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Abstract

Target-dependent sentiment analysis (TDSA)

aims to classify the sentiment of a text towards

a given target. The major challenge of this

task lies in modeling the semantic relatedness

between a target and its context sentence. This

paper proposes a novel Target-Guided Struc-

tured Attention Network (TG-SAN), which

captures target-related contexts for TDSA in a

fine-to-coarse manner. Given a target and its

context sentence, the proposed TG-SAN first

identifies multiple semantic segments from the

sentence using a target-guided structured atten-

tion mechanism. It then fuses the extracted

segments based on their relatedness with the

target for sentiment classification. We present

comprehensive comparative experiments on

three benchmarks with three major findings.

First, TG-SAN outperforms the state-of-the-art

by up to 1.61% and 3.58% in terms of accu-

racy and Marco-F1, respectively. Second, it

shows a strong advantage in determining the

sentiment of a target when the context sentence

contains multiple semantic segments. Lastly,

visualization results show that the attention

scores produced by TG-SAN are highly

interpretable

1 Introduction

Target-dependent sentiment analysis (TDSA) is

an actively studied research topic with the aim to

determine the sentiment polarity of a text towards

a specific target. For example, given a sentence

‘‘the food is so good and so popular that waiting

can really be a nightmare’’, the target-dependent

sentiments of food and waiting are positive and

negative, respectively.

The major challenge of TDSA lies in modeling

the semantic relatedness between the target and its

context sentence (Tang et al., 2016a; Chen et al.,

2017). Most recent progress in this area benefits

from the attention mechanism, which captures

the relevance between the target and every other

word in the sentence. Based on such word-level

correlations, several models have already been

proposed for constructing target-related sentence

representations for sentiment prediction (Wang

et al., 2016; Tang et al., 2016b; Liu and Zhang,

2017; Yang et al., 2017; Ma et al., 2017).

One important underlying assumption in exist-

ing attention-based models is that words can be

used as independent semantic units for model-

ing the context sentence when performing TDSA.

This assumption neglects the fact that a sentence

is oftentimes composed of multiple semantic seg-

ments, where each segment may contain multiple

words expressing a certain meaning or senti-

ment collectively. Furthermore, different semantic

segments may even contribute differently to the

sentiment of a certain target. Figure 1 shows an

example of a restaurant review, which contains

two salient semantic segments (highlighted in

blue). Intuitively, a TDSA model should be able

to identify both segments and determine that the

second one is more relevant to the writer’s sen-

timent towards the target [waiting]. Existing meth-

ods, however, would only attend important words

(highlighted in red) such as ‘‘good’’, ‘‘popular’’,

‘‘really’’, and ‘‘nightmare’’ individually through

the aforementioned assumption.

We hypothesize that the ability to uncover mul-

tiple semantic segments and their relatedness

with the target from a context sentence will be

beneficial for TDSA. In this light, we propose a

fine-to-coarse TDSA framework, namely, Target-

Guided Structured Attention Network (TG-SAN)
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Figure 1: A motivating example, where darker shades

denote higher contributions to the sentiment of the

target [waiting]. (a) A TDSA model should be able to

identify two salient segments from the sentence, and

that the second one is more important for determining

the target’s sentiment. (b) Existing attention-based

models would attend important words individually and

fail to determine their relatedness with the target.

in this paper. The core components of TG-SAN

include a Structured Context Extraction Unit

(SCU) and a Context Fusion Unit (CFU). As op-

posed to using word-level attention, the SCU

utilizes a target-guided structured attention mech-

anism to encode multiple semantic segments of a

sentence as a structured embedding matrix, where

each vector in the matrix can be viewed as one

target-related context. The CFU then fuses the

extracted contexts based on their relatedness with

the target to construct the ultimate context repre-

sentation of the target for sentiment classification.

Our contributions are summarized as follows:

(1) We propose to uncover multiple semantic

segments and their relatedness with the target

in a sentence for TDSA.

(2) We devise a novel TG-SAN, which uses

a fine-to-coarse framework to produce the

context representation of the target. TG-SAN

utilizes a target-guided structured attention

mechanism to encode a sentence as a r-

dimensional matrix, where each vector can

be viewed as one target-related context. The

matrix is further fused into a single context

vector by leveraging their relatedness with

the target for sentiment classification.

