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Abstract

In this paper, we introduce an unsupervised

discourse constituency parsing algorithm. We

use Viterbi EM with a margin-based crite-

rion to train a span-based discourse parser in

an unsupervised manner. We also propose

initialization methods for Viterbi training of

discourse constituents based on our prior

knowledge of text structures. Experimental re-

sults demonstrate that our unsupervised parser

achieves comparable or even superior perfor-

mance to fully supervised parsers. We also

investigate discourse constituents that are

learned by our method.

1 Introduction

Natural language text is generally coherent (Halliday

and Hasan, 1976) and can be analyzed as discourse

structures, which formally describe how text is

coherently organized. In discourse structure, lin-

guistic units (e.g., clauses, sentences, or larger

textual spans) are connected together semantically

and pragmatically, and no unit is independent nor

isolated. Discourse parsing aims to uncover dis-

course structures automatically for given text and

has been proven to be useful in various NLP

applications, such as document summarization

(Marcu, 2000; Louis et al., 2010; Yoshida et al.,

2014), sentiment analysis (Polanyi and Van den

Berg, 2011; Bhatia et al., 2015), and automated

essay scoring (Miltsakaki and Kukich, 2004).

Despite the promising progress achieved in re-

cent decades (Carlson et al., 2001; Hernault et al.,

2010; Ji and Eisenstein, 2014; Feng and Hirst,

2014; Li et al., 2014; Joty et al., 2015; Morey et al.,

2017), discourse parsing still remains a significant

challenge. The difficulty is due in part to shortage

and low reliability of hand-annotated discourse

structures. To develop a better-generalized parser,

existing algorithms require a larger amounts of

training data. However, manually annotating dis-

course structures is expensive, time-consuming,

and sometimes highly ambiguous (Marcu et al.,

1999).

One possible solution to these problems is gram-

mar induction (or unsupervised syntactic parsing)

algorithms for discourse parsing. However, exist-

ing studies on unsupervised parsing mainly focus

on sentence structures, such as phrase structures

(Lari and Young, 1990; Klein and Manning,

2002; Golland et al., 2012; Jin et al., 2018) or

dependency structures (Klein and Manning, 2004;

Berg-Kirkpatrick et al., 2010; Naseem et al., 2010;

Jiang et al., 2016), though text-level structural reg-

ularities can also exist beyond the scope of a single

sentence. For instance, in order to convey infor-

mation to readers as intended, a writer should ar-

range utterances in a coherent order.

We tackle these problems by introducing unsu-

pervised discourse parsing, which induces dis-

course structures for given text without relying on

human-annotated discourse structures. Based on

Rhetorical Structure Theory (RST) (Mann and

Thompson, 1988), which is one of the most

widely accepted theories of discourse structure,

we assume that coherent text can be represented

as tree structures, such as the one in Figure 1. The

leaf nodes correspond to non-overlapping clause-

level text spans called elementary discourse units

(EDUs). Consecutive text spans are combined to

each other recursively in a bottom–up manner

to form larger text spans (represented by inter-

nal nodes) up to a global document span. These

text spans are called discourse constituents. The

internal nodes are labeled with both nuclearity sta-

tuses (e.g., Nucleus-Satellite or NS) and rhetorical
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Figure 1: An example of RST-based discourse constituent structure we assume in this paper. Leaf nodes

xi correspond to non-overlapping clause-level text segments, and internal nodes consists of three comple-

mentary elements: discourse constituents xi:j , discourse nuclearities (e.g., NS), and discourse relations (e.g.,

ELABORATION).

relations (e.g., ELABORATION, CONTRAST) that

hold between connected text spans.

In this paper, we especially focus on unsuper-

vised induction of an unlabeled discourse con-

stituent structure (i.e., a set of unlabeled discourse

constituent spans) given a sequence of EDUs,

which corresponds to the first tree-building step in

conventional RST parsing. Such constituent struc-

tures provide hierarchical information of input

text, which is useful in downstream tasks (Louis

et al., 2010). For instance, a constituent structure

[X [Y Z]] indicates that text span Y is preferen-

tially combined with Z (rather than X) to form a

constituent span, and then the text span [Y Z] is

connected with X. In other words, this structure

implies that [X Y] is a distituent span and requires

Z to become a constituent span. Our challenge is

to find such discourse-level constituentness from

EDU sequences.

The core hypothesis of this paper is that dis-

course tree structures and syntactic tree structures

share the same (or similar) constituent proper-

ties at a metalevel, and thus, learning algorithms

developed for grammar inductions are transferable

to unsupervised discourse constituency parsing by

proper modifications. Actually, RST structures

can be formulated in a similar way as phrase

structures in the Penn Treebank, though there are

a few differences: The leaf nodes are not words

but EDUs (e.g., clauses), and the internal nodes

do not contain phrase labels but hold nuclearity

statuses and rhetorical relations.

The expectation-maximization (EM) algorithm

(Klein and Manning, 2004) has been the dominat-

ing unsupervised learning algorithm for grammar

induction. Based on our hypothesis and this fact,

we develop a span-based discourse parser (in an

unsupervised manner) by using Viterbi EM (or

‘‘hard’’ EM) (Neal and Hinton, 1998; Spitkovsky

et al., 2010; DeNero and Klein, 2008; Choi and

Cardie, 2007; Goldwater and Johnson, 2005) with

a margin-based criterion (Stern et al., 2017; Gaddy

et al., 2018).1 Unlike the classic EM algorithm

using inside-outside re-estimation (Baker, 1979),

Viterbi EM allows us to avoid explicitly counting

discourse constituent patterns, which are generally

too sparse to estimate reliable scores of text spans.

