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Abstract

Author obfuscation is the task of masking the
author of a piece of text, with applications
in privacy. Recent advances in deep neural
networks have boosted author identification
performance making author obfuscation more
challenging.

Existing approaches to author obfuscation are
largely heuristic. Obfuscation can, however,
be thought of as the construction of adver-
sarial examples to attack author identifica-
tion, suggesting that the deep learning architec-
tures used for adversarial attacks could have
application here. Current architectures are
proposed to construct adversarial examples
against classification-based models, which in
author identification would exclude the high-
performing similarity-based models employed
when facing large number of authorial classes.

In this paper, we propose the first deep
learning architecture for constructing adversar-
ial examples against similarity-based learners,
and explore its application to author obfusca-
tion. We analyse the output for both success
in obfuscation and language acceptability, as
well as comparing the performance with some
common baselines, showing promising results
in finding a balance between safety and sound-
ness of the perturbed texts.

1 Introduction

The ability of machine learning to infer informa-
tion about the author of a piece of text raises is-
sues about privacy in textual data. Blogs, reviews,
even tweets can be significantly revealing when
authors follow textual authorial patterns, which can
lead to disclosure of sensitive information. This
has led to real-world problems, such as with Ama-
zon’s machine learning-based recruitment system,

This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

which was discontinued when it turned out to dis-
advantage female candidates.1 Cases like this have
generated interest in NLP in concealing authorial
characteristics such as gender or age, for example
by producing representations that make this infor-
mation difficult to infer (Li et al., 2018).

Author identification is the task of inferring the
actual identity of the author. The potential number
of author candidates can be very large, making au-
thor identification different from author profiling
where the possible values of an attribute (e.g. gen-
der) are typically limited to a small closed set, as
in standard classification tasks. Depending on the
number of included authorial classes, approaches in
author identification are either classification-based
or similarity-based, in the framing of Stamatatos
(2009). Similarity-based approaches are proven
to be better suited when facing large numbers of
authors (Koppel et al., 2011), and have also un-
derpinned several successful methods in the annual
PAN authorship shared tasks2 such as Seidman
(2013) and Khonji and Iraqi (2014).

Author obfuscation is the task of concealing the
identity of an author. This task is fairly challeng-
ing even for humans (McDonald et al., 2012), as
authors are often not aware of hidden patterns in
their writing; and the computational task is rela-
tively underexplored. Some work has been carried
out as part of a PAN authorship obfuscation task,
since 2016, while other research has been indepen-
dent of this. These approaches have included us-
ing backtranslation or heuristic application of para-
phrase rules (Rosso et al., 2016; Hagen et al., 2017;
Potthast et al., 2018), and more recently applying
heuristic solution methods to the task framed as an
optimization problem (Bevendorff et al., 2019; Li
et al., 2019).

1https://bit.ly/2ycdnVV
2https://pan.webis.de/: shared tasks that are run

annually on various aspects of authorship related tasks.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://bit.ly/2ycdnVV
https://pan.webis.de/
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Author obfuscation can be seen as the generation
of adversarial examples to attack an author identifi-
cation system. Work in other areas of adversarial
example generation (Iyyer et al., 2018; Alzantot
et al., 2018; Xiao et al., 2020; Bai et al., 2020) has
seen rapid progress with the application of deep
learning, and could potentially be adapted here. For
example, Zhao et al. (2018b) define a GAN-style
architecture to generate ‘natural’ adversarial exam-
ples that — unlike approaches searching the input
space — works on the dense representation of each
data point. Dense representations lie on the man-
ifold that defines the data distribution and finding
close points to them leads to natural adversarial
examples. They apply this both to image classi-
fication tasks and a standard three-class natural
language inference task, producing natural-looking
adversarial examples.

Such architectures have so far only been de-
fined for producing adversarial examples against
classification-based learners (limited number of
classes). In author identification, this would ex-
clude the high-performing similarity-based ap-
proaches. In this paper we introduce SIAMAO,
an architecture that can generate adversarial exam-
ples against a similarity-based learner (specifically
a deep Siamese network (Saedi and Dras, 2019))
and evaluate whether it can obfuscate against au-
thorship identification. SIAMAO draws on ideas
from Variational Autoencoders (VAEs), and the
specific use of them by Bowman et al. (2016) for
generating novel sentences close to some input, and
from the Adversarially Regularized Autoencoders
(ARAEs) of Zhao et al. (2018b): the intuition here
is for the autoencoder to regenerate close to the
original text but with some perturbation to fool an
authorship identification system.