(3) We empirically demonstrate that TG-SAN

outperforms a variety of baselines and the

state-of-the-art on three benchmarks, and that

it is effective in handling sentences com-

posed of multiple semantic segments. We

also present visualization results to reveal the

superior explanatory power of the proposed

model.

2 Related Work

Given a target and its context sentence, the major

challenge of TDSA lies in identifying target-

related contexts in the sentence for determining

the target’s sentiment. Early work adopted rule-

based methods or statistical methods to solve this

problem (Ding et al., 2008; Zhao et al., 2010;

Jiang et al., 2011). These methods relied either on

handcrafted features, rules, or sentiment lexicons,

all of which required massive manual efforts.

In recent years, neural networks have achieved

great success in various fields for their strong rep-

resentation capability. They have also been proven

effective in modeling the relatedness between the

target and its contexts. Recursive neural networks

were first used by Dong et al. (2014) and Nguyen

and Shirai (2015) for TDSA. Specifically, the

target was first converted into the root node of a

parsing tree, and then it contexts were composed

based on syntactic relations in the tree. As such

approaches rely strongly on dependency parsing,

they fall short when analyzing nonstandard texts

such as comments and tweets, which are com-

monly used for sentiment analysis.

Another line of work applied recurrent neural

network (RNN) and its extensions to TDSA for

their natural way of encoding sentences in a se-

quential fashion. For instance, Tang et al. (2016a)

utilized two RNNs to individually capture the

left and the right contexts of the target, and then

combined the two contexts for sentiment predic-

tion. Zhang et al. (2016) elaborated on this idea by

using a gate to leverage the contributions of the

two contexts for sentiment prediction. However,

such RNN-based methods place more emphasis on

the words near the target while ignoring the distant

ones, regardless of whether they are target-related.

Recently, attention mechanisms have become

widely used for modeling the relatedness between

every context word and the target for TDSA

(Wang et al., 2016; Yang et al., 2017; Liu and

Zhang, 2017; Ma et al., 2017). For example, Yang

et al. (2017) assigned attention scores to each con-

text word according to their relevance to the tar-

get, and combined all context words with their

attention scores to constitute the context represen-

tation of the target for sentiment classification.

The aforementioned attention-based methods

used a single attention layer to capture target-

related contexts. One drawback of this has been

recently examined by Chen et al. (2017) and Li
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Figure 2: Graphical illustration of TG-SAN. The Memory Builder (Section 3.2) takes a sequence of dense

word vectors X = {x1, . . . ,xi, . . . ,xL} as input, and obtains the contextualized word representations

H = {h1, . . . ,hi, . . . ,hL} via a Bi-LSTM. H is then split into a context memory Mc and a target memory Mt

based on the positions of the target. The SCU (Section 3.3) applies a self-attentive operation on the target memory

to obtain a structured target representation Rt, which is used to guide the extraction of r target-related segments

Rc from the context memory through a structured attention mechanism. The CFU (Section 3.4) generates the

target vector rt through a self-attentive operation on Rt, and then learns the contribution of each context to obtain

the ultimate context vector rc. Finally, the Output Layer (Section 3.5) composes the context vector and the target

vector for predicting the target’s sentiment.

et al. (2018). They argued that using one layer of

attention to attend all context words may introduce

noises and degrade classification accuracy. To

alleviate this problem, Chen et al. (2017) proposed

refining the attended words in an iterative manner,

whereas Li et al. (2018) used a convolutional

neural network to extract n-gram features whose

contributions were decided by their relative posi-

tions to the target in the context sentence.

To the best of our knowledge, no existing study

has explicitly considered uncovering a sentence’s

semantic segments and learning their contribu-

tions to a target’s sentiment. We address this prob-

lem with a novel target-guided structured attention

network in this work.

3 Approach

We first mathematically formulate the TDSA

problem addressed in this paper, and then describe

the proposed TG-SAN. Figure 2 depicts the

architecture of TG-SAN.

3.1 Problem Formulation

A sentence is a sequence of words S =
{w1, . . . ,wi, . . . ,wL}, where wi is the one-hot

representation of a word and L is the length

of the sequence. Given a target, the positions

of its mentions in S are denoted by T =
{i1j, . . . , i

t
j , . . . , i

l
j}

m
j=1, where l is the number of

word tokens in the target and m is the number

of times the target appears in S. Lt = l ∗ m
is therefore the total number of word tokens of

the target in the sentence. Note that by allowing

m ≥ 1, our problem formulation explicitly

models the situation where the target has multiple

mentions in a sentence, whereas existing attention-

based TDSA models only addressed a single

mention situation (m = 1).

