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Abstract

We present methods for calculating a measure

ofphonotactic complexity—bitsper phoneme—

that permits a straightforward cross-linguistic

comparison. When given a word, represented

as a sequence of phonemic segments such as

symbols in the international phonetic alphabet,

and a statistical model trained on a sample of

word types from the language, we can ap-

proximately measure bits per phoneme using

the negative log-probability of that word under

the model. This simple measure allows us to

compare the entropy across languages, giv-

ing insight into how complex a language’s

phonotactics is. Using a collection of 1016

basic concept words across 106 languages, we

demonstrate a very strong negative correlation

of −0.74 between bits per phoneme and the

average length of words.

1 Introduction

One prevailing view on system wide phonological

complexity is that as one aspect increases in

complexity (e.g., size of phonemic inventory),

another reduces in complexity (e.g., degree of

phonotactic interactions). Underlying this claim—

the so-called compensation hypothesis (Martinet,

1955; Moran and Blasi, 2014)—is the conjecture

that languages are, generally speaking, of roughly

equivalent complexity, that is, no language is

overall inherently more complex than another.

This conjecture is widely accepted in the literature

and dates back at least to the work of Hockett

(1958). Because along any one axis, a language

may be more complex than another, this conjecture

has a corollary that compensatory relationships

between different types of complexity must exist.

Such compensation has been hypothesized to be

the result of natural processes of historical change,

Figure 1: Bits per phoneme vs average word length

using an LSTM language model.

and is sometimes attributed to a potential linguis-

tic universal of equal communicative capacity

(Pellegrino et al., 2011; Coupé et al., 2019).

Methods for making hypotheses about linguistic

complexity objectively measurable and testable

have long been of interest, though existing mea-

sures are typically relatively coarse—see, for

example, Moran and Blasi (2014) and §2 below for

reviews. Briefly, counting-based measures such as

inventory sizes (e.g., numbers of vowels, conso-

nants, syllables) typically play a key role in assess-

ing phonological complexity. Yet, in addition to

their categorical nature, such measures gener-

ally do not capture longer-distance (e.g., cross-

syllabic) phonological dependencies such as vowel

harmony. In this paper, we take an information-

theoretic view of phonotactic complexity, and

advocate for a measure that permits straight-

forward cross-linguistic comparison: bits per pho-

neme. For each language, a statistical language

model over words (represented as phonemic se-

quences) is trained on a sample of types from

the language, and then used to calculate the bits

per phoneme for new samples, thus providing an

upper bound of the actual entropy (Brown et al.,

1992).
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Characterizing phonemes via information theo-

retic measures goes back to Cherry et al. (1953),

who discussed the information content of pho-

nemes in isolation, based on the presence or

absence of distinctive features, as well as in

groups, (e.g., trigrams or possibly syllables). Here

we leverage modern recurrent neural language

modeling methods to build models over full word

forms represented as phoneme strings, thus cap-

turing any dependencies over longer distances

(e.g., harmony) in assigning probabilities to pho-

nemes in sequence. By training and evaluating on

comparable corpora in each language, consisting

of concept-aligned words, we can characterize and

compare their phonotactics. Probabilistic char-

acterizations of phonotactics have been used

extensively in psycholinguistics (see §2.4), but

such methods have generally been used to assess

single words within a lexicon (e.g., classifying

high versus low probability words during stimulus

construction), rather than information-theoretic

properties of the lexicon as a whole, which our

work explores.

The empirical portion of our paper exploits

this information-theoretic take on complexity to

examine multiple aspects of phonotactic complex-

ity:

(i) Bits per Phoneme and Word Length: In

§5.1, we show a very high negative corre-

lation of −0.74 between bits per phoneme

and average word length for the same 1016

basic concepts across 106 languages. This

correlation is plotted in Figure 1. In con-

trast, conventional phonotactic complexity

measures (e.g., number of consonants in an

inventory) demonstrate poor correlation with

word length. Our results are consistent with

Pellegrino et al. (2011), who show a sim-

ilar correlation in speech.1 We additionally

establish, in §5.2, that the correlation persists

when controlling for characteristics of long

words (e.g., early versus late positions in the

word).

(ii) Constraining Language: Despite often

being thought of as adding complexity,

processes like vowel harmony and final-

obstruent devoicing improve the predictabil-

1See also Coupé et al. (2019), where syllable-based

bigram models are used to establish a comparable information

rate in speech across 17 typologically diverse languages.

ity of subsequent segments by constraining

the number of well-formed forms. Thus,

they reduce complexity measured in bits

per phoneme. We validate our models by

systematically removing certain constraints

in our corpora in §5.3.

(iii) Intra- versus Inter-Family Correlation:

Additionally, we present results in §5.4 show-

ing that our complexity measure not only

correlates with word length in a diverse set

of languages, but also intra language fami-

lies. Standard measures of phonotactic com-

plexity do not show such correlations.

(iv) Explicit feature representations: We also

find (in §5.5) that methods for including

features explicitly in the representation, us-

ing methods described in §4.1, yield little

benefit except in an extremely low-resource

condition.

Our methods2 permit a straightforward cross-

linguistic comparison of phonotactic complexity,

which we use to demonstrate an intriguing trade-

off with word length. Before motivating and pre-

senting our methods, we next review related work

onmeasuringcomplexity and phonotactic modeling.

2 Background: Phonological Complexity

2.1 Linguistic Complexity

Linguistic complexity is a nuanced topic. For

example, one can judge a particular sentence to be

syntactically complex relative to other sentences

in the language. However, one can also describe

a language as a whole as being complex in one

aspect or another (e.g., polysynthetic languages

are often deemed morphologically complex). In

this paper, we look to characterize phonotactics

at the language level. However, we use methods

more typically applied to specific sentences in

a language, for example in the service of psy-

cholinguistic experiments.

In cross-linguistic studies, the term complex-

ity is generally used chiefly in two manners,

which Moran and Blasi (2014) follow Miestamo

(2006) in calling relative and absolute. Relative

2Code to train these models and reproduce results is

available at https://github.com/tpimentelms/

phonotactic-complexity.
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complexity metrics are those that capture the

difficulty of learning or processing language,

which Miestamo (2006) points out may vary

depending on the individual (hence, is relative

to the individual being considered). For example,

vowel harmony, which we will touch upon later

in the paper, may make vowels more predictable

for a native speaker, hence less difficult to pro-

cess; for a second language learner, however,

vowel harmony may increase difficulty of learning

and speaking. Absolute complexity measures, in

contrast, assess the number of parts of a linguistic

(sub-)system (e.g., number of phonemes or licit

syllables).
In the sentence processing literature, surprisal

(Hale, 2001; Levy, 2008) is a widely used measure

of processing difficulty, defined as the negative

log probability of a word given the preceding

words. Words that are highly predictable from

the preceding context have low surprisal, and

those that are not predictable have high surprisal.