The other technical contribution is to present

effective initialization methods for Viterbi training

of discourse constituents. We introduce initial-tree

sampling methods based on our prior knowledge

of document structures. We show that proper

initialization is crucial in this task, as observed

in grammar induction (Klein and Manning, 2004;

Gimpel and Smith, 2012).

On the RST Discourse Treebank (RST-DT)

(Carlson et al., 2001), we compared our parse trees

with manually annotated ones. We observed that

our method achieves a Micro F1 score of 68.6%

(84.6%) in the (corrected) RST-PARSEVAL

1Our code can be found at https://github.com/

norikinishida/DiscourseConstituencyInduction-

ViterbiEM.
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(Marcu, 2000; Morey et al., 2018), which is com-

parable with or even superior to fully super-

vised parsers. We also investigated the discourse

constituents that can or cannot be learned well by

our method.

The rest of this paper is organized as follows:

Section 2 introduces the related work. Section 3

gives the details of our parsing model and training

algorithm. Section 4 describes the experimental

setting and Section 5 discusses the experimental

results. Conclusions are given in Section 6.

2 Related Work

The earliest studies that use EM in unsupervised

parsing are Lari and Young (1990) and Carroll

and Charniak (1992), which attempted to induce

probabilistic context-free grammars (PCFG) and

probabilistic dependency grammars using the clas-

sic inside–outside algorithm (Baker, 1979). Klein

and Manning (2001b, 2002) perform a weakened

version of constituent tests (Radford, 1988) by the

Constituent-Context Model (CCM), which, unlike

a PCFG, describes whether a contiguous text span

(such as DT JJ NN) is a constituent or a distituent.

The CCM uses EM to learn constituenthood over

part-of-speech (POS) tags and for the first time

outperformed the strong right-branching baseline

in unsupervised constituency parsing. Klein and

Manning (2004) proposed the Dependency Model

with Valence (DMV), which is a head automata

model (Alshawi, 1996) for unsupervised depen-

dency parsing over POS tags and also relies on

EM. These two models have been extended in

various works for further improvements (Berg-

Kirkpatrick et al., 2010; Naseem et al., 2010;

Golland et al., 2012; Jiang et al., 2016).

In general, these methods use the inside–outside

(dynamicprogramming) re-estimation(Baker, 1979)

in the E step. However, Spitkovsky et al. (2010)

showed that Viterbi training (Brown et al., 1993),

which uses only the best-scoring tree to count the

grammatical patterns, is not only computationally

more efficient but also empirically more accurate

in longer sentences. These properties are, thus,

suitable for ‘‘document-level’’ grammar induc-

tion, where the document length (i.e., the number

of EDUs) tends to be long.2 In addition, as ex-

2Prior studies on grammar induction generally use sen-

tences up to length 10, 15, or 40. On the other hand, about

half the documents in the RST-DT corpus (Carlson et al.,

2001) are longer than 40.

plained later in Section 3, we incorporate Viterbi

EM with a margin-based criterion (Stern et al.,

2017; Gaddy et al., 2018); this allows us to avoid

explicitly counting each possible discourse con-

stituent pattern symbolically, which is generally

too sparse and appears only once.

Prior studies (Klein and Manning, 2004; Gimpel

and Smith, 2012; Naseem et al., 2010) have shown

that initialization or linguistic knowledge plays an

important role in EM-based grammar induction.

Gimpel and Smith (2012) demonstrated that

properly initialized DMV achieves improvements

in attachment accuracies by 20 ∼ 40 points (i.e.,

21.3% → 64.3%), compared with the uniform

initialization. Naseem et al. (2010) also found

that controlling the learning process with the

prior (universal) linguistic knowledge improves

the parsing performance of DMV. These studies

usually rely on insights on syntactic structures. In

this paper, we explore discourse-level prior knowl-

edge for effective initialization of the Viterbi train-

ing of discourse constituency parsers.

Our method also relies on recent work on

RST parsing. In particular, one of the initializa-

tion methods in our EM training (in Section 3.3

(i)) is inspired by the inter-sentential and multi-

sentential approach used in RST parsing (Feng

and Hirst, 2014; Joty et al., 2013, 2015). We also

follow prior studies (Sagae,2009; Ji and Eisenstein,

2014) and utilize syntactic information, i.e., de-

pendency heads, which contributes to further per-

formance gains in our method.

The most similar work to that presented here

is Kobayashi et al. (2019), who propose unsu-

pervised RST parsing algorithms in parallel with

our work. Their method builds an unlabeled dis-

course tree by using the CKY dynamic pro-

gramming algorithm. The tree-merging (splitting)

scores in CKY are defined as similarity (dissimi-

larity) between adjacent text spans. The similarity

scores are calculated based on distributed repre-

sentations using pre-trained embeddings. How-

ever, similarity between adjacent elements are not

always good indicators of constituentness. Con-

sider tag sequences ‘‘VBD IN’’ and ‘‘IN NN’’.

The former is an example of a distituent sequence,

whereas the latter is a constituent. ‘‘VBD’’, ‘‘IN’’,

and ‘‘NN’’ may have similar distributed represen-

tations because these tags cooccur frequently in

corpora. This implies that it is difficult to dis-

tinguish constituents and distituents if we use
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only similarity (dissimilarity) measures. In this

paper, we aim to mitigate this issue by intro-

ducing parameterized models to learn discourse

constituentness.

