

Methods We attempted different methods for

prompt generation and selection/ensembling, and

compare them with the manually designed

prompts used in Petroni et al. (2019). Majority

refers to predicting the majority object for each

relation, as mentioned above. Man is the baseline

from Petroni et al. (2019) that only uses the

manually designed prompts for retrieval. Mine

(§ 3.1) uses the prompts mined from Wikipedia

through both middle words and dependency paths,

and Mine+Man combines them with the manual

prompts. Mine+Para (§ 3.2) paraphrases the

highest-ranked mined prompt for each relation,

while Man+Para uses the manual one instead.

The prompts are combined either by averaging

the log probabilities from the TopK highest-

ranked prompts (§ 4.2) or the weights after

optimization (§ 4.3; Opti.). Oracle represents the

upper bound of the performance of the generated

prompts, where a fact is judged as correct if any

one of the prompts allows the LM to successfully

predict the object.

Implementation Details We use T = 40 most

frequent prompts either generated through mining

427

https://code.google.com/archive/p/relation-extraction-corpus/
https://code.google.com/archive/p/relation-extraction-corpus/

or paraphrasing in all experiments, and the number

of candidates in back-translation is set to B = 7.

We remove prompts only containing stopwords/

punctuations or longer than 10 words to reduce

noise. We use the round-trip English-German

neural machine translation models pre-trained on

WMT’19 (Ng et al., 2019) for back-translation,

as English-German is one of the most highly

resourced language pairs.7 When optimizing

ensemble parameters, we use Adam (Kingma and

Ba, 2015) with default parameters and batch size

of 32.

5.2 Evaluation Results

Micro- and macro-averaged accuracy of different

methods are reported in Tables 2 and 3, respec-

tively.

Single Prompt Experiments When only one

prompt is used (in the first Top1 column in both

tables), the best of the proposed prompt genera-

tion methods increases micro-averaged accuracy

from 31.1% to 34.1% on BERT-base, and from

32.3% to 39.4% on BERT-large. This demon-

strates that the manually created prompts are

a somewhat weak lower bound; there are other

prompts that further improve the ability to query

knowledge from LMs. Table 4 shows some

of the mined prompts that resulted in a large

performance gain compared with the manual ones.

For the relation religion, ‘‘x who converted

to y’’ improved 60.0% over the manually defined

prompt of ‘‘x is affiliated with the y religion’’,

and for the relation subclass of, ‘‘x is a type

of y’’ raised the accuracy by 22.7% over ‘‘x is

a subclass of y’’. It can be seen that the largest

gains from using mined prompts seem to occur

in cases where the manually defined prompt is

more complicated syntactically (e.g., the former),

or when it uses less common wording (e.g., the

latter) than the mined prompt.

Prompt Ensembling Next we turn to experi-

ments that use multiple prompts to query the LM.

Comparing the single-prompt results in column 1

to the ensembled results in the following three

columns, we can see that ensembling multiple

prompts almost always leads to better perform-

ance. The simple average used in Top3 and

7https://github.com/pytorch/fairseq/tree/

master/examples/wmt19.

Prompts Top1 Top3 Top5 Opti. Oracle

BERT-base (Man=31.1)

Mine 31.4 34.2 34.7 38.9 50.7

Mine+Man 31.6 35.9 35.1 39.6 52.6

Mine+Para 32.7 34.0 34.5 36.2 48.1

Man+Para 34.1 35.8 36.6 37.3 47.9

BERT-large (Man=32.3)

Mine 37.0 37.0 36.4 43.7 54.4

Mine+Man 39.4 40.6 38.4 43.9 56.1

Mine+Para 37.8 38.6 38.6 40.1 51.8

Man+Para 35.9 37.3 38.0 38.8 50.0

Table 2: Micro-averaged accuracy of different

methods (%). Majority gives us 22.0%. Italic

indicates best single-prompt accuracy, and bold

indicates the best non-oracle accuracy overall.

Prompts Top1 Top3 Top5 Opti. Oracle

BERT-base (Man=22.8)

Mine 20.7 22.7 23.9 25.7 36.2

Mine+Man 21.3 23.8 24.8 26.6 38.0

Mine+Para 21.2 22.4 23.0 23.6 34.1

Man+Para 22.8 23.8 24.6 25.0 34.9

BERT-large (Man=25.7)

Mine 26.4 26.3 25.9 30.1 40.7

Mine+Man 28.1 28.3 27.3 30.7 42.2

Mine+Para 26.2 27.1 27.0 27.1 38.3

Man+Para 25.9 27.8 28.3 28.0 39.3

Table 3: Macro-averaged accuracy of different

methods (%). Majority gives us 2.2%. Italic

indicates best single-prompt accuracy, and bold

indicates the best non-oracle accuracy overall.