The phonotactic measure we advocate for in §3

is related to surprisal, though at the phoneme

level rather than the word level, and over words

rather than sentences. Measures related to pho-

notactic probability have been used in a range

of psycholinguistic studies—see §2.4—though

generally to characterize single words within a

language (e.g., high versus low probability words)

rather than for cross-linguistic comparison as we

are here. Returning to the distinction made by

Miestamo (2006), we will remain agnostic in

this paper as to which class (relative or ab-

solute) such probabilistic complexity measures

fall within, as well as whether the trade-offs that

we document are bona fide instances of com-

plexity compensation or are due to something

else, for example, related to the communicative

capacity as hypothesized by Pellegrino et al.

(2011). We bring up this terminological distinction

primarily to situate our use of complexity within

the diverse usage in the literature.

Additionally, however, we will point out that

an important motivation for those advocating for

the use of absolute over relative measures to char-

acterize linguistic complexity incross-linguistic stud-

ies is a practical one. Miestamo (2006, 2008)

claims that relative complexity measures are

infeasible for broadly cross-linguistic studies

because they rely on psycholinguistic data, which

is neither common enough nor sufficiently easily

comparable across languages to support reliable

comparison. In this study, we demonstrate that

surprisal and related measures are not subject

to the practical obstacles raised by Miestamo,

independently of whichever class of complexity

they fall into.

2.2 Measures of Phonological Complexity

The complexity of phonemes has long been

studied in linguistics, including early work on the

topic by Zipf (1935), who argued that a phoneme’s

articulatory effort was related to its frequency.

Trubetzkoy (1938) introduced the notion of mark-

edness of phonological features, which bears some

indirect relation to both frequency and articula-

tory complexity. Phonological complexity can

be formulated in terms of language production

(e.g., complexity of planning or articulation) or

in terms of language processing (e.g., acoustic

confusability or predictability), a distinction often

framed around the ideas of articulatory complex-

ity and perceptual salience (see, e.g., Maddieson,

2009). One recent instantiation of this was the

inclusion of both focalization and dispersion

to model vowel system typology (Cotterell and

Eisner, 2017).

It is also natural to ask questions about the

phonological complexity of an entire language

in addition to that of individual phonemes—

whether articulatory or perceptual, phonemic or

phonotactic. Measures of such complexity that

allow for cross-linguistic comparison are non-

trivial to define. We review several previously

proposed metrics here.

Size of Phoneme Inventory. The most basic

metric proposed for measuring phonological com-

plexity is the number of distinct phonemes in the

language’s phonemic inventory (Nettle, 1995).

There has been considerable historical interest

in counting both the number of vowels and

the number of consonants (see, e.g., Hockett,

1955; Greenberg et al., 1978; Maddieson and

Disner, 1984). Phoneme inventory size has its

limitations—it ignores the phonotactics of the lan-

guage. It does, however, have the advantage that

it is relatively easy to compute without further

linguistic analysis. Correlations between the size

of vowel and consonant inventories (measured

in number of phonemes) have been extensively

studied, with contradictory results presented in

the literature—see, for example, Moran and Blasi
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(2014) for a review. Increases in phonemic inven-

tory size are also hypothesized to negatively

correlate with word length measured in phonemes

(Moran and Blasi, 2014). In Nettle (1995), an

inverse relationship was demonstrated between

the size of the segmental inventory and the mean

word length for 10 languages, and similar results

(with some qualifications) were found for a much

larger collection of languages in Moran and Blasi

(2014).3 We will explore phoneme inventory size

as a baseline in our studies in §5.

Markedness in Phoneme Inventory. A refine-

ment of phoneme inventory size takes into ac-

count markedness of the individual phonemes.

McWhorter (2001) argues that one should judge

the complexity of an inventory by counting the

cross-linguistic frequency of the phonemes in

the inventory, channeling the spirit of Greenberg

(1966). Thus, a language that has fewer phonemes,

but contains cross-linguistically marked ones such

as clicks, could be more complex.4 McWhorter

justifies this definition with the observation that

no attested language has a phonemic inventory

that consists only of marked segments. Beyond

frequency, Lindblom and Maddieson (1988)

propose a tripartite markedness rating scheme for

various consonants. In this paper, we are prin-

cipally looking at phonotactic complexity, though

we did examine the joint training of models across

languages, which can be seen as modeling some

degree of typicality and markedness.

Word Length. As stated earlier, word length,

measured in the number of phonemes in a word,

has been shown to negatively correlate with other

complexity measures, such as phoneme inventory

size (Nettle, 1995; Moran and Blasi, 2014). To

the extent that this is interpreted as being a com-

pensatory relation, this would indicate that word

length is being taken as an implicit measure

of complexity. Alternatively, word length has a

natural interpretation in terms of information rate,

3Note that by examining negative correlations between

word length and inventory size within the context of

complexity compensation, word length is also being taken

implicitly as a complexity measure, as we shortly make

explicit.
4McWhorter (2001) was one of the first to offer a

quantitative treatment of linguistic complexity at all levels.

Note, however, he rejects the equal complexity hypothesis,

arguing that creoles are simpler than other languages. As

our data contain no creole languages, we cannot address this

hypothesis; rather, we only compare non-creole languages.

so trade-offs could be attributed to communicative

capacity (Pellegrino et al., 2011; Coupé et al.,

2019).

Number of Licit Syllables. Phonological con-

straints extend beyond individual units to the

structure of entire words themselves, as we dis-

cussed above; so why stop at counting phonemes?

One step in that direction is to investigate the syl-

labic structure of language, and count the num-

ber of possible licit syllables in the language

(Maddieson and Disner, 1984; Shosted, 2006).

Syllabic complexity brings us closer to a more

holistic measure of phonological complexity.

Take, for instance, the case of Mandarin Chinese.

At first blush, one may assume that Mandarin has

a complex phonology due to an above-average-

sized phonemic inventory (including tones); closer

inspection, however, reveals a more constrained

system. Mandarin only admits two codas: /n/ and

/N/.