Given a context sentence S and a target’s

mentions indexed by T , our task is to predict

the sentiment polarity y ∈ O of the target, where

O = {−1, 0, 1} denote negative, neutral, and

positive sentiments, respectively.
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3.2 Memory Builder

The Memory Builder constructs the target memory

and the context memory from the input sentence as

follows. A lookup table E ∈ R
de×|V | is first built

to represent the semantics of each word by word

vectors, where de is the dimension of the word

vectors and |V | is the vocabulary size. The one-

hot representation of the word sequence S is then

converted into a sequence of dense word vectors

X = {x1, . . . ,xi, . . . ,xL}, where xi = Ewi.

A Bi-LSTM layer is placed on top of the

word vectors to obtain their contextualized word

representations. The output of this Bi-LSTM

layer is a sequence H = {h1, . . . ,hi, . . . ,hL},
where each hidden state hi ∈ R

2dh is built by

concatenating the outputs of two LSTMs
−→
hi and

←−
hi .

−→
hi =

−−−−→
LSTM

(
xi,
−−→
hi−1

)
∈ R

dh (1)

←−
hi =

←−−−−
LSTM

(
xi,
←−−
hi−1

)
∈ R

dh (2)

hi = [
−→
hi;
←−
hi] ∈ R

2dh (3)

where dh denotes the dimension of each hidden

state.

The sequence H ∈ R
L×2dh is further split into

a target memory Mt and a context memory Mc

according to the positions of target mentions T .

Mt ∈ R
Lt×2dh consists of the representations of

the target words, while Mc ∈ R
Lc×2dh consists of

those of the context words, where Lc = L− Lt.

3.3 Structured Context Extraction

Unit (SCU)

Given the target memory and the context memory,

the next step is to extract the target-related

segments which may appear in different parts of

the context sentence. Recently, Lin et al. (2017)

proposed a structured self-attention mechanism,

which represents a sentence as multiple semantic

segments, and applied such mechanism suc-

cessfully to document-level sentiment analysis.

In TDSA, however, not all semantic segments are

related to the target. We therefore build on the

idea of Lin et al. (2017) to devise a SCU, which

is able to capture target-related segments as the

contexts for determining the target’s sentiment.

Structured target representation. The target

memory Mt is converted into a structured repre-

sentation using the self-attentive operation (Lin

et al., 2017) as follows:

At = softmax
(
W

2
t tanh(W

1
tMt

T )
)

(4)

Rt = AtMt (5)

where At ∈ R
r×Lt is a weight matrix and Rt ∈

R
r×2dh is the embedding matrix representing the

target. W1
t and W

2
t are two parameters for the

self-attentive layer. r is a hyper-parameter refer-

ring to the number of rows in the target matrix.

In other words, r represents the number of struc-

tured representations transformed from the target

memory Mt.

Following Lin et al. (2017), a penalization term

P is used in the loss function to encourage the

diversity of rows captured in Rt.

P = ‖
(
AtAt

T − I
)
‖2F (6)

Target-guided contexts extraction. Given the

target matrixRt, target-related semantic segments

are uncovered from the context memory Mc as

follows. A matrix Ac ∈ R
r×Lc is first built to

capture the relatedness between the target matrix

and the context memory using a bilinear attention

operation. It is then used to build a context matrix

R̃c ∈ R
r×2dh , where each row in the matrix can

be viewed as a target-related semantic segment:

Ac = softmax
(
RtWcMc

T
)

(7)

R̃c = AcMc (8)

whereWc is the parameter of the bilinear attention

operation.

A feed-forward network is further placed on top

of the context matrix R̃c to produce its transformed

representation R̂c. A residual connection (He

et al., 2016) is then used to compose both matrices

to obtain the final structured context representation

Rc ∈ R
r×2dh .

R̂c = ReLU(R̃cW
1
s + b

1
s)W

2
s + b

2
s (9)

Rc = LayerNorm
(
R̂c + R̃c

)
(10)

whereW1
s,b1

s,W
2
s,b2

s are learnable parameters of

the feed-forward network. The layer normalization

(Ba et al., 2016) used in Equation (10) helps to

prevent gradient vanishing and exploding.

