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Abstract
Building on recent advances in semantic pars-
ing and text simplification, we investigate the
use of semantic splitting of the source sen-
tence as preprocessing for machine translation.
We experiment with a Transformer model and
evaluate using large-scale crowd-sourcing ex-
periments. Results show a significant increase
in fluency on long sentences on an English-to-
French setting with a training corpus of 5M
sentence pairs, while retaining comparable ad-
equacy. We also perform a manual analysis
which explores the tradeoff between adequacy
and fluency in the case where all sentence
lengths are considered.1

1 Introduction

In this paper, we apply a semantic decomposition
approach for Neural Machine Translation (NMT)
and demonstrate that it can tackle two of the main
limitations of state-of-the-art NMT. The first is
the translation of long sentences, which is a re-
current issue arising in NMT evaluation (Sutskever
et al., 2014; Cho et al., 2014; Pouget-Abadie et al.,
2014; Su et al., 2018; Currey and Heafield, 2018).
The second limitation is that current research in
NMT mostly focuses on translating single sen-
tences to single sentences, and is evaluated accord-
ingly. However, Li and Nenkova (2015) showed
that using several sentences to translate a source
sentence is sometimes the preferable option. There-
fore, the simplicity of the output could be an im-
portant quality marker for translation.

In our model, each source sentence is split (or
decomposed) into semantic units, namely scenes,

∗ This work was done when being affiliated to the Hebrew
University of Jerusalem

1The code and the evaluation data are avail-
able at https://github.com/eliorsulem/
Semantic-Structural-Decomposition-for-NMT
This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

building on the Direct Semantic Splitting algorithm
(DSS; Sulem et al., 2018b) that uses the Universal
Conceptual Cognitive Annotation (UCCA; Abend
and Rappoport, 2013) scheme for semantic repre-
sentation. Scenes are then translated separately and
concatenated for generating the final translation
output, which may consist of several sentences.

Our main experiments use the state-of-the-art
Transformer model (Vaswani et al., 2017) in
English-to-French settings. We also include ex-
periments with other MT architectures and training
set sizes, and evaluate our results using the crowd-
sourcing protocol of Graham et al. (2016) (§4). We
obtain a significant increase in fluency on sentences
longer than 30 words on the newstest2014 test cor-
pus for English-to-French translation, with a train-
ing corpus of 5M sentence pairs, without degrading
adequacy. Considering all sentence lengths, we ob-
serve a tradeoff between fluency and adequacy. We
explore it using a manual analysis, suggesting that
the decrease in adequacy is partly due to the loss
of cohesion resulting from the splitting (§6).

We then proceed to investigate the case of simu-
lated low-resource settings as well as the effect of
other sentence splitting methods, including Split-
and-Rephrase models (Aharoni and Goldberg,
2018; Botha et al., 2018) (§7). The latter yield
considerably lower scores than the use of simple
semantic rules, supporting the case for corpus-
independent simplification rules.

2 Related Work

Sentence segmentation for MT. Segmenting
sentences into sub-units, based on punctuation and
syntactic structures, and recombining their output
has been explored by a number of statistical MT
works (Xiong et al., 2009; Goh and Sumita, 2011;
Sudoh et al., 2010). In NMT, Pouget-Abadie et al.
(2014) segmented the source using ILP, tackling
English-to-French neural translation. They con-

https://github.com/eliorsulem/Semantic-Structural-Decomposition-for-NMT
https://github.com/eliorsulem/Semantic-Structural-Decomposition-for-NMT
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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cluded that segmentation improves overall trans-
lation quality but quality may decrease if the seg-
mented fragments are not well-formed. The con-
catenation may sometimes degrade fluency and
result in errors in punctuation and capitalization.
Kuang and Xiong (2016) attempted to find split
positions such that no reordering will be necessary
in the target side for Chinese-English. We differ
from these approaches in using a separate text sim-
plification module that can be applied to different
kinds of MT systems, and using a semantically-
motivated segmentation. Moreover, we allow the
final output to be composed of several sentences,
taking into account the structural simplicity aspect
of translation quality (Li and Nenkova, 2015).
Text Simplification for MT. Sentence splitting,
which goes beyond segmentation and denotes the
conversion of one sentence into one or several sen-
tences, is the main structural operation studied in
Text Simplification (TS). While MT preprocessing
was one of the main motivations for the first auto-
matic simplification system (Chandrasekar et al.,
1996), only few works empirically explored the
usefulness of simplification techniques for MT.