Our main contributions are: (i) A method for
integrating Siamese networks into VAEs in order to
generate adversaries against similarity based mod-
els, and testing it under author obfuscation. (ii) A
performance comparison on properties of the ob-
fuscated text between our model and baselines: our
focus is on how well the obfuscated text can fool
an author identification system, how much the ob-
fuscator changes the text, and how acceptable the
resulting text is. We find that SIAMAO provides a
promising deep learning approach to this task.

2 Previous Work
2.1 Author Identification
There has been longstanding interest in determining
the identity of authors of pieces of texts. Early work

has been surveyed by Stamatatos (2009), and much
of the activity on the problem has been carried out
in the context of PAN authorship tasks (Kestemont
et al., 2019, for example). Other work has occurred
outside that context, such as the high-performing
CNN approach of Ruder et al. (2016).

While most approaches tackle this as a classifi-
cation task using standard machine learning clas-
sifiers, this is only suitable where the number of
authors is small and known in advance, as argued
by Koppel et al. (2011). An alternative approach is
similarity-based models, where a metric is used to
measure similarity between texts; this is appropri-
ate for large number of authors, which is the context
of the work in the present paper. Similarity-based
methods include the WritePrints method (Abbasi
and Chen, 2008) and that of Koppel et al. (2011).
The latter, for example, represents documents as
bags of character n-grams, and measures distances
between documents over repeated samples by vari-
ous fixed metrics (e.g. cosine similarity, Ruzicka).

An end-to-end trainable deep learning author ob-
fuscation architecture needs a deep learning com-
ponent for author identification. A deep learning
similarity-based approach to author identification
has been proposed by Saedi and Dras (2019), using
a Siamese network. This approach outperforms
alternatives on up to 5000 authors, and is suitable
for our work.

2.2 Author Obfuscation

Author obfuscation is a less explored area which
shares interest with fields including style transfer
(Prabhumoye et al., 2018) or attribute masking
(Reddy and Knight, 2016). The goal is to change
or perturb a text, so that the accuracy of a specific
authorship inference mechanism is worsened while
the modified text conveys the original message.

Early research like that of Kacmarcik and Ga-
mon (2006) worked at the level of machine learning
features, proposing to eliminate those that are more
effective in classification; this, however, resulted in
mostly unreadable texts. At the level of working di-
rectly with text, one approach uses backtranslation:
input text is translated to a pivot language and trans-
lated back to the original one, producing a more
or less similar text. The result is greatly affected
by the availability of a successful bidirectional ma-
chine translator (Rao et al., 2000; Prabhumoye
et al., 2018).

Other approaches have been largely rule-based
or heuristic in nature. Most rule-based obfusca-
tors are designed against specific techniques. The
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PAN organization has included author obfuscation
among the authorial tasks. The 7 participants of
PAN2018 author obfuscation were also mostly rule-
based, but with different levels of aggressiveness
(Potthast et al., 2018), and they varied in how well
they defeated inference attackers and preserved
the essence of the original text. In a recent com-
prehensive model, Bevendorff et al. (2019) also
approached obfuscation from a verification per-
spective. This heuristic model calculates Jensen-
Shannon distance over 3-gram frequency represen-
tations, iteratively applies perturbation operators
(e.g. char-flip, deletion, context-free synonymy),
picks the best nodes in the search space, and contin-
ues until the original classification result changes.
They proposed “operator cost” to keep the text mod-
ification minimum and as minimally disruptive as
possible. This was evaluated on the relatively small
datasets of the PAN tasks. Outside of the PAN
context (and of NLP research in general), Li et al.
(2019) proposed TextBugger, a different heuristic
model that first extracts a list of most important
words based on the effect they have on the classifi-
cation, and then modifies the selected words.