Although syllable inventories and syllable-

based measures of phonotactic complexity—

for example, highest complexity syllable type in

Maddieson (2006)—do incorporate more of the

constraints at play in a language versus segment-

based measures, (a) they remain relatively simple

counting measures; and (b) phonological con-

straints do not end at the syllable boundary.

Phenomena such as vowel harmony operate at the

word level. Further, the combinatorial possibilities

captured by a syllabic inventory, as discussed

by Maddieson (2009), can be seen as a sort of

categorical version of a distribution over forms.

Stochastic models of word-level phonotactics

permit us to go beyond simple enumeration of

a set, and characterize the distribution in more

robust information-theoretic terms.

2.3 Phonotactics

Beyond characterizing the complexity of pho-

nemes in isolation or the number of syllables,

one can also look at the system determining how

phonemes combine to form longer sequences in

order to create words. The study of which se-

quences of phonemes constitute natural-sounding

words is called phonotactics. For example, as

Chomsky and Halle (1965) point out in their oft-

cited example, brick is an actual word in English;5

5For convenience, we just use standard orthography to

represent actual and possible words, rather than phoneme

strings.
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blick is not an actual word in English, but is judged

to be a possible word by English speakers; and

bnick is neither an actual nor a possible word in

English, due to constraints on its phonotactics.

Psycholinguistic studies often use phonotac-

tic probability to characterize stimuli within a

language—see §2.4 for details. For example,

Goldrick and Larson (2008) demonstrate that both

articulatory complexity and phonotactic probabil-

ity influence the speed and accuracy of speech

production. Measures of the overall complexity of

a phonological system must thus also account for

phonotactics.

Cherry et al. (1953) tookanexplicitly information-

theoretic view of phonemic structure, including

discussions of both encoding phonemes as feature

bundles and the redundancy within groups of

phonemes in sequence. This perspective of phone-

mic coding has led to work on characterizing the

explicit rules or constraints that lead to redundancy

in phoneme sequences, including morpheme struc-

ture rules (Halle, 1959) or conditions (Stanley,

1967). Recently, Futrell et al. (2017) took such ap-

proaches as inspiration for a generative model over

feature dependency graphs. We, too, examine de-

composition of phonemes into features for repre-

sentation in our model (see §4.1), though in general

this only provided modeling improvements over

atomic phoneme symbols in a low-resourcescenario.

Much of the work in phonotactic modeling

is intended to explain the sorts of grammatical-

ity judgments exemplified by the examples of

Chomsky and Halle (1965) discussed earlier.

Recent work is typically founded on the commonly

held perspective that such judgements are gra-

dient,6 hence amenable to stochastic modeling

(e.g., Hayes and Wilson, 2008; Futrell et al.,

2017—though cf. Gorman, 2013). In this paper,

however, we are looking at phonotactic modeling

as the means for assessing phonotactic complexity

and discovering potential evidence of trade-offs

cross-linguistically, and are not strictly speaking

evaluating the model on its ability to capture such

judgments, gradient or otherwise.

2.4 Phonotactic Probability and Surprisal

A word’s phonotactic probability has been shown

to influence both processing and learning of

6Gradient judgments would account for the fact that

bwick is typically judged to be a possible English word

like blick but not as good. In other words, bwick is better than

bnick but not as good as blick.

language. Words with high phonotactic proba-

bilities (see brief notes on the operationalization

of this below) have been shown to speed speech

processing, both recognition (e.g., Vitevitch and

Luce, 1999) and production (e.g., Goldrick and

Larson, 2008). Phonotactically probable words in

a language have also been shown to be easier

to learn (Storkel, 2001, 2003; Coady and Aslin,

2004, inter alia); although such an effect is also

influenced by neighborhood density (Coady and

Aslin, 2003), as are the speech processing ef-

fects (Vitevitch and Luce, 1999). Informally,

phonological neighborhood density is the num-

ber of similar sounding words in the lexicon,

which, to the extent that high phonotactic proba-

bility implies phonotactic patterns frequent in the

lexicon, typically correlates to some degree with

phonotactic probability—that is, dense neighbor-

hoods will typically consist of phonotactically

probable words. Some effort has been made to

disentangle the effect of these two characteristics

(Vitevitch and Luce, 1999; Storkel et al., 2006;

Storkel and Lee, 2011, inter alia).

Within the psycholinguistics literature refer-

enced above, phonotactic probability was typically

operationalized by summing or averaging the fre-

quency with which single phonemes and phoneme

bigrams occur, either overall or in certain word

positions (initial, medial, final); and neighborhood

density of a word is typically the number of words

in a lexicon that have Levenshtein distance 1 from

the word (see, e.g., Storkel and Hoover, 2010).

Note that these measures are used to character-

ize specific words, that is, given a lexicon, these

measures allow for the designation of high ver-

sus low phonotactic probability words and high

versus low neighborhood density words, which

is useful for designing experimental stimuli. Our

bits per phoneme measure, in contrast, is used to

characterize the distribution over a sample of a

language rather than specific individual words in

that language.

Other work has made use of phonotactic

probability to examine how such processing

and learning considerations may impact the

lexicon. Dautriche et al. (2017) take phonotactic

probability as one component of ease of process-

ing and learning—the other being perceptual

confusability—that might influence how lexicons

become organized over time. They operationalize

phonotactic probability via generative phonotactic
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models (phoneme n-gram models and proba-

bilistic context-free grammars with syllable struc-

ture), hence closer to the approaches described in

this paper than the work cited earlier in this section.

Generating artificial lexicons from such models,

they find that real lexicons demonstrate higher

network density (as indicated by Levenshtein dis-

tances, frequency of minimal pairs, and other

measures) than the randomly generated lexicons,

suggesting that the pressure towards highly clus-

tered lexicons is driven by more than just pho-

notactic probability.

Evidence of pressure towards communication

efficiency in the lexicon has focused on both

phonotactic probability and word length. The in-

formation content, as measured by the probability

of a word in context, is shown to correlate with

orthographic length (taken as a proxy for pho-

nological word length) (Piantadosi et al., 2009,

2011). Piantadosi et al. (2012) show that words

with lower bits per phoneme have higher rates

of homophony and polysemy, in support of their

hypothesis that words that are easier to process

will have higher levels of ambiguity. Relatedly,

Mahowald et al. (2018) demonstrate, in nearly all

of the 96 languages investigated, a high correla-

tion between orthographic probability (as proxy

for phonotactic probability) and frequency, that is,

frequently used forms tend to be phonotactically

highly probable, at least within the word lengths

examined (3–7 symbols). A similar perspective

on the role of predictability in phonology holds

that words that are high probability in context

(i.e., low surprisal) tend to be reduced, and those

that are low probabilty in context are prone to

change (Hume and Mailhot, 2013) or to some

kind of enhancement (Hall et al., 2018). As

Priva and Jaeger (2018) point out, frequency,

predictabilty and information content (what they

call informativity and operationalize as expected

predictability) are related and easily confounded,

hence the perspectives presented by these papers

are closely related. Again, for these studies and

those cited earlier, such measures are used to

characterize individual words within a language

rather than the lexicon as a whole.