3 Methodology

In this section, we first describe the parsing model

we develop. Next, we explain how to train the

model in an unsupervised manner by using Viterbi

EM. Finally, we present the initialization methods

we use for further improvements.

3.1 Parsing Model

The parsing problem in this study is to find the

unlabeled constituent structure with the highest

score for an input text x, that is,

T̂ = argmax
T∈valid (x)

s(x, T ) (1)

where s(x, T ) ∈ R denotes a real-valued score of

a tree T , and valid (x) represents a set of all valid

trees for x. We assume that x has already been

manually segmented into a sequence of EDUs:

x = x0, . . . , xn−1.
Inspired by the success of recent span-based

constituency parsers (Stern et al., 2017; Gaddy

et al., 2018), we define the tree scores as the sum

of constituent scores over internal nodes, that is,

s(x, T ) =
∑

(i,j)∈T

s(i, j). (2)

Thus, our parsing model consists of a single

scoring function s(i, j) that computes a constituent

score of a contiguous text span xi:j = xi, . . . , xj ,
or simply (i, j). The higher the value of s(i, j),
the more likely that xi:j is a discourse constituent.

We show our parsing model in Figure 2. Our

implementation of s(i, j) can be decomposed into

three modules: EDU-level feature extraction,

span-level feature extraction, and span scoring.

We discuss each of these in turn. Later, we also

explain the decoding algorithm that we use to find

the globally best-scoring tree.

Feature Extraction and Scoring

Inspired by existing RST parsers (Ji and Eisenstein,

2014; Li et al., 2014; Joty et al., 2015), we first

encode the beginning and end words of an EDU:

v
bw
i = Embedw(bw), (3)

v
ew
i = Embedw(ew), (4)

where bw and ew denote the beginning and end

words of the i-th EDU, and Embed w is a function

that returns a parameterized embedding of the

input word.

We also encode the POS tags corresponding to

bw and ew as follows:

v
bp
i = Embed p(bp), (5)

v
ep
i = Embed p(ep), (6)

where Embed p is an embedding function for POS

tags.

Prior work (Sagae, 2009; Ji and Eisenstein,

2014) has shown that syntactic cues can accelerate

discourse parsing performance. We therefore ex-

tract syntactic features from each EDU. We apply

a (syntactic) dependency parser to each sentence

in the input text,3 and then choose a head word for

each EDU. A head word is a token whose parent

in the dependency graph is ROOT or is not within

the EDU.4 We also extract the POS tag and the

dependency label corresponding to the head word.

A dependency label is a relation between a head

word and its parent.

To sum up, we now have triplets of head infor-

mation, {(hw, hp, hr)i}
n−1
i=0 , each denoting the

head word, the head POS, and the head relation

of the i-th EDU, respectively. We embed these

symbols using look-up tables:

v
hw
i = Embedw(hw), (7)

v
hp
i = Embedp(hp), (8)

v
hr
i = Embedr(hr), (9)

where Embedr is an embedding function for de-

pendency relations.

Finally, we concatenate these embeddings:

v
′
i = [vbw

i ; vew
i ; vbp

i ; vep
i ; vhw

i ;vhp
i ; vhr

i ], (10)

and then transform it using a linear projection and

Rectified Linear Unit (ReLU) activation function:

vi = ReLU (Wv
′
i + b). (11)

In the following, we use {vi}
n−1
i=0 as the feature

vectors for the EDUs, {xi}
n−1
i=0 .

3We apply the Stanford CoreNLP parser (Manning

et al., 2014) to the concatenation of the EDUs; https://

stanfordnlp.github.io/CoreNLP/.
4If there are multiple head words in an EDU, we choose

the left most one.
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Figure 2: Our span-based discourse parsing model. We first encode each EDU based on the beginning and ending

words and POS tags using embeddings. We also embed head information of each EDU. We then run a bidirectional

LSTM and concatenate the span differences. The resulting vector is used to predict the constituent score of the

text span (i, j). This figure illustrates the process for the span (1, 2).

Following the span-based parsing models de-
veloped in the syntax domain (Stern et al., 2017;
Gaddy et al., 2018), we then run a bidirectional
Long Short-Term Memory (LSTM) over the se-
quence of EDU representations, {vi}

n−1
i=0 , result-

ing in forward and backward representations for
each step i (0 ≤ i ≤ n− 1):

−→
h 0, . . . ,

−→
h n−1 =

−−−−→
LSTM (v0, . . . ,vn−1), (12)

←−
h 0, . . . ,

←−
h n−1 =

←−−−−
LSTM (v0, . . . ,vn−1). (13)

We then compute a feature vector for a span

(i, j) by concatenating the forward and backward

span differences:

hi,j = [
−→
hj −

−→
h i−1;

←−
hi −

←−−
hj+1]. (14)

The feature vector, hi,j , is assumed to represent

the content of the contiguous text span xi:j along

with contextual information captured by the

LSTMs.5

We did not use any feature templates because

we found that they did not improve parsing per-

formance in our unsupervised setting, though we

observed that template features roughly follow-

ing Joty et al. (2015) improved performance in a

supervised setting.

Finally, given a span-level feature vector, hi,j ,

we use two-layer perceptrons with the ReLU

activation function:

s(i, j) = MLP (hi,j), (15)

which computes the constituent score of the

contiguous text span xi:j .

5A detailed investigation of the span-based parsing model

using LSTM can be found in Gaddy et al. (2018).