Top5 outperforms Top1 across different prompt

generation methods. The optimized ensemble fur-

ther raises micro-averaged accuracy to 38.9% and

43.7% on BERT-base and BERT-large respec-

tively, outperforming the rank-based ensemble by

a large margin. These two sets of results demon-

strate that diverse prompts can indeed query the

LM in different ways, and that the optimization-

based method is able to find weights that

effectively combine different prompts together.

We list the learned weights of top-3 mined

prompts and accuracy gain over only using

the top-1 prompt in Table 5. Weights tend to

concentrate on one particular prompt, and the other

prompts serve as complements. We also depict the

performance of the rank-based ensemble method

428

https://github.com/pytorch/fairseq/tree/master/examples/wmt19
https://github.com/pytorch/fairseq/tree/master/examples/wmt19

ID Relations Manual Prompts Mined Prompts Acc. Gain

P140 religion x is affiliated with the y religion x who converted to y +60.0

P159 headquarters location The headquarter of x is in y x is based in y +4.9

P20 place of death x died in y x died at his home in y +4.6

P264 record label x is represented by music label y x recorded for y +17.2

P279 subclass of x is a subclass of y x is a type of y +22.7

P39 position held x has the position of y x is elected y +7.9

Table 4: Micro-averaged accuracy gain (%) of the mined prompts over the manual prompts.

ID Relations Prompts and Weights Acc. Gain

P127 owned by x is owned by y .485 x was acquired by y
.151 x division of y

.151 +7.0

P140 religion x who converted to y .615 y tirthankara x .190 y dedicated to x .110 +12.2

P176 manufacturer y introduced the x .594 y announced the x .286 x attributed to the y .111 +7.0

Table 5: Weights of top-3 mined prompts, and the micro-averaged accuracy gain (%) over using the

top-1 prompt.

with respect to the number of prompts in Figure 2.

For mined prompts, top-2 or top-3 usually gives

us the best results, while for paraphrased prompts,

top-5 is the best. Incorporating more prompts does

not always improve accuracy, a finding consistent

with the rapidly decreasing weights learned by

the optimization-based method. The gap between

Oracle and Opti. indicates that there is still space

for improvement using better ensemble methods.

Mining vs. Paraphrasing For the rank-based

ensembles (Top1, 3, 5), prompts generated

by paraphrasing usually perform better than

mined prompts, while for the optimization-based

ensemble (Opti.), mined prompts perform better.

We conjecture this is because mined prompts

exhibit more variation compared to paraphrases,

and proper weighting is of central importance.

This difference in the variation can be observed in

the average edit distance between the prompts

of each class, which is 3.27 and 2.73 for

mined and paraphrased prompts respectively.

However, the improvement led by ensembling

paraphrases is still significant over just using

one prompt (Top1 vs. Opti.), raising micro-

averaged accuracy from 32.7% to 36.2% on

BERT-base, and from 37.8% to 40.1% on BERT-

large. This indicates that even small modifications

to prompts can result in relatively large changes in

predictions. Table 6 demonstrates cases where

modification of one word (either function or

content word) leads to significant accuracy

Figure 2: Performance for different top-K ensembles.

ID Modifications Acc. Gain

P413 x plays in→at y position +23.2

P495 x was created→made in y +10.8

P495 x was→is created in y +10.0

P361 x is a part of y +2.7

P413 x plays in y position +2.2

Table 6: Small modifications (update, insert,

and delete) in paraphrase lead to large accuracy

gain (%).

improvements, indicating that large-scale LMs

are still brittle to small changes in the ways they

are queried.

Middle-word vs. Dependency-based We com-

pare the performance of only using middle-

word prompts and concatenating them with

dependency-based prompts in Table 7. The

429

Prompts Top1 Top3 Top5 Opti. Oracle

Mid 30.7 32.7 31.2 36.9 45.1

Mid+Dep 31.4 34.2 34.7 38.9 50.7

Table 7: Ablation study of middle-word and

dependency-based prompts on BERT-base.

Model Man Mine
Mine Mine Man

+Man +Para +Para

BERT 31.1 38.9 39.6 36.2 37.3

ERNIE 32.1 42.3 43.8 40.1 41.1

KnowBert 26.2 34.1 34.6 31.9 32.1

Table 8: Micro-averaged accuracy (%) of various

LMs

improvements confirm our intuition that words

belonging to the dependency path but not in the

middle of the subject and object are also indicative

of the relation.

Micro vs. Macro Comparing Tables 2 and

3, we can see that macro-averaged accuracy is

much lower than micro-averaged accuracy,

indicating that macro-averaged accuracy is a

more challenging metric that evaluates how many

unique objects LMs know. Our optimization-

based method improves macro-averaged accuracy

from 22.8% to 25.7% on BERT-base, and

from 25.7% to 30.1% on BERT-base. This

again confirms the effectiveness of ensembling

multiple prompts, but the gains are somewhat

smaller. Notably, in our optimization-based

methods, the ensemble weights are optimized

on each example in the training set, which is

more conducive to optimizing micro-averaged

accuracy. Optimization to improve macro-

averaged accuracy is potentially an interesting

direction for future work that may result in

prompts more generally applicable to different

types of objects.