3 The Probabilistic Lexicon

In this work, we are interested in a hypothetical

phonotactic distribution plex : Σ∗ → R+ over the

lexicon. In the context of phonology, we interpret

Σ∗ as all ‘‘universally possible phonological

surface forms,’’ following Hayes and Wilson

(2008).7 The distribution plex, then, assigns a

probability to every possible surface formx ∈ Σ∗.

In the special case that plex is a log-linear model,

then we arrive at what is known as a maximum

entropy grammar (Goldwater and Johnson, 2003;

Jäger, 2007). A good distribution plex should

assign high probability to phonotactically valid

words, including non-existent ones, but little

probability to phonotactic impossibilities. For

instance, the possible English word blick should

receive much higher probability than ∗bnick,

which is not a possible English word. The lexicon

of a language, then, is considered to be generated

as samples without replacement from plex.

If we accept the existence of the distribution

plex, then a natural manner by which we should

measure the phonological complexity of language

is through Shannon’s entropy (Cover and Thomas,

2012)

H(plex) = −
∑

x∈Σ∗

plex(x) log plex(x) (1)

The units of H(plex) are bits as we take log to

be base 2. Specifically, we will be interested in

bits per phoneme, that is, how much information

each phoneme in a word conveys, on average.

3.1 Linguistic Rationale

Here we seek to make a linguistic argument for

the adoption of bits per phoneme as a metric

for complexity in the phonological literature. Bits

are fundamentally units of predictability: If the

entropy of your distribution is higher (i.e., more

bits), then it is less predictable, and if the entropy is

lower, (i.e., fewer bits), then it is more predictable

with an entropy of 0 indicating determinism.

Holistic Treatment. When we just count the

number of distinctions in individual parts of the

phonology, for example, number of vowels or

number of consonants, we do not get a holistic

picture of how these pieces interact. A simple

probabilistic treatment will inherently capture

nuanced interactions. Indeed, it is not clear

how to balance the number of consonants, the

number of vowels and the number of tones to

7Hayes and Wilson (2008) label Σ∗ as Ω.
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English Turkish English Turkish

ear kulak throat boğaz

rain yağmur foam köpük

summit zirve claw pençe

nail tırnak herd sürü

horse beygir dog köpek

Table 1: Turkish evinces two types of vowel

harmony, front-back and round-unround. Here

we focus on just front-back harmony. The exam-

ples in the table are such that all vowels in a

word are either back (ı, u, a, o) or front (i, ü, e,

ö), which is generally the case.

get a single number of phonological complexity.

Probabilistically modeling phonological strings,

however, does capture this. We judge the complex-

ity of a phonological system as its entropy.

Longer-Distance Dependencies. To the best of

our knowledge, the largest phonological unit

that has been considered in the context of cross-

linguistic phonological complexity is the syllable,

as discussed in §2.2. However, the syllable clearly

has limitations. It cannot capture, tautologically,

cross-syllabic phonological processes, which abound

in the languages of the world. For instance, vowel

and consonant harmony are quite common cross-

linguistically. Naturally, a desideratum for any

measure of phonological complexity is to consider

all levels of phonological processes. Examples

of vowel harmony in Turkish are presented in

Table 1.

Frequency Information. None of the previ-

ously proposed phonological complexity mea-

sures deals with the fact that certain patterns are

more frequent than others; probability models

inherently handle this as well. Indeed, consider

the role of the unvoiced velar fricative /x/ in

English; while not part of the canonical consonant

inventory, /x/ nevertheless appears in a variety

of loanwords. For instance, many native English

speakers do pronounce the last name of com-

poser Johann Sebastian Bach as /bax/. Moreover,

English phonology acts upon /x/ as one would

expect: Consider Morris Halle’s (1978) example

Sandra out-Bached Bach, where the second word

is pronounced /out-baxt/ with a final /t/ rather

than a /d/. We conclude that /x/ is in the consonant

inventory of at least some native English speakers.

However, counting it on equal status with the far

more common /k/ when determining complexity

seems incorrect. Our probabilistic metric covers

this corner case elegantly.

Relatively Modest Annotation Requirements.

Many of these metrics require a linguist’s anal-

ysis of the language. This is a tall order for

many languages. Our probabilistic approach only

requires relatively simple annotations, namely,

a Swadesh (1955)-style list in the international

phonetic alphabet (IPA) to estimate a distribution.

When discussing why he limits himself to counting

complexities, Maddieson (2009) writes:

[t]he factors considered in these

studies only involved the inventories of

consonant and vowel contrasts, the tonal

system, if any, and the elaboration of the

syllable canon. It is relatively easy to

find answers for a good many languages

to such questions as ‘how many conso-

nants does this language distinguish?’ or

‘how many types of syllable structures

does this language allow?’

The moment one searches for data on more

elaborate notions of complexity, for example, the

existence of vowel harmony, one is faced with the

paucity of data—a linguist must have analyzed

the data.

3.2 Constraints Reduce Entropy

Many phonologies in the world use hard con-

straints (e.g., a syllable final obstruent must

be devoiced or the vowels in a word must be

harmonic). Using our definition of phonological

complexity as entropy, we can prove a general

result that any hard-constraining process will

reduce entropy, thus making the phonology less

complex. The fact that this holds for any hard

contraint, be it vowel harmony or final-obstruent

devoicing, is a fact that conditioning reduces

entropy.

3.3 A Variational Upper Bound

If we want to compute Equation (1), we are

immediately faced with two problems. First, we

do not know plex: we simply assume the existence

of such a distribution from which the words of

the lexicon were drawn. Second, even if we did

know plex, computation of the H(plex) would
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be woefully intractable, as it involves an infinite

sum. Following Brown et al. (1992), we tackle

both of these issues together. Note that this line

of reasoning follows Cotterell et al. (2018) and

Mielke et al. (2019), who use a similar technique

for measuring language complexity at the sentence

level.