Decoding

We use a Cocke-Kasami-Younger (CKY)-style

dynamic programming algorithm to perform a

global search over the space of valid trees and

find the highest-scoring tree. For a document with

n EDUs, we use an n× n table C , the cell C[i, j]
of which stores the subtree score spanning from

i to j. For spans of length one (i.e., i = j), we

assign constant scalar values:

C[i, i] = 1. (16)

For general spans 0 ≤ i < j ≤ n − 1, we define

the following recursion:

C[i, j] = s(i, j) + max
i≤k<j

C[i, k]

+ C[k + 1, j], (17)

where s(i, j) denotes the constituent score com-

puted by our model.

To parse the full document, we first compute

C[0, n − 1] in a bottom–up manner and then

recursively trace the history of the selected split

positions, k, resulting in a binary tree spanning

the entire document.

3.2 Unsupervised Learning Using

Viterbi EM

In this paper, we use Viterbi EM (Brown

et al., 1993; Spitkovsky et al., 2010), a variant

of the EM algorithm and self-training (McClosky

et al., 2006a,b), to train the span-based discourse

constituency parser (Section 3.1) in an unsuper-

vised manner. Viterbi EM has suitable properties

for discourse processing, as described later in this

section.
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Overall Procedure

We first automatically sample initial trees based

on our prior knowledge of document structures

(described later in Section 3.3) and then perform

the M step on the sampled trees to initialize the

model parameters. After the initialization step,

we repeat the E step and the M step in turns.

To perform early stopping, we use a held-out

development set of 30 documents with annotated

trees T ∗dev, which are never used as the supervision

to estimate the parsing model.

E Step

In the E step of Viterbi EM, based on the current

model, we perform discourse constituency pars-

ing for whole training documents X , resulting

in a pseudo treebank with discourse constituent

structures, i.e.,

D = {(x, T̂ ) | x ∈ X , T̂ = argmax
T∈valid (x)

s(x, T )}

(18)

where valid (x) denotes a set of all valid trees for

x, s(x, T ) is defined in Equation (2), and T̂ is

the highest-scoring parse tree based on the current

model.

Klein and Manning (2001b) and Spitkovsky

et al. (2010) count grammatical patterns used to

derive syntactic trees in D, which are then nor-

malized and converted to probabilistic grammars

in the next M step.

In contrast, ‘‘discourse’’ constituents are signif-

icantly sparse and tend to appear only once, which

implies that it is almost meaningless to explicitly

count discourse constituent patterns symbolically.

We therefore attempt to directly use the trees in

D to update the model parameters in the next M

step.

M Step

In the M step, we re-estimate the next model as if

it is supervised by the best parse trees found in the

previous E step.

More precisely, we update the model parame-

ters so that the next model satisfies the follow-

ing constraints:

s(x, T̂ ) ≥ s(x, T ′) + ∆(T̂ , T ′), (19)

for each instance (x, T̂ ) ∈ D, where T ′ ranges

over all valid trees. ∆(T̂ , T ′) is a tree distance we

define as follows:

∆(T̂ , T ′) = |T̂ | − |T̂ ∩ T ′|, (20)

where |T | denotes the number of constituent spans

(or internal nodes) in T , and |T̂ ∩ T ′| represents

the number of spans shared between T̂ and T ′. In

other words, we hope that the score of the best

parse tree T̂ should be larger than that of the less-

probable tree T ′ by at least the margin ∆(T̂ , T ′).
Please note that |T̂ | = |T ′| always holds, because

the parse tree T̂ and the negative-sample tree T ′

are binary trees. ∆(T̂ , T ′) = 0 holds if, and only

if, T̂ = T ′.
These constraints can be rewritten by using the

margin-based criterion as follows:

max

(

0,max
T ′

[

s(x, T ′) + ∆(T̂ , T ′)
]

− s(x, T̂ )

)

.

We minimize this criterion by using the mini-

batch stochastic gradient descent and the back-

propagation algorithm.

The highest-scoring negative tree T ′ ( 6= T̂ ) can

be efficiently found by modifying the dynamic

programming algorithm in Equation (17). In

particular, we replace s(i, j) with s(i, j) +
1[(i, j) /∈ T̂ ].

Combining Viterbi training and the margin-

based objective function allows us to (1) avoid

explicitly counting discourse constituent patterns

as symbolic variables and (2) directly use the

scores of the trees found in the E step for re-

estimation of the next model.

3.3 Initialization in EM

In general, the EM algorithm tends to get stuck in

local optima of the objective function (Charniak,

1993). Therefore, proper initialization is vital in

order to avoid trivial solutions. This phenomenon

has also been observed in EM-based grammar

induction (Klein and Manning, 2004; Gimpel and

Smith, 2012).

In this section, we introduce the initializa-

tion methods we use in Viterbi EM. More pre-

cisely, given an input document (i.e., a sequence

of EDUs), we automatically build a discourse

constituent structure based on our general prior

knowledge of document structures. Below, we

describe the four pieces of prior knowledge we

use for the initial-tree sampling.

(i) Document Hierarchy

It is intuitively reasonable to consider that (ele-

mentary) discourse units belonging to the same

textual chunk (e.g., sentence, paragraph) tend

to form a subtree before crossing over the chunk
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Figure 3: We build a discourse constituent structure

incrementally in a bottom-up manner. Sentence-level

subtrees are shown in red rectangles, paragraph-

level subtrees in green rectangles, and the document-

level tree in a blue rectangle.

boundaries. For example, we can assume that

EDUs in the same sentence are preferentially con-

nected with each other before getting combined

with EDUs in other sentences. Actually, Joty

et al. (2013, 2015) and Feng and Hirst (2014)

observed that it is effective to incorporate inter-

sentential and multi-sentential parsing to build a

document-level tree.