2.3 Adversarial Examples
Author obfuscation can be viewed as constructing
adversarial examples against an authorship iden-
tification inference attacker: this is precisely the
viewpoint of TextBugger. However, as noted above,
TextBugger takes a heuristic approach to this, while
state of the art approaches to constructing adversar-
ial examples in many tasks involve deep learning
architectures (Iyyer et al., 2018; Alzantot et al.,
2018; Xiao et al., 2020; Bai et al., 2020). And even
though these are well explored in the context of
continuous representations that occur in image pro-
cessing, with operators like affine transformations
or lighting changes, it is less straightforward for the
discrete nature of text. While there is some existing
work, we note that all aim to construct adversarial
examples against a classification model that typi-
cally handles only a small number of classes.

One possibility is to use auto-encoders: Minor
data distortions can be formalized as an optimiza-
tion problem to minimize the classification accu-
racy. Such optimization has been proven successful
in image processing (Biggio et al., 2013; Goodfel-
low et al., 2014). In the context of textual adversar-
ial examples, approaches take ideas from a range of
sources, including encoder-decoder architectures,
variational auto-encoders and GANs (Kusner et al.,
2017; Pu et al., 2016; Pol et al., 2019, for exam-

ple). A key work that we draw on in this paper is
that of Zhao et al. (2018b). Rather than working
directly in the text space, they search for adver-
saries that lie on the data manifold: in their text
application, this attacks a (three-class) textual en-
tailment classifier. First, projections of data points
are learnt, then the distance between each adver-
sary and the closest real data point is measured in
the vector space to choose the best fake sample.
Finally, the selected adversary is mapped back to
the input space. Their system combines ideas from
encoder-decoder architecture, VAEs and GANs,
and has two main training objectives: (1) bring-
ing the encoder and generator output close to each
other; and (2) making the sampled noise (i.e. gen-
erator’s input) less random by using a module they
call the ‘Inverter’. The inverter is a network that
learns to sample close-to-input points in the data
manifold. Their search algorithm identifies the best
adversary by incrementally increasing the search
space till the classification result of the sampled
point(s) is different from that of the original input
data.

While not explicitly cast as adversarial example
generation, the process of paraphrase generation
can be seen in this light. Gupta et al. (2018) pro-
posed a VAE-LSTM containing 2 LSTM-encoders
which encode both the original sentence and the
paraphrase. Encoded vectors are used in the sam-
pling process of the VAE. On the decoder side,
there is an encoder for original sentences and a
decoder for paraphrase generation that is fed the
embedding vector and the encoder output. In our
approach, our encoder is a CNN but we also use
two encoded vectors for sampling, and the modified
embeddings are used by the decoder.

An optimization-based alternative to these deep
learning approaches was proposed by Alzantot et al.
(2018), using population-based optimization. They
encode the sentences and perturb them in the vec-
tor space. Unlike the above work, they propose a
gradient-free optimization by employing genetic al-
gorithms. Perturbation is at the word level based on
semantic similarity of candidates and original vec-
tors going through cross-over and mutation instead
of expanding the search space iteratively. We use a
similar notion of perturbation operators, including
cross-over.

3 SiamAO

Here we present SIAMAO, an author obfuscation
neural network that integrates a large scale Siamese
author identifier in a VAE architecture to generate
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Figure 1: (a) A pair of texts (S1, S2) are mapped into the vector-space (V1, V2) . Perturbation operator (continues
red arrow) modifies one of the inputs. This changes the verification result from Y to N . S′

2 is the perturbation
output when mapped back to the text space. (b) Schematic view of SiamAO; the network is composed of a Siamese
author identifier and a VAE which share an encoder.

adversarial text. This system takes a pair of texts
as input and generates an adversary with the aim
of changing the author identification results. Fig-
ure 1 shows (a) a high-level schema of the process
and (b) the components of SIAMAO respectively.
A key innovation is incorporation of a similarity-
based author identification approach, in contrast
to other work described in §2 that only constructs
adversarial examples against classification-based
inference.

3.1 Author Identification

Our similarity-based author identification compo-
nent is taken from Saedi and Dras (2019). The
model consists of (1) a dual encoding sub-network
and (2) a decision sub-network. The encoding sub-
network (a deep CNN model) receives an input pair
of texts (S1, S2) and maps each Si into the vector
space (Vi). The decision sub-network compares
V1 and V2 and generates a similarity score (more
information available in supplementary material).
We adopt the version of the model that proved best
overall in the source work for large numbers of
authors: the encoding sub-networks are character-
level rather than word-level, and L1 distance is
employed in the decision network. This similarity-
based model produces a score between a pair of
texts that can be interpreted as an answer to the
author verification problem: are these two texts
by the same author? These two components of the
author identification system are marked as Encoder
and Siamese Decision in Figure 1-(b) respectively.