Mishra et al. (2014) used sentence splitting as a
preprocessing step for Hindi-to-English translation
with a dependency parser and additional modules
for gerunds and shared arguments. Štajner and
Popović (2016) performed structural and lexical
simplification as part of a preprocessing step for
English-to-Serbian MT. Manual correction is car-
ried out before translation. Štajner and Popović
(2018) investigated the use of TS as a process-
ing step for NMT, focusing on syntax-based rules
that address relative clauses (Siddhathan, 2011) for
English-to-German and English-to-Serbian trans-
lation. Investigating the translation of 106 out of
1000 sentences that have been modified by simpli-
fication, they find that the automatic simplification
of English relative clauses can improve translation
only if simplifications are quality-controlled or cor-
rected in post-processing. We differ from this work
in using semantic rules and by translating indepen-
dently each of the obtained sentences.

3 Semantic Decomposition

UCCA (Universal Cognitive Conceptual Annota-
tion; Abend and Rappoport, 2013) is a semantic
annotation scheme rooted in typological and cogni-
tive linguistic theory (Dixon, 2010b,a; Langacker,
2008). It aims to represent the main semantic phe-
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Figure 1: SemSplit pipeline. After the application of the Di-
rect Semantic Splitting, which requires UCCA parsing, each
of resulted sentences is independently translated using a Trans-
former system, previously trained on English-French paral-
lel data. The obtained translations are directly concatenated,
forming the final output.

nomena in the text, abstracting away from syntax.
Formally, UCCA structures are directed acyclic

graphs whose nodes (or units) correspond either
to the leaves of the graph or to several elements
viewed as a single entity according to some seman-
tic or cognitive consideration. A scene is UCCA’s
notion of an event or a frame, and is a unit that cor-
responds to a movement, an action or a state which
persists in time. Every scene contains one main
relation, which can be either a Process or a State.
Scenes may contain one or more Participants, in-
terpreted in a broad sense to include locations and
destinations. For example, the sentence “John went
home” has a single scene whose Process is “went”.
The two Participants are “John” and “home”.

Scenes can provide additional information about
an established entity (Elaborator scenes), com-
monly participles or relative clauses. For example,
“(child) who went home” is an Elaborator scene in
“The child who went home is John”. A scene may
also be a Participant in another scene. For example,
“John went home” in the sentence: “He said John
went home”. In other cases, scenes are annotated
as parallel scenes (H), which are flat structures
and may include a Linker (L), as in: “WhenL [he
arrives]H , [he will call them]H”.
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For UCCA parsing, we use TUPA, a transition-
based parser (Hershcovich et al., 2017) (specifi-
cally, the TUPABiLSTM model).

We build on the DSS rule-based semantic split-
ting method (Sulem et al., 2018b), and use Rule #1
which targets parallel scenes. We further explore
the use of the additional kinds of scenes in Section
7 for less conservative sentence splitting. In Rule
#1, parallel scenes of a given sentence are extracted,
split into different sentences and concatenated ac-
cording to the order of appearance. More formally,
given a decomposition of a sentence S into parallel
scenes Sc1, Sc2, · · ·Scn (indexed by the order of
the first token), we obtain the following rule, where
“|” is the sentence delimiter:

S −→ Sc1|Sc2| · · · |Scn

As UCCA allows argument sharing between
scenes, the rule may duplicate the same sub-span
of S across sentences. For example, the rule will
convert “He came back home and played the piano”
into “He came back home”|“He played the piano.”.

Using UCCA-based sentence splitting in our
model is motivated by the corpus-based analysis
presented in Sulem et al. (2015) where it is shown
that a scene in English is generally translated to a
scene in French.

4 Experimental Setup

Corpora We experiment on the full English-
French training data provided in the WMT setting
(Bojar et al., 2014), which corresponds to about
39M sentence pairs after cleaning.2 We refer to
this setting as the FullTrain Setting. We also exper-
iment on the LessTrain Setting where less training
data is involved by removing the large UN Corpus
and the 109 French-English Corpus from the train-
ing data, obtaining a new training corpus of about
5M sentence pairs. The development set is New-
stest 2013, that consists of 3000 sentences. The test
set is Newstest2014, consisting of 3003 sentences.

Systems To investigate the use of semantic struc-
tural decomposition for NMT, we propose a two-
step method. First, the original sentence is split
into several sentences the DSS rule (see § 3), im-
plemented with the UCCA software.3. Then, each
of the obtained sentences is translated separately

2Cleaning, tokenization and truecasing as well as detok-
enization and detruecasing of the outputs are performed using
the Moses tools: http://www.statmt.org/moses/.