Performance of Different LMs In Table 8,

we compare BERT with ERNIE and KnowBert,

which are enhanced with external knowledge

by explicitly incorporating entity embeddings.

ERNIE outperforms BERT by 1 point even

with the manually defined prompts, but our

prompt generation methods further emphasize

the difference between the two methods, with

the highest accuracy numbers differing by 4.2

points using the Mine+Man method. This

Model Man Mine
Mine Mine Man

+Man +Para +Para

BERT-base 21.3 28.7 29.4 26.8 27.0

BERT-large 24.2 34.5 34.5 31.6 29.8

Table 9: Micro-averaged accuracy (%) on

LAMA-UHN.

Model Man Mine
Mine Mine Man

+Man +Para +Para

BERT-base 9.8 10.0 10.4 9.6 10.0

BERT-large 10.5 10.6 11.3 10.4 10.7

Table 10: Micro-averaged accuracy (%) on

Google-RE.

indicates that if LMs are queried effectively,

the differences between highly performant

models may become more clear. KnowBert

underperforms BERT on LAMA, which

is opposite to the observation made in Peters et al.

(2019). This is probably because that multi token

subjects/objects are used to evaluate KnowBert in

Peters et al. (2019), while LAMA contains only

single-token objects.

LAMA-UHN Evaluation The performances

on LAMA-UHN benchmark are reported in

Table 9. Although the overall performances drop

dramatically compared to the performances on the

original LAMA benchmark (Table 2), optimized

ensembles can still outperform manual prompts

by a large margin, indicating that our methods are

effective in retrieving knowledge that cannot be

inferred based on surface forms.

5.3 Analysis

Next, we perform further analysis to better

understand what type of prompts proved most

suitable for facilitating retrieval of knowledge

from LMs.

Prediction Consistency by Prompt We first
analyze the conditions under which prompts
will yield different predictions. We define the
divergence between predictions of two prompts

tr,i and tr,j using the following equation:

Div(tr,i, tr,j) =

∑
〈x,y〉∈R δ(C(x, y, tr,i) 6= C(x, y, tr,j))

|R|
,

where C(x, y, tr,i) = 1 if prompt tr,i can

successfully predict y and 0 otherwise, and δ(·) is

430

Figure 3: Correlation of edit distance between prompts

and their prediction divergence.

x/y V y/x | x/y V P y/x | x/y V W* P y/x

V = verb particle? adv?

W = (noun | adj | adv | pron | det)

P = (prep | particle | inf. marker)

Table 11: Three part-of-speech-based regular

expressions used in ReVerb to identify relational

phrases.

Kronecker’s delta. For each relation, we normalize

the edit distance of two prompts into [0, 1] and

bucket the normalized distance into five bins

with intervals of 0.2. We plot a box chart for

each bin to visualize the distribution of prediction

divergence in Figure 3, with the green triangles

representing mean values and the green bars in

the box representing median values. As the edit

distance becomes larger, the divergence increases,

which confirms our intuition that very different

prompts tend to cause different prediction results.

The Pearson correlation coefficient is 0.25, which

shows that there is a weak correlation between

these two quantities.

Performance on Google-RE We also report

the performance of optimized ensemble on the

Google-RE subset in Table 10. Again, ensembling

diverse prompts improves accuracies for both the

BERT-base and BERT-large models. The gains

are somewhat smaller than those on the T-REx

subset, which might be caused by the fact that there

are only three relations and one of them (predicting

the birth date of a person) is particularly hard

to the extent that only one prompt yields non-zero

accuracy.

Figure 4: Ranking position distribution of prompts with

different patterns. Lower is better.

POS-based Analysis Next, we try to examine

which types of prompts tend to be effective

in the abstract by examining the part-of-speech

(POS) patterns of prompts that successfully

extract knowledge from LMs. In open information

extraction systems (Banko et al., 2007), manually

defined patterns are often leveraged to filter out

noisy relational phrases. For example, ReVerb

(Fader et al., 2011) incorporates three syntactic

constraints listed in Table 11 to improve the

coherence and informativeness of the mined

relational phrases. To test whether these patterns

are also indicative of the ability of a prompt

to retrieve knowledge from LMs, we use these

three patterns to group prompts generated by our

methods into four clusters, where the ‘‘other’’

cluster contains prompts that do not match any

pattern. We then calculate the rank of each

prompt within the extracted prompts, and plot the

distribution of rank using box plots in Figure 4.8

We can see that the average rank of prompts

matching these patterns is better than those in

the ‘‘other’’ group, confirming our intuitions

that good prompts should conform with those

patterns. Some of the best performing prompts’

POS signatures are ‘‘x VBD VBN IN y’’ (e.g.,

‘‘x was born in y’’) and ‘‘x VBZ DT NN IN y’’

(e.g., ‘‘x is the capital of y’’).