First, we split an input document into sentence-

level and paragraph-level segments by detecting

sentence and paragraph boundaries, respectively.

We obtain sentence segmentation by applying

the Stanford CoreNLP (Manning et al., 2014)

to the concatenation of EDUs. We also extract

paragraph boundaries by detecting empty lines in

the raw documents.6 We then build a discourse

constituent structure incrementally from sentence-

level subtrees to paragraph-level subtrees and then

to the document-level tree in a bottom-up manner.

Figure 3 shows this process.

(ii) Discourse Branching Tendency

The second prior knowledge relates to information

order in discourses and the branching tendencies

of discourse trees. In general, an important text

element tends to appear at earlier positions in

the document, and then the text following it

complements the message, which is reflected in

the Right Frontier Constraint (Polanyi, 1985)

6Therefore, our ‘‘paragraph’’ boundaries do not strictly

correspond to paragraph segmentation. However, we found

that this pseudo ‘‘paragraph’’ segmentation improves the

parsing accuracy. We used the raw WSJ files (‘‘*.out’’) in

RST-DT, e.g., ‘‘wsj 1135.out.’’

Figure 4: (a) We assume that an important text element

tends to appear at earlier positions in the text, and

the text following it complements the message, which

leads to the right-heavy structure. (b)-(c) We split a

intra-sentential EDU sequence into two subsequences

based on the location of the EDU with the ROOT word.

We build right-branching trees for each subsequence

individually and finally bracket them. Head words are

underlined.

in Segmented Discourse Representation Theory

(Asher and Lascarides, 2003). This tendency can

be assumed to hold recursively. Therefore, it

is reasonable to consider that discourse struc-

tures tend to form right-heavy trees, as shown

in Figure 4(a). Based on this assumption, we

build right-branching trees for sentence-level,

paragraph-level, and document-level discourse

structures in the initial-tree sampling.

(iii) Syntax-Aware Branching Tendency

As already discussed, this work assumes that

discourse structures tend to form right-heavy trees.

However, in our preliminary experiments, we

found that this naive assumption produces about

44% erroneous trees for sentence-level structures

with 3 EDUs. For sentences with 4 EDUs, the

error rate increases to about 70%, which is a

non-negligible number in the initialization step.

To resolve this problem, we introduce another,

more fine-grained, knowledge concept for sentence-

level discourse structures. We expect that sentence-

level trees are more strongly affected by syntactic

cues (e.g., dependency graphs) than paragraph-

level or document-level trees. More specific-

ally, given an EDU sequence of one sentence,

xi, · · · , xj , we focus on a position of the EDU xk
with a head word that is in a ROOT relation

with its parent in the dependency graph. We
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assume that the sub-sequence after the ROOT

EDU, xk:j , roughly corresponds to the predicate

of the sentence, and the sub-sequence before the

ROOT EDU, xi:k−1, corresponds to the subject.

We build right-branching trees for each sub-

sequence individually and finally bracket them.

We illustrate the procedure in Figure 4(b)-(c).

(iv) Locality Bias

Inspired by Smith and Eisner (2006), we introduce

a structural locality bias as the last prior knowl-

edge. The locality bias was observed to improve

the accuracy of dependency grammar induction.

We hypothesize that discourse constituents of

shorter spans are preferable to those of longer

ones.

Instead of introducing the locality bias into

the initial-tree sampling, we encode it into the

decoding algorithm in training and inference.

More precisely, we re-write the CKY recursion

in Equation (17) as follows:

C[i, j] = s(i, j) +
λ

|i− j + 1|

+ max
i≤k<j

C[i, k] + C[k + 1, j], (21)

where λ denotes the hyperparameter and we

empirically setλ = 10. The second term decreases

in inverse proportion to the span distance.

4 Experiment Setup

4.1 Data

We use the RST Discourse Treebank (RST-

DT) built by Carlson et al. (2001),7 which

consists of 385 Wall Street Journal articles

manually annotated with RST structures (Mann

and Thompson, 1988). We use the predefined split

of 347 training articles and 38 test articles. We

also prepare a development set with 30 instances

randomly sampled from the training set, which is

used only for hyper-parameter tuning and early

stopping.

We tokenized the documents using Stanford

CoreNLP tokenizer and converted them to

lowercase. We also replaced digits with ‘‘7’’ (e.g.,

‘‘12.34’’ → ‘‘77.77’’) to reduce data sparsity.

7https://catalog.ldc.upenn.edu/

LDC2002T07.

We also replaced out-of-vocabulary tokens with

special symbols ‘‘〈 UNK 〉.’’

4.2 Metrics

Following existing studies in unsupervised syn-

tactic parsing (Klein, 2005; Smith, 2006), we

quantitatively evaluate unsupervised parsers by

comparing parse trees with the manually annotated

ones. We use the standard (unlabeled) constit-

uency metrics in PARSEVAL: Unlabeled Preci-

sion (UP), Unlabeled Recall (UR), and their Micro

F1, which can indicate how well the parser iden-

tifies the linguistically reasonable structures.

The traditional evaluation procedure for RST

parsing is RST-PARSEVAL (Marcu, 2000), which

adapts the PARSEVAL for the RST representation

shown in Figure 5(a)-(b). However, Morey et al.

(2018) showed that, as shown in Figure 5(c),

traditional RST-PARSEVAL gives a higher-than-

expected score because it considers pre-terminals

(i.e., spans of length 1), which cannot be incorrect

in the unlabeled constituency metrics. We there-

fore follow Morey et al. (2018) and perform the

encoding of RST trees as shown in Figure 5(d)-(f).