3https://github.com/danielhers/ucca

by the OpenNMT-py implementation of the Trans-
former (Vaswani et al., 2017).4 The translated sen-
tences are concatenated to form the final output.
We name the combined system Transformer Sem-
Split and compare it to the Transformer Baseline,
where no splitting is performed. The pipeline ar-
chitecture is summarized in Figure 1.

The Transformer is trained for 200K training
steps, both in the FullTrain and the LessTrain set-
tings. The development data was used for selecting
the model with the highest accuracy (where per-
plexity was used in cases of ties). The system was
evaluated on the development data every 10K steps.

For comparison, we also implement our system
in the case where the Transformer is replaced by
another NMT system, namely a two-layers LSTM
model and the Moses phrase-based machine transla-
tion system (Koehn et al., 2007). The neural model,
also implemented with OpenNMT-py, is trained
and validated in the same way as the Transformer.
For Moses, the default model is used in a single
setting (LessTrain) with MGIZA word alignment,5

and KenLM language model (Heafield, 2011) us-
ing the monolingual data provided in WMT 2014,
and MERT tuning on the development set. Here
too we compare the combined systems to baseline
systems which do not perform decomposition.

4.1 Evaluation Using Crowdsourcing
In addition to the limitations of BLEU evalua-
tion (Papineni et al., 2002) in the context of MT
(Callison-Burch et al., 2006, and much subsequent
work), BLEU may correlate negatively with out-
put quality in cases that involve sentence splitting
(Sulem et al., 2018a). We therefore evaluate using
crowdsourcing, and follow the protocol proposed
by Graham et al. (2016). Evaluation was carried out
using Amazon Mechanical Turk.6 See Appendix A
for a detailed description.
5 Results

The results in both FullTrain and LessTrain settings
are presented in Table 1.

In terms of fluency, LessTrain Transformer Sem-
Split ranks first in this setting and significantly out-
performs the corresponding baseline system (52.5
vs. 42.5, p < 10−4).7 For Moses too, the use

4https://github.com/OpenNMT/OpenNMT-py
5https://github.com/moses-smt/mgiza
6https://www.mturk.com/
7Significance is computed using the Wilcoxon one-sided

rank sum test applied on the standardized scores, following
Graham et al. (2016).

http://www.statmt.org/moses/
https://github.com/danielhers/ucca
https://github.com/OpenNMT/OpenNMT-py
https://github.com/moses-smt/mgiza
https://www.mturk.com/
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System Adequacy Fluency
All Long All Long

Transformer Baseline 48.8 48.0 57.1 49.4
SemSplit 40.0 28.7 43.5 37.1

LSTM Baseline 41.2 50.1 43.2 46.8
SemSplit 33.1 34.7 39.3 37.5

Transformer Baseline 47.5 41.7 42.5 39.6
SemSplit 39.8 40.1 52.5 52.1

LSTM Baseline 40.6 37.5 47.3 52.9
SemSplit 36.8 34.9 46.6 44.5

Moses Baseline 40.1 45.4 38.1 30.1
SemSplit 34.9 43.2 40.2 50.4

Table 1: Raw system adequacy and fluency scores of the
SemSplit systems and the baselines on the FullTrain (top) and
LessTrain (bottom) settings. For each system, the raw score is
presented, both when considering every sentence length (All)
and when focusing on sentences longer than 30 words (Long).

System Adequacy Fluency

Transformer Baseline 47.0 47.5
SemSplit1+2 29.7 32.5

NeuralWiki-Split 12.9 6.0
NeuralWEB-SPLIT 4.1 5.1

LSTM Baseline 40.6 38.2
SemSplit1+2 24.3 34.2

Transformer Baseline 50.6 55.1
SemSplit1+2 25.3 39.1

LSTM Baseline 45.6 46.4
SemSplit1+2 31.9 31.0

Moses Baseline 38.2 38.3
SemSplit 30.8 23.5

Table 2: Raw system adequacy and fluency scores of the
SemSplit1+2 systems and the baselines on the FullTrain (top)
and LessTrain (bottom) setting.

of semantic sentence splitting increases fluency
(40.2 vs. 38.1), but not significantly. On the other
hand, where splitting is used as preprocessing, ad-
equacy scores decrease. In particular, LessTrain
Transformer Baseline significantly outperforms the
SemSplit counterpart (47.5 vs. 39.8, p < 10−4).