3.2 Author Obfuscation

Our overall approach to generating adversarial ex-
amples draws on the VAE architecture of Gupta
et al. (2018) for paraphrase generation, and the
idea of Zhao et al. (2018a) to generate perturba-
tions in the encoded space. Implementation details

can be found in supplementary material.
Encoder-Decoder A successful VAE for text
perturbation requires a strong encoder as well as a
decoder capable of perturbation. In our proposed
architecture, shown in Figure 1-(b), the author iden-
tifier network and the VAE share the encoder. This
results in an authorial feature aware decoder since
the encoder is trained on author verification. SIA-
MAO’s decoder is trained for a) normal decoding
(i.e. as a decoder: loss is 0, when input=output=
target) and for b) obfuscation (i.e. as a perturber:
loss is 0, when input 6=output=target). In both cases,
the input to the decoder is sampled from Vi. How-
ever, when trained for obfuscation, perturbation
operators modify the sampler’s input and output.
Sampler In finding adversarial examples, we
have two aims: (1) like Zhao et al. (2018b), we
look for points that lie close to the original in
terms of the manifold that defines the data distri-
bution; and (2) we look for adversaries that can
change the author verification results while pre-
serving the original message. In other words, we
need to generate a piece of text that is very close
to the original one but different enough to change
the verification result. In SiamAO, when training
the decoder for normal decoding, Vi is directly
used for sampling (i.e. to generate V ′ from the
normal distribution). However, when training the
decoder for obfuscation, unlike non-Siamese mod-
els, we have access to two sample inputs (V1, V2)
which can help to remain within the acceptable
area3 in the vector space. We start by interpo-
lating between these two inputs. Specifically, if
V1 = [v11, . . . , v1n] and V2 = [v21, . . . , v2n], and
V1 > V2 and the distance between them is is

3There are infinite data points in the vector space, not all
of them can be mapped back to a meaningful piece of text; an
acceptable area in the vector space has similar distribution to
the input space.
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d, either of V ′
1 = [v11 − d′, . . . , v1n − d′] and

V ′
2 = [v21 + d′, . . . , v2n + d′] (where d′ = d/3)

can be used by the sampler.4

Perturbation Operators To combine embed-
ding and sampled vectors in the decoding step, we
could concatenate them as in most VAE models.
There is a risk, however, that the network focuses
on the embedding part and mostly ignores the sam-
pled vector which results in very few changes in
the text such that it is unable to mislead the classi-
fier. To add perturbations to the vectors, we adopt
some of the techniques of Alzantot et al. (2018). In
SiamAO, when training the decoder for obfusca-
tion, after moving the original vector and sampling
as explained above, we use cross-over as the final
perturbation step. Cross-over, taken from genetic
algorithms, keeps vector elements mostly the same,
only making changes at specific indices. The in-
puts to the cross-over operator are the V ′ vector
and the character-level embedding.5 After cross-
over, we sum the two vectors. Alternative methods
are compared in §5.
Objectives The first part of the objective is a
standard one for VAEs, the reconstruction loss, in
Eqn (1). In terms of generating adversarial exam-
ples, training our generative model consists of (1)
training for normal decoding and (2) training for
perturbation. In the latter, the decoder learns to
make changes to the input and the sampler learns
to pick a vector that flips the Siamese author ver-
ification original (binary) decision (yOD) to the
perturbed decision (yPD), in Eqn (2). Eqn (3) com-
bines these two component losses.

lcons = (Eqφ(V ′|S)[log pθ(S|V ′)]−KL(qφ(V
′|S) ‖ p(V ′))

(1)
lsampler = MSE(yPD, |1− yOD|) (2)

lpert = α× lcons + (1− α)× lsampler (3)

Eqn (1) provides a lower bound on the model ev-
idence p(S|θ, φ), KL stands for Kullback–Leibler
divergence. α is set to 0.5 in all our experiments,
making the backpropagation uniform on the sam-
pler and the decoder.
Obfuscation Training For the perturbation ob-
jective, we generate training data by applying
widely used text modification operators very simi-
lar to rule-based systems such as Bevendorff et al.
(2019) and Li et al. (2019). We emphasise that

4We conducted experiments with the average vector and
the 1/3 distance shift as explained here. We leave finding the
best interpolation for further study.