We start with a basic inequality from infor-

mation theory. For any distribution qlex with the

same support as plex, the cross-entropy provides

an upper bound on the entropy, that is

H(plex) ≤ H(plex, qlex) (2)

where cross-entropy is defined as

H(plex, qlex) = −
∑

x∈Σ∗

plex(x) log qlex(x) (3)

Note that Equation (2) is tight if and only if

plex = qlex. We still are not done, as Equation (3)

still requires knowledge of plex and involves an

infinite sum. However, we are now in a position

to exploit samples from plex. Specifically, given

x̃
(i) ∼ plex, we approximate

H(plex, qlex) ≈ −
1

N

N∑

i=1

log qlex(x̃
(i)) (4)

with equality if we let N → ∞. In information

theory, this equality in the limit is called the

asymptotic equipartition property and follows

easily from the weak law of large numbers. Now,

we have an empirical procedure for estimating an

upper bound on H(plex). For the rest of the paper,

we will use the right-hand side of Equation (4)

as a surrogate for the phonotactic complexity of a

language.

How to Choose qlex? Choosing a good qlex is

a two-step process. First, we choose a variational

family Q. Then, we choose a specific qlex ∈ Q by

minimizing the right-hand side of Equation (4)

qlex = argsupq∈Q
1

N

N∑

i=1

log q(x̃(i)) (5)

This procedure corresponds to maximum like-

lihood estimation. In this work, we consider two

variational families: (i) a phoneme n-gram model,

and (ii) a phoneme-level RNN language model.

We describe each in §4.1.

3.4 A Note on Types and Tokens

To make the implicit explicit, in this work

we will exclusively be modeling types, rather

than tokens. We briefly justify this discussion

from both theoretical and practical concerns.

From a theoretical side, a token-based model is

unlikely to correctly model an out of vocabulary

distribution as very frequent tokens often display

unusual phonotactics for historical reasons. A

classic example comes from English: Consider

the appearance of /D/. Judging by token-frequency,

/D/ is quite common as it starts some of the most

common words in the language: the, they, that,

and so forth. However, novel words categorically

avoid initial /D/. From a statistical point of view,

one manner to justify type-level modeling is

through the Pitman–Yor process (Ishwaran and

James, 2003). Goldwater et al. (2006) showed

that type-level modeling is a special case of the

stochastic process, writing that they ‘‘justif[y] the

appearance of type frequencies in formal analyses

of natural language.’’

Practically, using token-level frequencies, even

in a dampened form, is not possible due to the

large selection of languages we model. Most of

the languages we consider do not have corpora

large enough to get reasonable token estimates.

Moreover, as many of the languages we consider

have a small number of native speakers, and, in

extreme cases, are endangered, the situation is un-

likely to remedy itself, forcing the phonotactician

to rely on types.

4 Methods

4.1 Phoneme-Level Language Models

Notation. Let Σ be a discrete alphabet of sym-

bols from the IPA, including special beginning-

of-string and end-of-string symbols. A character

level language model (LM) models a probability

distribution over Σ∗

p(x) =

|x|∏

i=1

p (xi | x<i) (6)

Trigram LM. n-grams assume the sequence

follows a (n − 1)-order Markov model, condi-

tioning the probability of a phoneme on the

(n− 1) previous ones

fn(xi | x<i) =
count(xi, xi−1, . . . , xi+1−n)

count(xi−1, . . . , xi+1−n)
(7)
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where we assume the string x is properly padded

with beginning and end-of-string symbols.

The trigram model used in this work is estimated

as the deleted interpolation (Jelinek, 1980) of the

trigram, bigram, and unigram relative frequency

estimates

p3(xi | x<i) =
3∑

n=1

αnfn(xi | x<i) (8)

where the mixture parameters αn were estimated

via Bayesian optimization with a Gaussian prior

maximizing the expected improvement on a

validation set, as discussed by Snoek et al. (2012).

Recurrent Neural LM. Recurrent neural net-

works excel in language modeling, being able

to capture complex distributions p(xi | x<i)
(Mikolov et al., 2010; Sundermeyer et al.,

2012). Empirically, recent work has observed

dependencies on up to around 200 tokens

(Khandelwal et al., 2018). We use a character-

level Long Short-Term Memory (LSTM, Hochreiter

and Schmidhuber, 1997) language model, which

is the state of the art for character-level language

modeling (Merity et al., 2018).

Our architecture receives a sequence of tokens

x ∈ Σ∗ and embeds each token xi ∈ Σ using a

dictionary-lookup embedding table. This results

in vectors zi ∈ R
d which are fed into an

LSTM. This LSTM produces a high-dimensional

representation of the sequence, often termed

hidden states

hi = LSTM (zi−1, hi−1) ∈ R
d (9)

These representations are then fed into a softmax

to produce a distribution over the next character

p (xi | x<i) = softmax (Whi + b) (10)

where W ∈ R
|Σ|×d is a final projection matrix and

b ∈ R
|Σ| is a bias term. In our implementation,

h0 is a vector of all zeros and z0 is the lookup

embedding for the beginning-of-string token.

Phoneme Embedding LM. When developing

a phoneme-level recurrent neural LM, one can

use a base of phonemic features—for example,

Phoible (Moran et al., 2014)—to implement a

multi-hot embedding such that similar phonemes

will have similar embedding representations. A

phoneme i will have a set of binary attributes

a
(k)
i (e.g., stress, sonorant, nasal), each with its

Concept Language Word IPA

eye portuguese olho /oLu/

ear finnish korva /kOrVA/

give north karelian antua /AntUA/

tooth veps hambaz /hAmbAz/

black northern sami c̆áhppes /
>
Ùaahppes/

immediately hill mari töpök /tørøk/

Table 2: Sample of the lexicon in NorthEuraLex

corpus.

corresponding embedding representation z(k). A

phoneme embedding will, then, be composed by

the element-wise average of each of its features

lookup embedding

zi =

∑
k a

(k)
i z(k)

∑
k a

(k)
i

(11)

where a
(j)
i is 1 if phoneme i presents attribute j and

z(j) is the lookup embedding of attribute j. This

architecture forces similar phonemes, measured in

terms of overlap in distinctive features, to have

similar representations.