For sentences longer than 30, SemSplit Trans-
former in the LessTrain setting significantly out-
performs the baseline in terms of fluency (52.1 vs.
39.6, p = 0.02), with only a non-significant (small)
degradation in adequacy (41.7 vs. 40.1, p = 0.46).

6 Manual Analysis

To further zoom in on the obtained adequacy scores,
we decompose adequacy into two dimensions:
preservation of semantic content in the level of
scenes and the cohesion of the text (i.e., whether
the different scenes are cohesively linked together).
To do so, we manually annotate a sample of 150
sentences from the original test set with a similar
proportion of sentences in different length cate-
gories as the original corpus, and assess the se-
mantic preservation at the scene-level for each of
the extracted scenes, as well as the sentence-level
cohesion (see Appendix B for the protocol).

For LessTrain, we find that 66.2% of the scenes

are deemed equally preserved by the SemSplit and
Baseline systems. On the other hand, 20.9% of
the scenes are better preserved by the baseline and
10.7% of the scenes are better preserved by the
SemSplit system. Averaging over scenes that be-
long to the same sentence, we find that 68% of the
sentences are either better preserved by SemSplit
or equally preserved. Regarding cohesion, Sem-
Split and the Baseline have a comparable cohesion
for 59% of the sentences. The Baseline has a bet-
ter cohesion for 36% of the sentences, while it is
improved by SemSplit in 5% of the cases.

The analysis suggests that cohesion has a central
role in the decrease (and the non-increase for long
sentences) of the adequacy scores. Therefore the
tradeoff between adequacy and fluency observed
when all sentence lengths are considered can be
explained by a tradeoff between the cohesion and
structural simplicity aspects of translation quality.

The different aspects of the translation quality
are further illustrated in Table 3, where two input
and output examples are presented, focusing on the
LessTrain setting. In example (1), the SemSplit
output is similar to the Baseline one at the lexical
level but differs in its structure, the SemSplit sys-
tem behaving as a cross-lingual simplifier at the
structural level. On the other hand, linkers such as
”so” are not translated in the case of SemSplit. In
example (2), the word ”interference” is correctly
translated by SemSplit, while it is translated into
”ingérence” (”intervention”) in French, which is
wrong in this context.

7 Additional Experiments
We first explore the performance of the proposed
system in low-resource machine translation, by fol-
lowing the approach of Hoang et al. (2018) and
randomly select 1M and 100K sentence pairs from
the entire English-French training set, defining the
1MTrain and 100KTrain settings respectively. Tun-
ing and testing remain as before.

The resulted raw scores for the 1MTrain and
100KTrain settings are presented in Appendix D,
Table 4 . We observe that while in 1MTrain, the
SemSplit models obtain low results compared to
the respective baselines, the SemSplit models ob-
tain higher fluency in 100KTrain, though not sig-
nificantly.

Second, to further explore the sentence split-
ting component, we replicate our model, separat-
ing both parallel and embedded scenes before the
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(1) Input: Hamas has defended its use of tunnels in the fight against Israel, stating that the aim was to
capture Israeli soldiers so they could be exchanged for Palestinian prisoners.

Baseline (LessTrain)
Output: Le Hamas a défendu son utilisation de tunnels dans la lutte contre Israël, affirmant que
l’objectif était de capturer des soldats israéliens afin qu’ils puissent être échangés contre des
prisonniers palestiniens.
Literal translation: Hamas has defended its use of tunnels in the fight against Israel, stating
that the aim was to capture Israeli soldiers so they could be exchanged for Palestinian prisoners.

SemSplit (LessTrain)
Output: Le Hamas a défendu son utilisation de tunnels dans la lutte contre Israël. Le Hamas a
déclaré que l’objectif était de capturer des soldats israéliens. Ils pourraient être échangés contre
des prisonniers palestiniens.
Literal translation: Hamas has defended its use of tunnels in the fight against Israel. Hamas
stated that the aim was to capture Israeli soldiers. They could be exchanged for Palestinian
prisoners.

(2) Input: Douglas Kidd of the National Association of Airline Passengers said he believes interference
from the devices is genuine even if the risk is minimal.

Baseline (LessTrain)
Output: Douglas., de l’Association nationale des compagnies aériennes, a déclaré qu’il con-
sidérait que l’ingérence des appareils était réelle, même si le risque était minimal.
Literal translation: Douglas., from the Association National of the companies airline, claimed
that he believed that the intervention of the devices was genuine, even if the risk is minimal.