Cross-model Consistency Finally, it is of

interest to know whether the prompts that

we are extracting are highly tailored to a

8We use the ranking position of a prompt to represent its

quality instead of its accuracy because accuracy distributions

of different relations might span different ranges, making

accuracy not directly comparable across relations.

431

Test BERT-base BERT-large

Train base large large base

Mine 38.9 38.7 43.7 42.2

Mine+Man 39.6 40.1 43.9 42.2

Mine+Para 36.2 35.6 40.1 39.0

Man+Para 37.3 35.6 38.8 37.5

Table 12: Cross-model micro-averaged

accuracy (%). The first row is the model

to test, and the second row is the model

on which prompt weights are learned.

specific model, or whether they can generalize

across models. To do so, we use two settings:

One compares BERT-base and BERT-large, the

same model architecture with different sizes;

the other compares BERT-base and ERNIE,

different model architectures with a comparable

size. In each setting, we compare when the

optimization-based ensembles are trained on the

same model, or when they are trained on one

model and tested on the other. As shown in

Tables 12 and 13, we found that in general

there is usually some drop in performance

in the cross-model scenario (third and fifth

columns), but the losses tend to be small, and

the highest performance when querying BERT-

base is actually achieved by the weights optimized

on BERT-large. Notably, the best accuracies of

40.1% and 42.2% (Table 12) and 39.5% and

40.5% (Table 13) with the weights optimized on

the other model are still much higher than those

obtained by the manual prompts, indicating that

optimized prompts still afford large gains across

models. Another interesting observation is that the

drop in performance on ERNIE (last two columns

in Table 13) is larger than that on BERT-large

(last two columns in Table 12) using weights

optimized on BERT-base, indicating that models

sharing the same architecture benefit more from

the same prompts.

Linear vs. Log-linear Combination As men-

tioned in § 4.2, we use log-linear combination of

probabilities in our main experiments. However, it

is also possible to calculate probabilities through

regular linear interpolation:

P (y|x, r) =

K∑

i=1

1

K
PLM(y|x, tr,i) (4)

Test BERT ERNIE

Train BERT ERNIE ERNIE BERT

Mine 38.9 38.0 42.3 38.7

Mine+Man 39.6 39.5 43.8 40.5

Mine+Para 36.2 34.2 40.1 39.0

Man+Para 37.3 35.2 41.1 40.3

Table 13: Cross-model micro-averaged accuracy

(%). The first row is the model to test, and the

second row is the model on which prompt weights

are learned.

Figure 5: Performance of two interpolation methods.

We compare these two ways to combine pre-

dictions from multiple mined prompts in Figure 5

(§ 4.2). We assume that log-linear combination

outperforms linear combination because log prob-

abilities make it possible to penalize objects that

are very unlikely given any certain prompt.

6 Omitted Design Elements

Finally, in addition to the elements of our main

proposed methodology in § 3 and § 4, we

experimented with a few additional methods that

did not prove highly effective, and thus were

omitted from our final design. We briefly describe

these below, along with cursory experimental

results.

6.1 LM-aware Prompt Generation

We examined methods to generate prompts by

solving an optimization problem that maximizes

the probability of producing the ground-truth

objects with respect to the prompts:

t∗r = argmax
tr

PLM(y|x, tr),

where PLM(y|x, tr) is parameterized with a pre-

trained LM. In other words, this method directly

searches for a prompt that causes the LM to assign

ground-truth objects the highest probability.

432

Prompts Top1 Top3 Top5 Opti. Oracle

before 31.9 34.5 33.8 38.1 47.9

after 30.2 32.5 34.7 37.5 50.8

Table 14: Micro-averaged accuracy (%) before

and after LM-aware prompt fine-tuning.

Solving this problem of finding text sequences

that optimize some continuous objective has been

studied both in the context of end-to-end sequence

generation (Hoang et al., 2017), and in the context

of making small changes to an existing input for

adversarial attacks (Ebrahimi et al., 2018; Wallace

et al., 2019). However, we found that directly

optimizing prompts guided by gradients was

unstable and often yielded prompts in unnatural

English in our preliminary experiments. Thus, we

instead resorted to a more straightforward hill-

climbing method that starts with an initial prompt,

then masks out one token at a time and replaces

it with the most probable token conditioned on

the other tokens, inspired by the mask-predict

decoding algorithm used in non-autoregressive

machine translation (Ghazvininejad et al., 2019):9

PLM(wi|tr \ i) =

∑
〈x,y〉∈R PLM(wi|x, tr \ i, y)

|R|
,

where wi is the i-th token in the prompt and tr \ i
is the prompt with the i-th token masked out. We

followed a simple rule that modifies a prompt from

left to right, and this is repeated until convergence.