4.2 NorthEuraLex Data

We make use of data from the NorthEuraLex

corpus (Dellert and Jäger, 2017). The corpus is

a concept-aligned multi-lingual lexicon with data

from 107 languages. The lexicons contains 1016

‘‘basic’’ concepts. Importantly, NorthEuraLex is

appealing for our study as all the words are

written in a unified IPA scheme. A sample of the

lexicon is provided in Table 2. For the results

reported in this paper, we omitted Mandarin,

because no tone information was included in its

annotations, causing its phonotactics to be greatly

underspecified. No other tonal languages were

included in the corpus, so all reported results are

over 106 languages.

Why Is Base-Concept Aligned Important?

Making use of data that are concept-aligned

across the languages provides a certain amount

of control (to the extent possible) of the influence

of linguistic content on the forms that we are

modeling. In other words, these forms should be

largely comparable across the languages in terms

of how common they are in the active vocabulary

of adult speakers. Further, base concepts as

defined for the collection are more likely to

be lemmas without inflection, thus reducing the

9



influence of morphological processes on the

results.8

To test this latter assertion, we made use of the

UniMorph9 morphological database (Kirov et al.,

2018) to look up words and assess the percentage

that correspond to lemmas or base forms. Of the

106 languages in our collection, 48 are also in the

UniMorph database, and 46 annotate their lemmas

in a way that allowed for simple string matching

with our word forms. For these 46 languages,

on average we found 313 words in UniMorph

of the 1016 concepts (median 328). A mean

of 87.2% (median 93.3%; minimum 58.6%) of

these matched lemmas for that language in the

UniMorph database. This rough string matching

approach provides some indication that the items

in the corpus are largely composed of such base

forms.

Dataset Limitations. Unfortunately, there is

less typological diversity in our dataset than

we would ordinarily desire. NorthEuraLex draws

its languages from 21 distinct language families

that are spoken in Europe and Asia. This ex-

cludes languages indigenous to the Americas,10

Australia, Africa, and South-East Asia. Although

lamentable, we know of no other concept-aligned

lexicon with broader typological diversity that is

written in a unified phonetic alphabet, so we must

save studies of more typologically diverse sets of

languages for future work.

In addition, we note that the process of base

concept selection and identification of corres-

ponding forms from each language (detailed in

Dellert, 2015, 2017) was non-trivial, and some

of the corpus design decisions may have resulted

in somewhat biased samples in some languages.

For example, there was an attempt to minimize

the frequency of loanwords in the dataset, which

may make the lexicons in loanword heavy

languages, such as English with its extensive

Latinate vocabulary, somewhat less representative

of everyday use than in other languages. Similarly,

the creation of a common IPA representation over

this number of languages required choices that

8Most of the concepts in the dataset do not contain function

words and verbs are in the bare infinitive form – (e.g., have,

instead of to have) although there are a few exceptions.

For example, the German word hundert is represented as a

hundred in English.
9https://unimorph.github.io.

10Inuit languages, which are genetically related to the

languages of Siberia, are included in the lexicon.

could potentially result in corpus artifacts. As with

the issue of linguistic diversity, we acknowledge

that the resource has some limitations but claim

that it is the best currently available dataset for

this work.

Splitting the Data. We split the data at the con-

cept level into 10 folds, used for cross validation.

We create train-dev-test splits where the training

portion has 8 folds (≈ 812 concepts) and the

dev and test portions have 1 fold each (≈ 102
concepts). We then create language-specific sets

with the language-specific words for the concept to

be rendered. Cross-validation allows us to have all

1016 concepts in our test sets (although evaluated

using different model instances), and we do our

following studies using all of them.

4.3 Artificial Languages

In addition to naturally occurring languages, we

are also interested in artificial ones. Why? We

wish to validate our models in a controlled setting,

quantifying the contribution of specific linguis-

tic phenomena to our complexity measure. Thus,

developing artificial languages, which only dif-

fer with respect to one phonological property, is

useful.

The Role of Final-Obstruent Devoicing. Final-

obstruent devoicing reduces phonological com-

plexity under our information-theoretic metric.

The reason is simple: There are fewer valid syl-

lables as all those with voiced final obstruents

are ruled out. Indeed, this point is also true of

the syllable counting metric discussed in §2.2.

One computational notion of complexity might

say that the complexity of the phonology is equal

to the number of states required to encode the

transduction from an underlying form to a surface

form in a minimal finite-state transduction. Note

that all Sound Pattern of English (SPE)-style rules

may be so encoded (Kaplan and Kay, 1994). Thus,

the complexity of the phonotactics could be said

to be related to the number of SPE-style rules

that operate. In contrast, under our metric, any

process that constrains the number of possibilities

will, inherently, reduce complexity. The studies in

§5.3 allow us to examine the magnitude of such a

reduction, and validate our models with respect to

this expected behavior.

We create two artificial datasets without final-

obstruent devoicing based on the German and

Dutch portions of NorthEuraLex. We reverse the

10
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Figure 2: Per-phoneme complexity vs average word length under both a trigram and an LSTM language model.

Figure 3: Conventional measures of phonological

complexity vs average word length. These complexity

measures are based in inventory size.

process, using the orthography as a guide. For

example, the German /tsu:k/ is converted to /tsu:g/

based on the orthography Zug.

The Role of Vowel Harmony. Like final

obstruent devoicing, vowel harmony plays a role

in reducing the number of licit syllables. In

contrast to final obstruent devoicing, however,

vowel harmony acts cross-syllabically. Consider

the Turkish lexicon, where most, but not all, basic

lexical items obey vowel harmony. Processes

like this reduce the entropy of plex and, thus,

can be considered as creating a less complex

phonotactics.

For vowel harmony, we create 10 artificial

datasets by randomly replacing each vowel in

Correlation

Measure Pearson r Spearman ρ

Number of:

phonemes −0.047 −0.054
vowels −0.164 −0.162
consonants 0.030 0.045

Bits/phoneme:

unigram −0.217 −0.222
trigram −0.682 −0.672
LSTM −0.762 −0.744

Table 3: Pearson and Spearman rank corre-

lation coefficients between complexity mea-

sures and average word length in phoneme

segments.

a word with a new sampled (with replacement)

vowel from that language’s vowel inventory. This

breaks all vowel harmony, but keeps the syllabic

structure.

5 Results

5.1 Study 1: Bits Per Phoneme Negatively

Correlates with Word Length

As stated earlier, Pellegrino et al. (2011) inves-

tigated a complexity trade-off with the infor-

mation density of speech. From a 7-language

study they found a strong correlation (R = −0.94)

between the information density and the syllabic

complexity of a language. One hypothesis adduced

to explain these findings is that, for functional
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Figure 4: Kernel density estimate (KDE) of the average

phonotactic complexity per word across 106 different

languages. Different languages tend to present similar

complexities (bits per word).

reasons, the rate of linguistic information is very

similar cross-linguistically. Inspired by their study,

we conduct a similar study with our phonotactic

setup. We hypothesize that the bits per phoneme

for a given concept correlates with the number

of phonemes in the word. Moreover, the bits per

word should be similar across languages.