3.4 Context Fusion Unit (CFU)

The CFU learns the contributions of the different

extracted contexts to the target’s sentiment, and
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Tweet Laptop Restaurant

training testing training testing training testing

# Positive 1561 173 979 340 2158 728

# Negative 1560 173 858 128 800 194

# Neutral 3127 346 454 171 631 196

Table 1: Statistics of the experimental datasets.

produces the ultimate context vector of the target.

Specifically, a self-attentive operation is utilized

to fuse the target matrix Rt into a target vector rt.

at = softmax
(
w

2
m tanh(W1

mRt
T )
)

(11)

rt = atRt (12)

where w2
m and W

1
m are learnable parameters.

Given the target vector rt, the contribution of

each context is then learned to produce the ultimate

context vector rc ∈ R
2dh :

rc =

r∑

i=1

αiRc[i] (13)

αi =
exp(βi)∑r
j=1 exp(βj)

(14)

βi = Rc[i]Urt
T (15)

where U is a weight matrix, Rc[i] ∈ R
2dh

represents the i-th target-related context and αi

denotes its normalized contribution score.

3.5 Output Layer and Model Training

Consider the examples (a) ‘‘It takes a long time

to boot up’’, and (b) ‘‘The battery life is long’’.

Although both targets (in italic) have similar con-

texts, their sentimental orientations are totally

different. It is therefore necessary to consider

the target itself along with its contexts to predict

its sentiment.

In the output layer, the context vector rc and the

target vector rt are concatenated, and transformed

via a non-linear function. The transformed vector

is further used in conjunction with rc to build the

final feature vector rct:

rct = rc + f(Wf [rc; rt]) (16)

where f(·) denotes a non-linear activation

function, and the ReLU function is adopted in this

paper. A softmax layer is then applied to convert

the feature vector into a probability distribution:

q(y|rct) = softmax(Wqrct + bq) (17)

where Wq ∈ R
‖O‖×2dh and bq ∈ R

‖O‖ are

parameters of the softmax layer.

For a number of D training instances, cross-

entropy loss with a L2 regularization term is

adopted as the loss function:

L = −
D∑

i=1

yi log(qi)+λ1

∑

i

Pi+
λ2

2
‖θ‖22 (18)

where yi is the true sentiment label, qi is the

predicted probability of the true label, θ is the

set of parameters of TG-SAN, λ1 and λ2 are reg-

ularization coefficients, and Pi is the penaliza-

tion term for the i-th training instance (see

Equation (6)).

4 Experiments

4.1 Experimental Setup

Datasets

We evaluate the proposed TG-SAN on three public

benchmark datasets, namely, Tweet, Laptop, and

Restaurant. The Tweet dataset contains tweets

collected from Twitter (Dong et al., 2014). The

Laptop, and Restaurant datasets are from the

SemEval 2014 challenge (Pontiki et al., 2014),

containing customer reviews on laptops and

restaurants, respectively. We discarded data in-

stances labeled as ‘‘Conflict’’ in the Laptop and

Restaurant datasets following previous studies.

Table 1 summarizes statistics of the datasets.

We use classification accuracy and macro-F1

as evaluation metrics in all experiments.

Compared Models

To demonstrate the ability of the proposed model,

we compare it with three baseline approaches, four

attention-based models, and the state-of-the-art.

SVM (Kiritchenko et al., 2014): This was a top-

performing system in SemEval 2014. It utilized

various types of handcrafted features to build a

SVM classifier.

AdaRNN (Dong et al., 2014): This utilized

a recursive neural network based on dependency

176



tree structure to iteratively compose target-related

contexts fromasentence for sentiment classification.

TD-LSTM (Tang et al., 2016a): This employed

two LSTMs to separately model the left and

the right contexts of a given target, and concat-

enated their last hidden states to predict the target’s

sentiment.

ATAE-LSTM (Wang et al., 2016): This used a

LSTM layer to model a sentence, and used an at-

tention layer to produce a weighted representation

of the sentence with respect to a given target.

IAN (Ma et al., 2017): This used two LSTMs to

separately model the sequence of target words and

that of context words in a sentence. It then applied

an interactive attention mechanism to capture the

relatedness between the target and its context for

sentiment classification.

MemNet (Tang et al., 2016b): This applied

multiple hops of attention on the word embeddings

of the context sentence, and treated the output of

the last hop as the final representation of the target.

RAM (Chen et al., 2017): This proposed a

recurrent neural attention mechanism to iteratively

refine the context representation, and took the

combination of all constructed contexts as the

final representation for sentiment classification.