We used this method to refine all the mined

and manual prompts on the T-REx-train dataset,

and display theirperformance on the T-REx dataset

in Table 14. After fine-tuning, the oracle perfor-

mance increased significantly, while the ensemble

performances (both rank-based and optimization-

based) dropped slightly. This indicates that

LM-aware fine-tuning has the potential to discover

better prompts, but some portion of the refined

prompts may have over-fit to the training set upon

which they were optimized.

9In theory, this algorithm can be applied to both masked

LMs like BERT and traditional left-to-right LMs, since the

masked probability can be computed using Bayes’ theorem

for traditional LMs. However, in practice, due to the large size

of vocabulary, it can only be approximated with beam search,

or computed with more complicated continuous optimization

algorithms (Hoang et al., 2017).

Features Mine Paraphrase

macro micro macro micro

forward 38.1 25.2 37.3 25.0

+backward 38.2 25.5 37.4 25.2

Table 15: Performance (%) of using forward

and backward features with BERT-base.

6.2 Forward and Backward Probabilities

Finally, given class imbalance and the propensity

of the model to over-predict the majority

object, we examine a method to encourage

the model to predict subject-object pairs that

are more strongly aligned. Inspired by the

maximum mutual information objective used in

Li et al. (2016a), we add the backward log

probability logPLM(x|y, tr,i) of each prompt

to our optimization-based scoring function in

Equation 3. Due to the large search space for

objects, we turn to an approximation approach

that only computes backward probability for the

most probable B objects given by the forward

probability at both training and test time. As

shown in Table 15, the improvement resulting

from backward probability is small, indicating

that a diversity-promoting scoring function might

not be necessary for knowledge retrieval from

LMs.

7 Related Work

Much work has focused on understanding the

internal representations in neural NLP models

(Belinkov and Glass, 2019), either by using

extrinsic probing tasks to examine whether

certain linguistic properties can be predicted

from those representations (Shi et al., 2016;

Linzen et al., 2016; Belinkov et al., 2017),

or by ablations to the models to investigate

how behavior varies (Li et al., 2016b; Smith

et al., 2017). For contextualized representations

in particular, a broad suite of NLP tasks are

used to analyze both syntactic and semantic

properties, providing evidence that contextualized

representations encode linguistic knowledge in

different layers (Hewitt and Manning, 2019;

Tenney et al., 2019a; Tenney et al., 2019b;

Jawahar et al., 2019; Goldberg, 2019).

Different from analyses probing the representa-

tions themselves, our work follows Petroni et al.

(2019); Pörner et al. (2019) in probing for factual

433

knowledge. They use manually defined prompts,

which may be under-estimating the true perfor-

mance obtainable by LMs. Concurrently to this

work, Bouraoui et al. (2020) made a similar obser-

vation that using different prompts can help better

extract relational knowledge from LMs, but they

use models explicitly trained for relation extrac-

tion whereas our methods examine the knowledge

included in LMs without any additional training.

Orthogonally, some previous works integrate

external knowledge bases so that the language

generation process is explicitly conditioned on

symbolic knowledge (Ahn et al., 2016; Yang et al.,

2017; Logan et al., 2019; Hayashi et al., 2020).

Similar extensions have been applied to pre-trained

LMs like BERT, where contextualized representa-

tions are enhanced with entity embeddings (Zhang

et al., 2019; Peters et al., 2019; Pörner et al., 2019).

In contrast, we focus on better knowledge re-

trieval through prompts from LMs as-is, without

modifying them.

8 Conclusion

In this paper, we examined the importance of

the prompts used in retrieving factual knowledge

from language models. We propose mining-based

and paraphrasing-based methods to systematically

generate diverse prompts to query specific pieces

of relational knowledge. Those prompts, when

combined together, improve factual knowledge

retrieval accuracy by 8%, outperforming manually

designed prompts by a large margin. Our analysis

indicates that LMs are indeed more knowledgeable

than initially indicated by previous results, but

they are also quite sensitive to how we query

them. This indicates potential future directions

such as (1) more robust LMs that can be queried

in different ways but still return similar results,

(2) methods to incorporate factual knowledge

in LMs, and (3) further improvements in

optimizing methods to query LMs for knowledge.

Finally, we have released all our learned

prompts to the community as the LM Prompt

and Query Archive (LPAQA), available at:

https://github.com/jzbjyb/LPAQA.

Acknowledgments

This work was supported by a gift from Bosch

Research and NSF award no. 1815287. We would

like to thank Paul Michel, Hiroaki Hayashi,

Pengcheng Yin, and Shuyan Zhou for their

insightful comments and suggestions.

References

Eugene Agichtein and Luis Gravano. 2000.

Snowball: Extracting relations from large plain-

text collections. In Proceedings of the Fifth

ACM Conference on Digital Libraries, June

2-7, 2000, San Antonio, TX, USA, pages 85–94.

ACM.

Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa,

and Yoshua Bengio. 2016. A neural knowledge

language model. CoRR, abs/1608.00318v2.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey

Ling, and Tom Kwiatkowski. 2019. Matching

the blanks: Distributional similarity for relation

learning. In Proceedings of the 57th Annual

Meeting of the Association for Computational

Linguistics, pages 2895–2905, Florence, Italy.

Association for Computational Linguistics.

Michele Banko, Michael J. Cafarella, Stephen

Soderland, Matthew Broadhead, and Oren

Etzioni. 2007. Open information extraction

from the web. In IJCAI 2007, Proceedings

of the 20th International Joint Conference

on Artificial Intelligence, Hyderabad, India,

January 6-12, 2007, pages 2670–2676.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi,

Hassan Sajjad, and James Glass. 2017. What

do neural machine translation models learn

about morphology? In Proceedings of the

55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), pages 861–872, Vancouver, Canada.

Association for Computational Linguistics.

Yonatan Belinkov and James R. Glass. 2019.

Analysis methods in neural language process-

ing: A survey. Transactions of the Association

for Computational Linguistics, 7:49–72.

Rahul Bhagat and Deepak Ravichandran. 2008.

Large scale acquisition of paraphrases for

learning surface patterns. In Proceedings

434

https://github.com/jzbjyb/LPAQA

of ACL-08: HLT , pages 674–682,

Columbus, Ohio. Association for Com-

putational Linguistics.

Zied Bouraoui, Jose Camacho-Collados, and

Steven Schockaert. 2020. Inducing relational

knowledge from BERT. In Thirty-Fourth AAAI

Conference on Artificial Intelligence (AAAI),

New York, USA.

Claudio Carpineto and Giovanni Romano. 2012.

A survey of automatic query expansion

in information retrieval. ACM, Computing

Surveys, 44(1):1:1–1:50.

Andrew M. Dai and Quoc V. Le. 2015.

Semi-supervised sequence learning. In Ad-

vances in Neural Information Processing

Systems 28: Annual Conference on Neural

Information Processing Systems 2015, Decem-

ber 7-12, 2015, Montreal, Quebec, Canada,

pages 3079–3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,

and Kristina Toutanova. 2019. BERT: Pre-

training of deep bidirectional transformers for

language understanding. In Proceedings of

the 2019 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA,

June 2-7, 2019, Volume 1 (Long and Short

Papers), pages 4171–4186.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and

Dejing Dou. 2018. HotFlip: White-box adver-

sarial examples for text classification. In

Proceedings of the 56th Annual Meeting of

the Association for Computational Linguis-

tics (Volume 2: Short Papers), pages 31–36,

Melbourne, Australia, Association for Compu-

tational Linguistics.

Hady ElSahar, Pavlos Vougiouklis, Arslen

Remaci, Christophe Gravier, Jonathon S. Hare,

Frédérique Laforest, and Elena Simperl. 2018.

T-REx: A large scale alignment of natural

language with knowledge base triples. In

Proceedings of the Eleventh International

Conference on Language Resources and

Evaluation, LREC 2018, Miyazaki, Japan, May

7-12, 2018.

Anthony Fader, Stephen Soderland, and Oren

Etzioni. 2011. Identifying relations for open

information extraction. In Proceedings of the

2011 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2011,

27-31 July 2011, John McIntyre Conference

Centre, Edinburgh, UK, A meeting of SIGDAT,

a Special Interest Group of the ACL,

pages 1535–1545.

Michael Gamon, Anthony Aue, and Martine

Smets. 2005. Sentence-level MT evaluation

without reference translations: Beyond lan-

guage modeling. In Proceedings of EAMT ,

pages 103–111.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu,

and Luke Zettlemoyer. 2019. Mask-predict:

Parallel decoding of conditional masked

language models. In Proceedings of the

2019 Conference on Empirical Methods in

Natural Language Processing and the 9th

International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP),

pages 6114–6123, Hong Kong, China.

Association for Computational Linguistics.

Yoav Goldberg. 2019. Assessing BERT’s

syntactic abilities. CoRR, abs/1901.05287v1.

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, and

Graham Neubig. 2020. Latent relation language

models. In Thirty-Fourth AAAI Conference on

Artificial Intelligence (AAAI), New York, USA.

John Hewitt and Christopher D. Manning. 2019.

A structural probe for finding syntax in word

representations. In Proceedings of the 2019

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, NAACL-HLT

2019, Minneapolis, MN, USA, June 2-7,

2019, Volume 1 (Long and Short Papers),

pages 4129–4138.

Cong Duy Vu Hoang, Gholamreza Haffari, and

Trevor Cohn. 2017. Towards decoding as

continuous optimisation in neural machine

translation. In Proceedings of the 2017 Con-

ference on Empirical Methods in Natu-

ral Language Processing, pages 146–156,

Copenhagen, Denmark. Association for Com-

putational Linguistics.