That is, we exclude spans of length 1 and include

the root node. We also do not binarize the gold-

standard trees.

4.3 Baselines

To quantitatively evaluate our unsupervised dis-

course constituency parser, it is necessary to

develop strong baseline parsers. We thus pro-

pose Combinational Incremental Parsers (CIPs),

which automatically and incrementally build a

discourse (unlabeled) constituent structure from

an EDU sequence based on the prior knowledge

introduced in Section 3.3. That is, CIPs first build

sentence-level discourse trees based on sentence

segmentation using an elementary parser fs. They

then build paragraph-level trees using another

elementary parser fp, and finally output the

document-level tree using fd. An elementary

parser is a function that returns a single tree

given a sequence of EDUs or subtrees. CIPs can

be represented as a triplet of elementary parsers,

namely,

〈fs, fp, fd〉. (22)

Inspired by earlier studies in unsupervised syn-

tactic constituency parsing (Klein and Manning,

2001a,b; Klein, 2005; Seginer, 2007), we prepare
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Figure 5: Variants of RST encodings and the corresponding unlabeled constituency scores: Unlabeled Recall (UR)

and Unlabeled Precision (UP).

the following four candidates for the elementary

parsers:

Right Branching (RB) Given a sequence of ele-

ments (i.e., EDUs or subtrees), RB always chooses

the left-most element as a left terminal node and

then treats the remaining elements as a right non-

terminal (or terminal). This procedure is recur-

sively applied to the remaining elements on the

right, resulting in (x0 (x1 (x2 . . . ))). As described

in Section 3.3, we predict that RB somewhat

captures the branching tendency of discourse

informational structures. RB was also used as a

strong baseline for unsupervised syntactic constit-

uency parsing in Klein and Manning (2001b).

Left Branching (LB) Contrary to RB, LB al-

ways chooses the right-most element as the right

terminal and then transforms the remaining ele-

ments on the left to a subtree, resulting in

(((. . . xn−3) xn−2) xn−1).

Adaptive Right Branching (RB∗) We augment

RB by considering the syntax-aware branching

tendency, described in Section 3.3(iii). That is,

based on the position of the head EDU (with the

ROOT relation), we split the sentence into two

parts and then perform RB for each sub-sequence.

Random Bottom–Up (BU) BU randomly

selects two adjacent elements and brackets them.

This operation is repeated in a bottom–up manner

until we obtain a single binary tree spanning the

whole sequence.

4.4 Hyperparameters

We set the dimensionalities of the word embed-

dings, POS embeddings, relation embeddings,

forward/backward LSTM hidden layers, and

MLP to 300, 10, 10, 125, and 100, respectively.

We initialized the word embeddings with the

GloVe vectors trained on 840 billion tokens

(Pennington et al., 2014). During the training,

we did not fine-tune the word embeddings. We

run the initialization steps for 3 epochs. We used

a minibatch size of 10. We also used the Adam

optimizer (Kingma and Ba, 2015).

5 Results and Discussion

In this section we report the results of the exper-

iments and discuss them. We first discuss the

comparison results of our method with baselines

and the fully supervised RST parsers, including

the results published in literature (Section 5.1).

We then investigate the impact of initialization

methods (Section 5.2). Finally, we provide our

analysis on discourse constituents induced by our

method (Section 5.3).

5.1 Performance Comparison

We compared our method with the baselines de-

scribed in Section 4.3. We also included the

previous work (Kobayashi et al., 2019) on unsu-

pervised RST parsing as our baseline, though it is

not a fair comparison because they use binarized
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Method UP UR Micro F1

Unsupervised

RB 7.5 7.7 7.6 (54.6)

〈RBs,RBd〉 47.9 49.7 48.8 (74.8)

〈RBs,RBp,RBd〉 57.9 60.2 59.0 (79.9)

LB 7.5 7.7 7.6 (54.6)

〈LBs,LBd〉 41.7 43.3 42.5 (71.7)

〈LBs,LBp,LBd〉 50.5 52.5 51.5 (76.2)

BU 19.2 19.9 19.5 (60.5)

〈BUs,BUd〉 47.9 49.8 48.8 (74.9)

〈BUs,BUp,BUd〉 54.5 56.6 55.5 (78.1)

〈RB∗s,RBp,RBd〉 · · · (a) 64.5 67.0 65.7 (83.2)

〈RB∗s,RBp,LBd〉 · · · (b) 65.6 68.1 66.8 (83.7)

Kobayashi et al. (2019) − − − (80.8)

Ours, initialized by (a) 66.2 68.8 67.5 (84.0)

Ours, initialized by (b) 66.8 69.4 68.0 (84.3)

Ours (b) + Aug. 67.3 69.9 68.6 (84.6)

Supervised

Ours, supervised 68.3 70.9 69.6 (85.1)

Feng and Hirst (2014)* − − − (84.4)

Joty et al. (2015)* − − − (82.5)

Human − − − (88.7)

Table 1: Unlabeled constituency scores in the cor-

rected RST-PARSEVAL (Morey et al., 2018)

against non-binarized trees. UP and UR represent

Unlabeled Precision and Unlabeled Recall, respec-

tively. For reference, we also show the traditional

RST-PARSEVAL Micro F1 scores in parentheses.