TNet (Li et al., 2018): It is the state-of-the-

art in target-dependent sentiment analysis. It first

transformed words considering their positions

with respect to the target, and used a convolutional

neural network to extract n-gram features from the

context sentence for sentiment classification. Note

that the published results of TNet were based

on the authors’ implementation with a bug in

data preprocessing.1 We fixed the identified bug,

retrained the TNet model with the parameters

suggested in the work of Li et al. (2018), and

reported the revised results in this paper for

empirical comparison.

Experimental Settings

As no standard validation set is available for the

benchmark datasets, we randomly held out 20%

of the training set as the validation set for tun-

ing the hyper-parameters of TG-SAN. Settings

producing the highest validation accuracy are

listed in Table 2, and are adopted in the subsequent

experiments unless otherwise specified.

We initialized the embedding layer of TG-

SAN with the pre-trained 300-dimensional GloVe

1https://github.com/lixin4ever/TNet/

issues/4.

Parameter Value

Word embedding dimension de 300

LSTM hidden dimension dh 150

Dropout rate 0.5

No. of structured representations r 2

Penalization term coefficient λ1 0.1

Regularization term coefficient λ2 10−6

Batch size 64

Table 2: Hyper-parameter settings of TG-SAN.

vectors (Pennington et al., 2014), and fixed the

word vectors during the training process. The

recurrent weight matrices were initialized with

random orthogonal matrices. All other weight ma-

trices were initialized by randomly sampling from

the uniform distribution U(−0.01, 0.01). All bias

vectors were initialized to zero. RMSProp was

used for network training by setting the learning

rate as 0.001 and the decay rate as 0.9. Dropout

(Srivastava et al., 2014) and early stopping were

adopted to alleviate overfitting. Dropout was

applied on the inputs of the Bi-LSTM layer and the

output layer with the same dropout rate shown in

Table 2.

4.2 Main Results

We report the experimental results of TG-SAN

(r = 2) and the compared models in Table 3.

In summary, TG-SAN outperforms all compared

models on the Tweet and the Restaurant datasets.

On the Laptop dataset, it also achieves the best

accuracy among all models, and macro-F1 com-

parable to the best-performing model, RAM (Chen

et al., 2017). Such results demonstrate the efficacy

of the proposed TG-SAN. We also observe that

the attention-based models perform better than the

baseline models in general. This is not surprising,

as different context words can be of different im-

portance to the sentiment of a target, a phenom-

enon that can be naturally captured by the attention

mechanism.

TNet and RAM are the most competitive among

all compared models, attributed to their efforts on

alleviating the noise produced by using a single

layer of attention, as already shown in previous

studies. However, we observe that their prediction

abilities vary across datasets: RAM performs

better than TNet on Laptop and Restaurant, and

vice versa on Tweet. In contrast, TG-SAN pro-

duces satisfactory performance consistently on
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Models
Tweet Laptop Restaurant

Accuracy Macro-F1 Accuracy Accuracy Macro-F1

Baselines

SVM (2014) 0.6340♯ 0.6330♯ 0.7049∗ − 0.8016∗ −
AdaRNN (2014) 0.6630∗ 0.6590∗ − − − −
TD-LSTM (2016a) 0.6662♯ 0.6401♯ 0.7183♯ 0.6843♯ 0.7800♯ 0.6673♯

Attention-based

ATAE-LSTM (2016) − − 0.6870∗ − 0.7720∗ −
IAN (2017) − − 0.7210∗ − 0.7860∗ −
MemNet (2016b) 0.6850♯ 0.6691♯ 0.7033♯ 0.6409♯ 0.7816♯ 0.6583♯

RAM (2017) 0.6936∗ 0.6730∗ 0.7449∗ 0.7135∗ 0.8023∗ 0.7080∗

State-of-the-art TNet (2018) 0.7327 0.7132 0.7465 0.6985 0.8005 0.6901

Proposed Model TG-SAN 0.7471 0.7365 0.7527 0.7118 0.8166 0.7259

Ablations

w/o CFU 0.7312 0.7141 0.7465 0.7042 0.8095 0.7189

w/o SCU & CFU 0.7153 0.6975 0.7058 0.6559 0.8023 0.6960

w/o TG 0.7269 0.7093 0.7324 0.6923 0.8131 0.6986

Table 3: Comparison of Accuracy and Macro-F1 among different models. Results marked with ♯ are

adopted from Chen et al. (2017), and those with ∗ are adopted from the original papers. Performance

improvements of the proposed TG-SAN model over the state-of-the-art, TNet (Li et al., 2018), are

statistically significant at p < 0.01.

all datasets, demonstrating the capability of the

proposed fine-to-coarse attention framework in

capturing the semantic relatedness between the

target and the context sentence for TDSA.