Robert L. Logan IV, Nelson F. Liu, Matthew E.

Peters, Matt Gardner, and Sameer Singh.

435

2019. Barack’s wife Hillary: Using knowledge

graphs for fact-aware language modeling. In

Proceedings of the 57th Conference of the

Association for Computational Linguistics,

ACL 2019, Florence, Italy, July 28-

August 2, 2019, Volume 1: Long Papers,

pages 5962–5971.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé

Seddah. 2019. What does BERT learn about

the structure of language? In Proceedings

of the 57th Conference of the Association

for Computational Linguistics, ACL 2019,

Florence, Italy, July 28- August 2, 2019, Volume

1: Long Papers, pages 3651–3657.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:

A method for stochastic optimization. In 3rd

International Conference on Learning Repre-

sentations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng

Gao, and Bill Dolan. 2016a. A diversity-

promoting objective function for neural

conversation models. In NAACL HLT 2016,

The 2016 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

San Diego California, USA, June 12-17, 2016,

pages 110–119.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b.

Understanding neural networks through repre-

sentation erasure. CoRR, abs/1612.08220v3.

Tal Linzen, Emmanuel Dupoux, and Yoav

Goldberg. 2016. Assessing the ability of LSTMs

to learn syntax-sensitive dependencies. Trans-

actions of the Association for Computational

Linguistics, 4:521–535.

Jonathan Mallinson, Rico Sennrich, and Mirella

Lapata. 2017. Paraphrasing revisited with

neural machine translation. In Proceedings of

the 15th Conference of the European Chapter of

the Association for Computational Linguistics:

Volume 1, Long Papers, pages 881–893,

Valencia, Spain. Association for Computational

Linguistics.

Bryan McCann, Nitish Shirish Keskar, Caiming

Xiong, and Richard Socher. 2018. The natural

language decathlon: Multitask learning as

question answering. CoRR, abs/1806.08730v1.

Oren Melamud, Jacob Goldberger, and Ido Dagan.

2016. context2vec: Learning generic context

embedding with bidirectional LSTM. In

Proceedings of the 20th SIGNLL Conference

on Computational Natural Language Learning,

CoNLL 2016, Berlin, Germany, August 11-12,

2016, pages 51–61.

Gábor Melis, Chris Dyer, and Phil Blunsom.

2018. On the state of the art of evaluation

in neural language models. In 6th International

Conference on Learning Representations, ICLR

2018, Vancouver, BC, Canada, April 30 - May

3, 2018, Conference Track Proceedings.

Stephen Merity, Nitish Shirish Keskar, and

Richard Socher. 2018. Regularizing and opti-

mizing LSTM language models. In 6th

International Conference on Learning Rep-

resentations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference

Track Proceedings.

Tomas Mikolov and Geoffrey Zweig. 2012.

Context dependent recurrent neural network

language model. In 2012 IEEE Spoken

Language Technology Workshop (SLT),

pages 234–239. IEEE.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle

Ott, Michael Auli, and Sergey Edunov. 2019.

Facebook FAIR’s WMT19 news translation

task submission. In Proceedings of the Fourth

Conference on Machine Translation, WMT

2019, Florence, Italy, August 1-2, 2019 -

Volume 2: Shared Task Papers, Day 1,

pages 314–319.

Matthew E. Peters, Mark Neumann, Mohit

Iyyer, Matt Gardner, Christopher Clark, Kenton

Lee, and Luke Zettlemoyer. 2018. Deep con-

textualized word representations. In Proceed-

ings of the 2018 Conference of the North

American Chapter of the Association for Com-

putational Linguistics: Human Language Tech-

nologies, NAACL-HLT 2018, New Orleans,

Louisiana, USA, June 1-6, 2018, Volume 1

(Long Papers), pages 2227–2237.

Matthew E. Peters, Mark Neumann, Robert

Logan, Roy Schwartz, Vidur Joshi, Sameer

Singh, and Noah A. Smith. 2019. Knowl-

edge enhanced contextual word representations.

In Proceedings of the 2019 Conference

436

on Empirical Methods in Natural Lan-

guage Processing and the 9th International

Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 43–54, Hong

Kong, China. Association for Computational

Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,

Patrick Lewis, Anton Bakhtin, Yuxiang Wu,

and Alexander Miller. 2019. Language models

as knowledge bases? In Proceedings of the

2019 Conference on Empirical Methods in

Natural Language Processing and the 9th

International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP),

pages 2463–2473, Hong Kong, China.

Association for Computational Linguistics.

Nina Pörner, Ulli Waltinger, and Hinrich

Schütze. 2019. BERT is not a knowledge

base (yet): Factual knowledge vs. Name-

based reasoning in unsupervised QA. CoRR,

abs/1911.03681v1.

Alec Radford, Jeffrey Wu, Rewon Child, David

Luan, Dario Amodei, and Ilya Sutskever. 2019.