Asterisk indicates that we have borrowed the score

from Morey et al. (2018).

golden trees for evaluation.8 For reference, we

also compared our method with fully supervised

parsers: the supervised version of our model9 and

recent supervised parsers (Feng and Hirst, 2014;

Joty et al., 2015) that incorporate intra-sentential

and multi-sentential parsing as in our parser.

Table 1 shows the unlabeled constituency scores

in the corrected RST-PARSEVAL (Morey et al.,

2018) against non-binarized trees. We also show

the traditional RST-PARSEVAL Micro F1 scores

in parentheses. 〈fs, fd〉 indicates that we used

only sentence boundaries and discarded paragraph

boundaries. The scores of external supervised

parsers (Feng and Hirst, 2014; Joty et al., 2015)

are borrowed from Morey et al. (2018).

8However, scores against the binarized trees and the orig-

inal trees are quite similar (Morey et al., 2018).
9We used the same model and hyperparameters as the

unsupervised model. The only difference is that we used con-

ventional supervised learning with manually annotated trees

in stead of Viterbi EM.

We observe that: (1) the incremental tree-

construction approach with boundary information

consistently improves parsing performances of

the baselines; (2) RB-based CIPs are better than

those with LB or BU; and (3) replacing RB with

RB∗ yields further improvements. These results

confirm the reasonability of the prior knowledge

of document structures. The best baseline is

〈RB∗s,RBp,LBd〉, which achieves a Micro F1

score of 66.8% (83.7%) without any learning.

Quite shockingly, the score is competitive with

those of the supervised parsers.

Table 1 also demonstrates that our method

outperforms all the baselines and achieves an

F1 score of 67.5% (84.0%). If we use the best

baseline for initial-tree sampling in Viterbi EM,

the performance further improves to 68.0%

(84.3%).

To investigate the potential of our unsupervised

parser, we also augmented the training dataset

with an external unlabeled corpus. We used about

2,000 news articles from Wall Street Journal in

Penn Treebank (Marcus et al., 1993) that are not

shared with the RST-DT test set. We split the raw

documents into EDU segmentations by using an

external pre-trained EDU segmenter (Wang et al.,

2018)10 and found that the larger unlabeled dataset

can improve parsing performance to 68.6%.

It is worth noting that our method outperforms

the baselines used for the initialization, which

implies that our method learns some knowledge

of discourse constituentness in an unsupervised

manner.

Our method also achieves comparable or su-

perior results to supervised models. We suspect

that the reason why the supervised version of our

model outperforms the external supervised parsers

(Feng and Hirst, 2014; Joty et al., 2015) is mostly

dependent on feature extraction the introduction

of paragraph boundaries.

5.2 Impact of Initialization Methods

Here, we evaluate the importance of initialization

in Viterbi EM. Beginning with uniform initial-

ization, we incrementally applied the initializa-

tion techniques introduced in Section 3.3 and

investigated their impact on the results.

Table 2 shows the results. We observe that

our model yields the lowest score of 58.9% with

10https://github.com/PKU-TANGENT/

NeuralEDUSeg.
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Knowledge Initial Trees Micro F1

No (Uniform) BU 58.9

(i) 〈BUs,BUp,BUd〉 59.1

(i)+(ii) 〈RBs,RBp,RBd〉 59.7

(i)+(ii)+(iii) 〈RB∗s,RBp,RBd〉 66.3

(i)+(ii)+(iii)+(iv) 〈RB∗s,RBp,RBd〉 67.5

Best baseline 〈RB∗s,RBp,LBd〉 68.0

Table 2: Comparison of initialization methods in

our Viterbi training.

uniform initialization (no prior knowledge). By

introducing Document Hierarchy in Section 3.3(i),

parsing performance improves slightly to 59.1%.

This result is interesting because the unlabeled

constituency scores of BU and 〈BUs,BUp,BUd〉
are quite different (19.5 vs. 55.5; see Table 1). We

then introduced Discourse Branching Tendency

in Section 3.3(ii) by replacing BU with RB in

the CIP, which also improved the performance,

slightly, to 59.7%. We then introduced Syntax-

Aware Branching Tendency in Section 3.3(iii)

by replacing RB with RB∗ only for the sentence

level, which brought a considerable performance

gain of 6.6 points (66.3%). Finally, we introduced

Locality Bias in Section 3.3(iv) and achieved

67.5%. We also found that our model can be

improved further to 68.0% if we use the best base-

line for initialization.

In total, these initialization techniques made a

difference of 9.1 points compared with uniform

initialization (i.e., 58.9 → 68.0), which implies

that initialization should be carefully considered

in unsupervised discourse (constituency) parsing

using EM and that the prior knowledge we

proposed in Section 3.3(i)-(iv) can capture some

of the tendencies of document structures. We also

found that Syntax-Aware Branching Tendency

is most effective among the techniques, which

suggests that more detailed knowledge can yield

further improvements.

5.3 Learned Discourse Constituentness

Here, we further investigate the discourse constit-

uentness learned by our method.

First, we calculated Unlabeled Recall (UR)

scores for each relation class in RST-DT. We used

18 coarse-grained classes. Please note that we only

focus on constituent spans {(i, j)} because our

method does not predict relation labels. Table 3

shows the results of the best four and the worst

Relation Ours Supervised
ATTRIBUTION 90.7 92.7

ENABLEMENT 87.0 82.6

MANNER-MEANS 77.8 85.2

TEMPORAL 76.5 64.7

TOPIC-CHANGE 57.1 42.9

EXPLANATION 56.4 56.4

EVALUATION 56.3 55.0

SUMMARY 50.0 71.9

Total 69.9 70.9

Table 3: The best four and worst four rhetorical

relations with their corresponding Unlabeled Re-

call scores. The relations are ordered according to

scores of the unsupervised parser.

four relation classes of our method. We compare

the results with the supervised version.