We consider the relation between the average

bits per phoneme of a held-out portion of a lan-

guage’s lexicon, as measured by our best language

model, and the average length of the words in that

language. We present the results in Figures 2 and 3

and in Table 3. We find a strong correlation under

the LSTM LM (Spearman’s ρ = −0.744 with

p < 10−19). At the same time, we see only a weak

correlation under conventional measures of pho-

notactic complexity, such as vowel inventory size

(Spearman’s ρ = −0.162 with p = 0.098). In

Figure 4, we plot the kernel density estimate and

histogram densities (both 10 and 100 bins) of

word-level complexity (bits per word).

5.2 Study 2: Possible Confounds for

Negative Correlations

One possible confound for these results is that

phonemes later in a word may in general have

higher probability given the previous phonemes

than those earlier in the string. This sort of posi-

tional effect was demonstrated in Dutch (van Son

and Pols, 2003), where position in the word

accounted for much of the variance in segmental

information.11 To ensure that we are not sim-

11We briefly note that the van Son and Pols (2003) study

did not make use of a train/dev/test split of their data, but

Correlation

Measure Pearson r Spearman ρ

Per Word:

all languages −0.269 −0.312
each language (avg) −0.220 −0.257
each language (min) −0.561 −0.607

Per Language:

Fake (avg) −0.270 −0.254
Fake (min) −0.586 −0.568
Real −0.762 −0.744

Table 4: Pearson and Spearman rank correlation

coefficients between complexity measures and

word length in phoneme segments. All corre-

lations are statistically significant with p < 10−8.

ply replicating such a positional effect across

many languages, we performed several additional

analyses.

Truncated Words. First, we calculated the bits-

per-phoneme for just the first three positions in the

word, and then looked at the correlation between

this word-onset bits per phoneme and the average

(full) word length in phoneme segments. In other

words, for the purpose of calculating bits-per-

phoneme, we truncated all words to a maximum

of three phonemes, and in such a way explicitly

eliminated the contribution of positions later in

any word. Using the LSTM model, this yielded a

Spearman correlation of ρ = −0.469 (p < 10−7) ,

in contrast to ρ = −0.744 without such truncation

(reported in Table 3). This suggests that there

is a contribution of later positions to the effect

presented in Table 3 that we lose by eliding them,

but that even in the earlier positions of the word

we are seeing a trade-off with full average word

length.

Correlation with phoneme position. We next

looked to measure a position effect directly, by

calculating the correlation between word position

and bits for that position across all languages. Here

we find a Spearman correlation of ρ = −0.429
(p < 10−200), which again supports the contention

that later positions in general require fewer

bits to encode. Nonetheless, this correlation is

rather simply analyzed raw relative frequency over their

Dutch corpus. As a result, all positions beyond any word

onset that is unique in their corpus would have probability

1, leading to a more extreme position effect than we would

observe using regularization and validating on unseen forms.
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Complexity

Model Orig Art Diff

trigram:

German 3.703 3.708 0.005(0.13%)
Dutch 3.607 3.629 0.022(0.58%)†

LSTM:

German 3.230 3.268 0.038(1.18%)†

Dutch 3.161 3.191 0.030(0.95%)†

Table 5: Complexities for original and artificial

languages when removing final-obstruent devoic-

ing. † represents an statistically significant differ-

ence with p < 0.05

still weaker than the per-language word length

correlation (of ρ = −0.744).

Per-Word Correlations. We also calculated

the correlation between word length and bits per

phoneme across all languages (without averaging

per language here). The Spearman correlation

between these factors—at the word level using

all languages—is ρ = −0.312 (p < 10−19).

Analyzing each language individually, there is an

average Spearman’s ρ = −0.257 (p < 10−19)

between bits per phoneme and word length.

The minimum negative (i.e., highest magnitude)

correlation of any language in the set is ρ =
−0.607. These per word correlations are reported

in the upper half of Table 4.

Permuted ‘‘Language’’ Correlations. Finally,

to determine if our language effects perhaps arise

due to the averaging of word lengths and bits per

phoneme for each language, we ran a permutation

test on languages. Weshuffle words (with their pre-

calculated bits per phoneme values) into 106 sets

with the same size as the original languages—thus

creating fake ‘‘languages’’. We take the average

word length and bits per phoneme in each of these

fake languages and compare the correlation—

returning to the ‘‘language’’ level this time—with

the original correlation. After running this test

for 104 permutations, we found no shuffled set

with an equal or higher Spearman (or Pearson)

correlation than the real set. Thus, with a strong

confidence (p < 10−4) we can state there is a

language level effect. Average and minimum

negative correlations for these ‘‘fake’’ languages

(as well as the real set for ease of comparison) are

presented in the lower half of Table 4.

Figure 5: Complexities for natural and artifical lan-

guages when removing vowel harmony. A paired

permutation test showed all differences present statis-

tical difference with p < 0.01.

5.3 Study 3: Constraining Languages

Reduces Phonotactic Complexity

Final-obstruent devoicing and vowel harmony

reduce the number of licit syllables in a language,

hence reducing the entropy. To determine the

magnitude that such effects can have on the mea-

sure for our different model types, we conduct

two studies. In the first, we remove final-obstruent

devoicing from the German and Dutch languages

in NorthEuraLex, as discussed in §4.3. In the

second study, we remove vowel harmony from 10

languages that have it,12 as also explained in §4.3.

After deriving two artificial languages without

obstruent devoicing from both German and

Dutch, we used 10-fold cross validation to train

models for each language. The statistical relevance

of differences between normal and artificial

languages was analyzed using paired permutation

tests between the pairs. Results are presented in

Table 5. We see that the n-gram can capture

this change in complexity for Dutch, but not for

German. At the same time, the LSTM shows

a statistically significant increase of ≈ 0.034 bits

per phoneme when we remove obstruent devoicing

from both languages. Figure 5 presents a similar

impact on complexity from vowel harmony re-

moval, as evidenced by the fact that all points

fall above the equality line. Average complex-

ity increased by ≈ 0.62 bits per phoneme (an

approximate 16% entropy increase), as measured

by our LSTM models.