To conclude, we validated the efficacy of

TG-SAN through comparative experiments. The

advantage of TG-SAN over existing methods con-

firms our hypothesis that semantic segments are

the basic units for understanding target-dependent

sentiments. It also shows that such segments can be

effectively captured by the proposed target-guided

structured attention mechanism.

4.3 Ablation Studies

Three ablation models are designed to reveal the

effectiveness of each compoent in TG-SAN.

w/o CFU: This ablation model uses the SCU

to capture target-related segments in a sentence,

and averages all context vectors to constitute the

vector rc in Equation (13) without distinguishing

their different contributions.

w/o SCU & CFU: In this ablation model, the

combination of SCU and CFU is replaced by a

simple attention layer. Specifically, the target is

represented as the averaged vector of the target

memory. It is then utilized to attend the most

relevant words in the context sentence to build

the context vector. In the output layer, the context

vector and the target vector are both composed for

sentiment prediction.

w/o TG: In this ablation model, the guidance of

the target in the SCU is removed to explore the

effect of the target on context extraction. Hence,

the SCU is reduced to the one proposed by Lin et al.

(2017), which extracts semantic segments from the

sentence using the self-attentive mechanism.

Table 3 reports the results of the three ablation

models. We observe that performance degrades

when the attention layer capturing the contrib-

utions of contexts is removed in w/o CFU. This

indicates that some contexts are indeed more im-

portant than the others in deciding the sentiment

of a target, and the difference is well captured

by CFU. Results also show that the use of SCU

is crucial. Comparing w/o CFU and w/o SCU &

CFU, the macro-F1 of the latter drops drastically

by 1.66%, 4.83%, and 2.29% on Tweet, Laptop,

and Restaurant respectively. Furthermore, results

worsened when the target’s guidance is replaced

with the self-attentive mechanism as in w/o TG.

This indicates that not all semantic segments

appearing in the sentence are related to the target,

and it is necessary to extract the related ones for

TDSA.

4.4 Effects of r

One important hyper-parameter in TG-SAN is r,

which refers to the number of structured represen-

tations extracted from the context sentence. We

vary the value of r from 1 to 5 to investigate its

effects on the TDSA task in this experiment. It
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r =
Tweet Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

1 0.7399 0.7261 0.7512 0.6998 0.8131 0.7167

2 0.7471 0.7365 0.7527 0.7118 0.8166 0.7259

3 0.7355 0.7210 0.7496 0.7063 0.8184 0.7348

4 0.7399 0.7236 0.7433 0.7028 0.8220 0.7447

5 0.7327 0.7182 0.7433 0.6972 0.8184 0.7407

Table 4: Effects of r, the number of structured representations extracted from the

context sentence. Results show that capturing multiple contexts (r>1) is beneficial

for TDSA.

Model
Tweet Laptop Restaurant

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

w/o SCU & CFU 0.6316 0.5250 0.6937 0.6415 0.8097 0.6995

TG-SAN (r = 1) 0.6842 0.5667 0.7487 0.6946 0.8230 0.7213

TG-SAN 0.7368 0.6850 0.7513 0.7114 0.8291 0.7366

Table 5: Results on multi-segment sentences, where each sentence contains multiple targets

or multiple mentions of the same target. TG-SAN outperforms its degenerated version and

the baseline model, showing the advantage of the proposed structured attention mechanism in

uncovering multiple target-related contexts.

is worth noting that the attention mechanism of

the model degenerates into simple attention when

setting r as 1. Table 4 reports the results.

TG-SAN performs best when r = 2 on the

Tweet and Laptop datasets, and r = 4 on the

Restaurant dataset. In general, we conclude that

the best setting of r is always greater than 1.

This demonstrates that multiple contexts are in-

deed beneficial for predicting target-dependent

sentiments, which are well captured by the struc-

tured attention mechanism. We also observe that

when r > 1, model performance may decrease as

r increases. The reason might be that a growing r

increases the complexity of the model, making it

more difficult to train and less generalizable.