Language models are unsupervised multitask

learners. OpenAI Blog, 1(8).

Nazneen Fatema Rajani, Bryan McCann,

Caiming Xiong, and Richard Socher. 2019.

Explain yourself! Leveraging language models

for commonsense reasoning. In Proceedings of

the 57th Annual Meeting of the Association for

Computational Linguistics, pages 4932–4942,

Florence, Italy. Association for Computational

Linguistics.

Deepak Ravichandran and Eduard Hovy. 2002.

Learning surface text patterns for a ques-

tion answering system. In Proceedings of

the 40th annual meeting on association for

computational linguistics, pages 41–47.

Association for Computational Linguistics.

Lorenza Romano, Milen Kouylekov, Idan

Szpektor, Ido Dagan, and Alberto Lavelli.

2006. Investigating a generic paraphrase-

based approach for relation extraction. In

11th Conference of the European Chapter of

the Association for Computational Linguistics,

Trento, Italy. Association for Computational

Linguistics.

Maarten Sap, Ronan Le Bras, Emily Allaway,

Chandra Bhagavatula, Nicholas Lourie, Hannah

Rashkin, Brendan Roof, Noah A. Smith,

and Yejin Choi. 2019. Atomic: An atlas of

machine commonsense for if-then reasoning.

In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33,

pages 3027–3035.

Rico Sennrich, Barry Haddow, and Alexandra

Birch. 2016. Improving neural machine

translation models with monolingual data. In

Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics,

ACL 2016, August 7-12, 2016, Berlin, Germany,

Volume 1: Long Papers.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016.

Does string-based neural MT learn source

syntax? In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language

Processing, pages 1526–1534, Austin, Texas.

Association for Computational Linguistics.

Noah A. Smith, Chris Dyer, Miguel Ballesteros,

Graham Neubig, Lingpeng Kong, and

Adhiguna Kuncoro. 2017. What do recurrent

neural network grammars learn about syntax?

In Proceedings of the 15th Conference of

the European Chapter of the Association

for Computational Linguistics, EACL 2017,

Valencia, Spain, April 3-7, 2017, Volume 1:

Long Papers, pages 1249–1258.

Ian Tenney, Dipanjan Das, and Ellie Pavlick.

2019a. BERT rediscovers the classical NLP

pipeline. In Proceedings of the 57th Conference

of the Association for Computational

Linguistics, ACL 2019, Florence, Italy, July

28- August 2, 2019, Volume 1: Long Papers,

pages 4593–4601.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,

Adam Poliak, R. Thomas McCoy, Najoung

Kim, Benjamin Van Durme, Samuel R.

Bowman, Dipanjan Das, and Ellie Pavlick.

2019b. What do you learn from context?

Probing for sentence structure in contextualized

word representations. In 7th International

Conference on Learning Representations, ICLR

2019, New Orleans, LA, USA, May 6-9, 2019.

Kristina Toutanova, Danqi Chen, Patrick Pantel,

Hoifung Poon, Pallavi Choudhury, and Michael

437

Gamon. 2015. Representing text for joint

embedding of text and knowledge bases.

In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language

Processing, EMNLP 2015, Lisbon, Portugal,

September 17-21, 2015, pages 1499–1509.

Trieu H. Trinh and Quoc V. Le. 2018. A simple

method for commonsense reasoning. CoRR,

abs/1806.02847v2.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt

Gardner, and Sameer Singh. 2019. Universal

adversarial triggers for attacking and analyzing

NLP. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 2153–2162, Hong

Kong, China. Association for Computational

Linguistics.

Zichao Yang, Phil Blunsom, Chris Dyer, and

Wang Ling. 2017. Reference-aware language

models. In Proceedings of the 2017 Con-

ference on Empirical Methods in Natural

Language Processing, EMNLP 2017, Copen-

hagen, Denmark, September 9-11, 2017,

pages 1850–1859.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin

Jiang, Maosong Sun, and Qun Liu. 2019.

ERNIE: Enhanced language representation

with informative entities. In Proceedings

of the 57th Conference of the Association

for Computational Linguistics, ACL 2019,

Florence, Italy, July 28- August 2, 2019, Volume

1: Long Papers, pages 1441–1451.

Geoffrey Zweig and Christopher J. C. Burges.

2011. The Microsoft Research sentence

completion challenge. Microsoft Research,

Redmond, WA, USA, Technical Report MSR-

TR-2011-129.

438

	Introduction
	Knowledge Retrieval from LMs
	Prompt Generation
	Mining-based Generation
	Paraphrasing-based Generation

	Prompt Selection and Ensembling
	Top-1 Prompt Selection
	Rank-based Ensemble
	Optimized Ensemble

	Main Experiments
	Experimental Settings
	Evaluation Results
	Analysis

	Omitted Design Elements
	LM-aware Prompt Generation
	Forward and Backward Probabilities

	Related Work
	Conclusion