12The languages with vowel harmony are: bua, ckt, evn,

fin, hun, khk, mhr, mnc, myv, tel, and tur.
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Correlation

Measure Pearson r Spearman ρ

Number of:

phonemes −0.214 −0.095
vowels −0.383 −0.367
consonants −0.147 −0.092

Bits/phoneme:

unigram −0.267 −0.232
trigram −0.621 −0.520
LSTM −0.778 −0.526

Table 6: Pearson and Spearman correlation

between complexity measures and word length

in phoneme segments averaged across language

families.

In both of these artificial language scenarios,

the LSTM models appeared more sensitive to the

constraint removal, as expected.

5.4 Study 4: Negative Trade-off Persists

Within and Across Families

Moran and Blasi (2014) investigated the corre-

lation between the number of phonological units

in a language and its average word length across a

large and varied set of languages. They found that,

although these measures of phonotactic complex-

ity (number of vowels, consonants or phonemes

in a language) are correlated with word length

when measured across a varied set of languages,

such a correlation usually does not hold within

language families. We hypothesize that this is due

to their measures being rather coarse approxima-

tions to phonotactic complexity, so that only large

changes in the language would show significant

correlation given the noise. We also hypothesize

that our complexity measure is less noisy, hence

should be able to yield significant correlations

both within and across families.

Results in Table 3 show a strong correlation

for the LSTM measure, while they show a weak

one for conventional measures of complexity. As

stated before, Moran and Blasi (2014) found that

vowel inventory size shows a strong correlation to

word length on a diverse set of languages, but, as

mentioned in §4.2, our dataset is more limited than

desired. To test if we can mitigate this effect we

average the complexity measures and word length

per family (instead of per language) and calculate

the same correlations again. These results are

Spearman ρ

Family LSTM Vowels # Langs

Dravidian −1.0
∗

−0.894 4
Indo-European −0.662

∗
−0.218 37

Nakh-Daghestanian −0.771
†

−0.530 6

Turkic −0.690
†

−0.773
†

8

Uralic −0.874
∗

0.363
†

26
∗

Statistically significant with p < 0.01
†

Statistically significant with p < 0.1

Table 7: Spearman correlation between complexity

measures and average word length per language family.

Phonotactic complexity in bits per phoneme presents

very strong intra-family correlation with word length

in three of the five families. Size of vowel inventory

presents intra-family correlation in Turkic and Uralic.

presented in Table 6 and show that when we

average these complexity measures per family

we indeed find a stronger correlation between

vowel inventory size and average word length,

although with a higher null hypothesis probability

(Spearman’s ρ = −0.367 with p = 0.111).

We also see our LSTM based measure still

shows a strong correlation (Spearman’s ρ =
−0.526 with p = 0.017).

We now analyze these correlations intra

families, for all family languages in our

dataset with at least 4 languages. These results

are presented in Table 7. Our LSTM based

phonotactic complexity measure shows strong

intra-family correlation with average word length

for all five analyzed language families (−0.662 ≥
ρ ≥ −1.0 with p < 0.1). At the same time, vowel

inventory size only shows a negative statistically

significant correlation within Turkic.

5.5 Study 5: Explicit Feature

Representations Do Not Generally

Improve Models

Table 3 presents strong correlations when using an

LSTM with standard one-hot lookup embedding.

Here we train LSTMs with three different pho-

neme embedding models: (1) a typical Lookup

embedding, in which each Phoneme has an asso-

ciated embedding; (2) a phoneme features based

embedding, as explained in §4.1; (3) the concate-

nation of the Lookup and the Phoneme embedding.

We also train these models both using independent

models for each language, and with independent
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Model Complexity Spearman ρ

n-Grams:

unigram 4.477 −0.222
trigram 3.270 −0.672

Independent Embeddings:

Lookup 2.976 −0.744
Phoneme 2.992 −0.741
Lookup + Phoneme 2.975 −0.752

Shared Embeddings:

Lookup 2.988 −0.743
Phoneme 2.977 −0.744
Lookup + Phoneme 2.982 −0.740

Table 8: Average cross-entropy across all lan-

guages and the correlation between complexity and

average word length for different models.

models, but sharing embedding weights across

languages.

We first analyze these model variants under the

same lens as used in Study 1. Table 8 shows

the correlations between the complexity mea-

sure resulting from each of this models and

the average number of phonemes in a word.

We find strong correlations for all of them

(−0.740 ≥ ρ ≥ −0.752 with p < 10−18). We

also present in Table 8 these models’ cross

entropy, averaged across all languages. At least

for the methods that we are using here, we derived

no benefit from either more explicit featural

representations of the phonemes or by sharing

the embeddings across languages.

We also investigated scenarios using less

training data, and it was only in very sparse

scenarios (e.g., using just 10% of the training

used in our standard trials, or 81 example words)

where we observed even a small benefit to explicit

feature representations and shared embeddings.

6 Conclusion

We have presented methods for calculating a well-

motivated measure of phonotactic complexity:

bits per phoneme. This measure is derived from

information theory and its value is calculated using

the probability distribution of a language model.

We demonstrate that cross-linguistic comparison

is straightforward using such a measure, and find

a strong negative correlation with average word

length. This trade-off with word length can be

seen as an example of complexity compensation

or perhaps related to communicative capacity.
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phonétiques, Éditions A. Francke S. A.

John McWhorter. 2001. The world’s simplest

grammars are creole grammars. Linguistic

Typology, 5(2):125–66.

Stephen Merity, Nitish Shirish Keskar, and

Richard Socher. 2018. An analysis of neural

language modeling at multiple scales. arXiv

preprint arXiv:1803.08240.

Sebastian J. Mielke, Ryan Cotterell, Kyle Gorman,

Brian Roark, and Jason Eisner. 2019. What

kind of language is hard to language-model?

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 4975–4989, Florence, Italy. Association

for Computational Linguistics.

Matti Miestamo. 2006. On the feasibility of

complexity metrics. In FinEst Linguistics, Pro-

ceedings of the Annual Finnish and Estonian

Conference of Linguistics, pages 11–26.

Matti Miestamo. 2008, Grammatical complex-

ity in a cross-linguistic perspective. In Matti

Miestamo, Kaius Sinnemaki, and Fred Karlsson,

editors, Language complexity: Typology, con-

tact, change, pages 23–41. John Benjamins,

Amsterdam, The Netherlands.

Tomáš Mikolov, Martin Karafiát, Lukáš
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