4.5 Studies on Multi-segment Sentences

To better understand the advantage of structured

attention in TDSA, we further examine a specific

group of instances containing multiple semantic

segments. Specifically, each instance considered

in this experiment either contains multiple dif-

ferent targets, or multiple mentions of the same

target. We identified in total 38, 382, and 825 such

instances from the Tweet, Laptop, and Restaurant

datasets, respectively. It is worth noting that multi-

segment instances are particularly common in

Laptop and Restaurant, accounting for 59.78%

and 73.79% of all instances, respectively.

In this experiment, we compare TG-SAN with

two models relying on a simple attention mecha-

nism. One is its degenerated version with r = 1,

and the other is a baseline model (w/o SCU &

CFU). Table 5 reports the comparative results.

We observe that TG-SAN outperforms the other

two models on all datasets. This demonstrates that

the structured attention mechanism provides a

richer context representation ability to identify the

target-related contexts more effectively, which is

in line with our motivation.

4.6 Case Studies

We demonstrate through case studies that TG-

SAN produces not only superior classification

performances, but also highly interpretable results.

Figure 3 presents test instances covering three

different situations: (1) multiple targets, multiple

segments; (2) single target, multiple segments; and

(3) single target, single segment. For each instance,

we plot a heat map to visualize the attention results

produced by TG-SAN and a baseline model (w/o

SCU & CFU) for comparison. Note that the atten-

tion score of each word in TG-SAN is produced

by the product of the context weights α ∈ R
r (see
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Figure 3: Visualization results (best viewed in color). Targets are shown in square brackets. Positive and negative

sentiments are highlighted in red and green respectively. In the visualized attention results, the darker the shading

of a word, the higher the attention weight it receives from the corresponding model. In general, TG-SAN

demonstrates a stronger interpretability than the baseline model. It effectively uncovers all sentiment-related

contexts in each case, and identifies the most important ones with respect to a specific target. In contrast, contexts

captured by the baseline model are incomplete and inaccurate, as can be seen obviously from the attention results

it generates for ‘‘waiting’’ in sentence (1) and ‘‘google’’ in sentence (2).

Equation (14)) and the word contributions of each

context Ac ∈ R
r×Lc (see Equation (7)), denoted

by α
T
Ac.

Visualization results show that TG-SAN has a

strong ability in uncovering semantic segments

in a sentence. It can also effectively identify the

relatedness between a segment and a certain target.

For example, sentence (1) contains two segments

expressing opposite sentiments towards the targets

‘‘food’’ and ‘‘waiting’’. TG-SAN identifies both

segments, and places more emphasis on the seg-

ment ‘‘so good’’ (respectively, ‘‘nightmare’’) when

predicting the sentiment of ‘‘food’’ (respectively,

‘‘waiting’’). In contrast, whereas the baseline

model identifies all sentiment-related words, it

fails to determine accurately the relatedness

between each word and the target. As a result, it

produces a wrong sentiment prediction for ‘‘wait-

ing’’. Similar observations can be made from

sentence (2). In this sentence, TG-SAN explicitly

captures two target-related segments, whereas the

baseline model identifies only one. In case (3),

we observe that even when a context sentence

contains only one target-related segment, TG-

SAN still produces a reasonable explanation for

its prediction.

5 Conclusions and Future Work

In this paper, we develop a novel Target-

Guided Structured Attention Network (TG-SAN)

for target-dependent sentiment analysis (TDSA).

As opposed to the simple word-level attention

mechanism used by existing models, TG-SAN

uses a fine-to-coarse attention framework to un-

cover multiple target-related contexts and then

fuse them based on their relatedness with the tar-

get for sentiment classification. The effectiveness

of TG-SAN is validated through comprehensive

experiments on three public benchmark datasets.

It also demonstrates superior ability in handling

multi-segment sentences, which contain multiple

targets or multiple mentions of the same target.

In addition, the attention results it produces are

highly interpretable as visualization results shown.

As future work, we may extend this study in

two directions. First, the SCU is currently uti-

lized once to extract target-related contexts from a

sentence, but extending such fine-to-coarse frame-

work through iterative use of multiple SCUs is

also feasible from the model perspective. Second,

we would like to explore the effectiveness of

our model in other tasks where semantic related-

ness plays an important role as in TDSA, such as

the answer sentence selection task for question-

answering.
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