SemSplit (LessTrain)
Output: Douglas., de l’Association nationale des compagnies aériennes, a déclaré qu’ il estimait
que l’interférence avec les appareils était réelle. Le risque est minimal.
Literal translation: Douglas., from the Association national of the companies airline, claimed
that he believed the interference with the devices was genuine. The risk is minimal.

Table 3: Input and output examples for the Baseline and SemSplit system in the LessTrain setting, together with an English
literal translation of the French outputs.

translation. We use Rule #2 from the DSS system
(Sulem et al., 2018b) addressing Elaborator scenes
(See Appendix C), which we further extend to also
include Participant scenes. We denote the resulting
system with Transformer SemSplit1+2. We also
compare the model with two additional sentence
splitting systems, where DSS is replaced with the
Seq2Seq Copy 512 model for Split-and-Rephrase
(Aharoni and Goldberg, 2018) trained on the WEB-
SPLIT corpus (Narayan et al., 2017) (version 1.0),
and the same model trained on the WikiSplit cor-
pus (Botha et al., 2018). Each of the obtained
new sentences is translated by the FullTrain Trans-
former system. Finally the translated sentences are
directly concatenated. The resulting systems are
denoted with Transformer NeuralWEB-SPLIT and
Tranformer NeuralWiki-Split.

The results for the FullTrain and LessTrain set-
tings are presented in Table 2. As in the case where
only the first rule is used, adequacy scores decrease
following splitting. On the other hand, in this case
the SemSplit models do not have higher fluency
scores than their corresponding baselines, proba-
bly because of the more aggressive splitting com-
pared to #Rule 1 alone. For both adequacy and
fluency, the Split-and-Rephrase models obtain very
low scores. Observing their outputs, we find many
wrong splits and word repetitions at the splitting
phase, which affects the final output. As this trend
is not observed on the standard WEB-SPLIT test
corpus, these results may suggest a domain adap-

tation effect, which supports the case for corpus-
independent sentence splitting.

8 Conclusion

This work investigates the application of seman-
tic structural decomposition for NMT, proposing
an intermediate way between sentence segmen-
tation used in MT and TS preprocessing, where
each of the semantic components is separately
translated. Using the Transformer and large-scale
crowd-sourcing evaluation, we obtain an increase
in fluency on long sentences on an English-to-
French setting without significantly lowering ade-
quacy. We further observe increased fluency when
evaluating on all the sentences, albeit at the cost
of adequacy. Future work concerns the recombina-
tion of the output sentences, inserting the linkage
between them, so as not to lose semantic content.
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Appendix A: Crowdsourcing Evaluation
Protocol

We follow the protocol proposed by Graham
et al. (2016) for evaluation via Amazon Mechan-

ical Turk8 and use their pre-processing and post-
processing software9. Adequacy (where the output
is compared to the reference) and fluency (where
only the output appears) are evaluated indepen-
dently, according to a 100-point slider, in different
experiments. Each of the experiments is composed
of 10 HITs (Human Intelligence Tasks) where each
HIT includes 100 French sentences which are com-
pared to the reference in the case of adequacy and
separately evaluated in the case of fluency. These
100 sentences include 70 MT system outputs ex-
tracted randomly from the test set, 10 reference
translations, corresponding to 10 of the 70 system
outputs, 10 bad reference translations, correspond-
ing to a different 10 of the 70 system outputs and
10 repeat MT system outputs, drawn from the re-
maining 50 of the original 70 system outputs. The
role of the references, bad references and repeat
outputs is to control the quality of the evaluation
and to not consider ratings from annotators who
don’t pass the threshold, based on these two main
assumptions (see (Graham et al., 2016) for more
details):
A: When a consistent judge is presented with a set
of assessments for translations from two systems,
one of which is known to produce better transla-
tions than the other, the score sample of the better
system will be significantly greater than that of the
inferior system.
B: When a consistent judge is presented with a
set of repeat assessments, the score sample across
the initial presentations will not be significantly
different from the score sample across the second
presentations. We here require that each HIT will
be answered by 10 different annotators, who are
self-assessed native French speakers.

Main setting (§4 and §5): In each of the two
crowdsourcing experiments, which correspond re-
spectively to the evaluation of adequacy and flu-
ency in the case where only Rule #1 is applied,
we include 10 systems: 4 Transformer systems,
namely Transformer SemSplit in both FullTrain
and LessTrain settings and the corresponding base-
lines; 4 LSTM systems (LSTM SemSplit in the
two settings and the corresponding baselines) and
2 phrase-based systems (Moses in the LessTrain
setting and its corresponding baseline).