We observe that although our method uses an

unsupervised approach and does not rely on struc-

tural annotations, some scores are comparable to

those of the supervised version. We also found

that relation classes with relatively higher scores

can be assumed to form right-heavy structures

(e.g., ATTRIBUTION,ENABLEMENT), whereas

relations with lower scores can be considered to

form left-heavy structures (e.g., EVALUATION,

SUMMARY). These results are natural because the

initialization methods we used in the Viterbi train-

ing strongly rely on RB-based CIP. This implies

that, to capture discourse constituency phenomena

of SUMMARY or EVALUTION relations, it is nec-

essary to introduce other initialization techniques

(or prior knowledge) in future.

Lastly, we qualitatively inspected the discourse

constituentness learned by our method. We com-

puted span scores s(i, j) for all possible spans

(i, j) in the RST-DT test set without using any

boundary information. We then sampled text spans

xi:j with relatively higher constituent scores,

s(i, j) > 10.0.

As shown in the upper part of Table 4, we

can observe that our method learns some aspects

of discourse constituentness that seems linguistic-

ally reasonable. In particular, we found that our

method has a potential to predict brackets for (1)

clauses with connectives qualifying other clauses

from right to left (e.g., ‘‘X [because B.]’’) and

(2) attribution structures (e.g., ‘‘say that [B]’’).

These results indicate that our method is good

at identifying discourse constituents near the end
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[The bankruptcy-court reorganization is being challenged ... by a dissident group of claimants]

[because it places a cap on the total amount of money available] [to settle claims.] [It also

bars future suits against ...] (11.74)

[The first two GAF trials were watched closely on Wall Street] [because they were considered

to be important tests of goverment’s ability] [to convince a jury of allegations] [stemming

from its insider-trading investigations.] [In an eight-court indictment, the goverment charged

GAF, ...] (10.16)

[The posters were sold for $1,300 to $6,000,] [although the government says] [they had a

value of only $53 to $200 apiece.] [Henry Pitman, the assistant U.S. attorney] [handling the

case,] [said] [about ...] (11.31)

[The office, an arm of the Treasury, said] [it doesn’t have data on the financial position of

applications] [and thus can’t determine] [why blacks are rejected more often.] [Nevertheless,

on Capital Hill,] [where ...] (11.57)

[After 93 hours of deliberation, the jurors in the second trial said] [they were hopelessly

deadlocked,] [and another mistrial was declared on March 22.] [Meanwhile, a federal jury

found Mr. Bilzerian ...] (11.66)

[(‘‘I think | she knows me,] [but I’m not sure ’’)] [and Bridget Fonda, the actress] [(‘‘She knows

me,] [but we’re not really the best of friends’’).] [Mr. Revson, the gossip columnist, says]

[there are people] [who ...] (11.11)

[its vice president ... resigned] [and its Houston work force has been trimmed by 40 people, of

about 15%.] [The maker of hand-held computers and computer systems said] [the personnel

changes were needed] [to improve the efficiency of its manufacturing operation.] [The company

said] [it hasn’t named a successor ...] (4.44)

[its vice president ... resigned] [and its Houston work force has been trimmed by 40 people, of

about 15%.] [The maker of hand-held computers and computer systems said] [the personnel

changes were needed] [to improve the efficiency of its manufacturing operation.] [The

company said] [it hasn’t named a successor...] (11.04)

[its vice president ... resigned] [and its Houston work force has been trimmed by 40 people, of

about 15%.] [The maker of hand-held computers and computer systems said ] [the personnel

changes were needed] [to improve the efficiency of its manufacturing operation.] [The

company said] [it hasn’t named a successor...] (5.50)

[its vice president ... resigned] [and its Houston work force has been trimmed by 40 people,

of about 15%.] [The maker of hand-held computers and computer systems said] [the

personnel changes were needed] [to improve the efficiency of its manufacturing operation.]

[The company said] [it hasn’t named a successor...] (7.68)

Table 4: Discourse constituents and their predicted scores (in parentheses). We show the discourse

constituents (in bold) in the RST-DT test set, which have relatively high span scores. We did NOT use

any sentence/paragraph boundaries for scoring.

of sentences (or paragraphs), which is natural

because RB is mainly used for generating initial

trees in EM training. The bottom part of Table 4

demonstrates that the beginning position of the text

span is also important to estimate constituenthood,

along with the ending position.

6 Conclusion

In this paper, we introduced an unsupervised

discourse constituency parsing algorithm that uses

Viterbi EM with a margin-based criterion to train

a span-based neural parser. We also introduced

initialization methods for the Viterbi training

of discourse constituents. We observed that our

unsupervised parser achieves comparable or even

superior performance to the baselines and fully

supervised parsers. We also found that learned

discourse constituents depend strongly on initial-

ization used in Viterbi EM, and it is necessary to

explore other initialization techniques to capture

more diverse discourse phenomena.
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We have two limitations in this study. First,

this work focuses only on unlabeled discourse

constituent structures. Although such hierarchical

information is useful in downstream applications

(Louis et al., 2010), both nuclearity statuses and

rhetorical relations are also necessary for a more

complete RST analysis. Second, our study uses

only English documents for evaluation. However,

different languages may have different structural

regularities. Hence, it would be interesting to in-

vestigate whether the initialization methods are

effective in different languages, which we believe

gives suggestions on discourse-level universals.

We leave these issues as a future work.
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