8https://www.mturk.com/
9https://github.com/ygraham/

crowd-alone
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Low resource setting (§7): In each of the ade-
quacy and fluency experiments, 12 systems are
involved: the Transformer SemSplit, LSTM Sem-
Split and Moses SemSplit systems and their cor-
responding baselines, each implemented in both
1MTrain and 100KTrain settings.

Splitting exploration setting (§7): In each of
the adequacy and fluency experiments, we in-
clude 12 systems: 6 Transformer systems, namely
Transformer SemSplit1+2 in both FullTrain and
LessTrain settings, the corresponding baselines, as
well as the two neural splitting systems, 4 LSTM
systems (LSTM SemSplit1+2 in the two settings
and the corresponding baselines) and 2 phrase-
based systems (Moses in the LessTrain setting and
its corresponding baseline).

Appendix B: Manual Analysis Protocol

We perform a manual result analysis of an extract
of the data, using the following protocol. First, we
sub-sample 150 sentences from the original test set
(3003 sentences), such that it includes the same
proportion of sentences that contain 0 to 10 words
(18% of sentences), 10 to 20 words (35% of the
sentences), 20 to 30 words (28%), 30 to 40 words
(14%), 40 to 50 words (4%) and more than 50
words (1%), as in the original corpus. Then, to
abstract away from possible parsing errors, the new
corpus is manually annotated by a single expert
UCCA annotator using the UCCAApp annotation
tool (Abend et al., 2017). For each of the 150
sentences, each scene segmentation (according to
the UCCA manual annotation) is compared to the
Transformer SemSplit output and the Transformer
Baseline output for this sentence by a another an-
notator with high proficiency in both English and
French (one of the authors of the paper) to analyze
the relative preservation of the input scenes in the
two systems. We use a 3 point Likert scale for the
comparison, assessing if the SemSplit scene preser-
vation is worse, similar or better, compared to the
baseline. In the same way, the cohesion of the out-
puts (defined as the links between their different
parts) is also compared using a 3 point Likert scale.

Appendix C: Rule #2 in Direct Semantic
Splitting (Sulem et al., 2018b)

Minimal Centers in UCCA (Abend and Rap-
poport, 2013): With respect to units which are
not scenes, the category Center denotes the seman-
tic head. For example, “dogs” is the center of the

expression “big brown dogs”, and “box” is the cen-
ter of “in the box”. There could be more than one
Center in a unit, for example in the case of coordi-
nation, where all conjuncts are Centers. Sulem et al.
(2018b) defined the minimal center of a UCCA unit
u to be the UCCA graph’s leaf reached by starting
from u and iteratively selecting the child tagged as
Center.

Rule #2: Given a sentence S, the second rule
extracts Elaborator scenes and corresponding min-
imal centers. The Elaborator scenes are then con-
catenated to the original sentence where the em-
bedded scenes, except for the minimal center they
elaborate are removed. Pronouns such as “who”,
“which” and “that” are also removed.

Formally, if {(Sc1, C1) · · · (Scn, Cn)} are the
Elaborator scenes of S and their corresponding
minimal centers, the rewrite is

S −→ S −
n⋃

i=1

(Sci − Ci)|Sc1| · · · |Scn

where S −A is S without the unit A. For example,
in the case of Elaborator scenes, this rule converts
the sentence “He observed the planet which has
14 known satellites” to “He observed the planet|
Planet has 14 known satellites.”.

After the extraction of Parallel scenes and Elabo-
rator scenes, the resulting simplified Parallel scenes
are placed before the Elaborator scenes.

Appendix D: Low-resource Settings

System Adequacy Fluency

Transformer1M
Baseline 56.4 69.6
SemSplit 47.1 64.0

LSTM1M
Baseline 52.3 66.5
SemSplit 46.0 65.5

Moses1M
Baseline 45.3 65.6
SemSplit 38.6 61.2

Transformer100K
Baseline 29.9 56.5
SemSplit 29.8 57.6

LSTM100K
Baseline 37.1 56.7
SemSplit 29.9 60.0

Moses100K
Baseline 39.3 60.4
SemSplit 34.5 61.2

Table 4: Raw system adequacy and fluency scores of the
SemSplit systems and the baselines on the 1MTrain (top) and
100KTrain (bottom) settings.