5Specifically, we apply five crossovers between the V ′ and
the embedding vectors at random positions.

unlike common rule-based or heuristic techniques,
these operators are merely to generate the data en-
tries as the target while training the decoder for
obfuscation. Our selected modification rules can
be categorized into four classes: shape similarity
(e.g. ä→a, O→ 0), sound similarity (e.g. ee→
ea), swap (e.g. ie→ ei) and punctuation modifica-
tion (e.g. . → .. or :”→ :). As Bevendorff et al.
(2019), we only apply these changes to a subset
of instances in each text piece, which we select
uniformly randomly with probability 1/3.

4 Experimental Setup
4.1 Evaluation Framework

There is not yet a standard evaluation framework
for this kind of work. Hence we observe various dif-
ferent evaluation techniques in the literature. This
has also resulted in project specific definitions. For
instance, in both PAN2018 and the Text-Bugger
system, mis-spelled words are considered as valid
“paraphrasing” due to the little impact they cause
on human understanding. They argue character-
level perturbation (i.e. mis-spelled words) are vi-
sually and semantically similar to the original ones
(e.g. their and thier, some and s0me) and can de-
liver the original message (Potthast et al., 2018; Li
et al., 2019; Rawlinson, 2007). Work on adversar-
ial example attacks has two broad types of evalua-
tion. Misclassification or attack success (how well
the adversarial examples fool the inference mecha-
nism); and utility or imperceptibility (how well the
adversarial examples preserve important aspects of
the original). Work on author obfuscation gener-
ally fits with this, although in disparate ways; the
PAN tasks,6 for example, consider safety (broadly
misclassification), soundness (textual entailment
between original and adversarial texts) and sensi-
bleness (inconspicuousness, or looking like regular
text); the latter two are related to the typical utility
criteria. Working on large authorial classes, we
could not employ the exact set-up in PAN evalua-
tion, however, our evaluation metrics also assess
misclassification and utility.
4.1.1 Misclassification
We calculate “Perturbation Wins” (PW ): the aver-
age proportion of times where a perturbed vector or
text misleads an authorship identification inference
model (Alzantot et al., 2018; Potthast et al., 2018).
Robust Vector Representation We first look at
a system-internal evaluation. As noted above, the

6https://pan.webis.de/clef18/
pan18-web/author-obfuscation.html

 https://pan.webis.de/clef18/pan18-web/author-obfuscation.html
 https://pan.webis.de/clef18/pan18-web/author-obfuscation.html
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system objective is to generate a vector representa-
tion which is similar to the original message while
eliminating clues to authorship. Having (S1, S2) as
an input pair with (V1, V2) as their corresponding
representations in vector space, Vi is perturbed to
V ′
i which is then sent back to Siamese decision by

replacing Vi. It shows whether the Siamese author
verification’s original decision on (V1, V2) is dif-
ferent from the decision on (V1, V

′
2) and (V ′

1 , V2).
This gives a preliminary result: if the system can-
not produce vectors that can fool the decider, it will
not produce successfully perturbed texts.

Perturbation Win in Text Space The author
identification work of Saedi and Dras (2019) had as
its primary evaluation, following the first work on
deep Siamese networks (Koch et al., 2015),N -way
one-shot classification: a ‘query’ text is compared
against texts by N authors, one of whom is also the
author of the query text. The N -way task is tackled
by assigning pairwise similarities to the query text
and each author, in effect carrying outN author ver-
ification attempts. N -way inference performance is
evaluated by the average accuracy over 150N -way
classifications. We consider N ∈ {3, 5, 10, 50}.

Our misclassification evaluation in text space in-
volves calculating perturbation wins on both author
verification and N -way classification. In the N -
way evaluation, a perturbed query text is presented.
We use two authorship inference models for this:
the standalone Siamese authorship identification
system of Saedi and Dras (2019), and the system of
Koppel et al. (2011). This latter is a key inference
attacker in PAN tasks, and also the only similarity-
based system with available code. Koppel works
on iterative representation of pieces of text using a
subset of all extracted character 4-grams and sim-
ilarity measurements (Ruzicka metric) to identify
the author of a piece of text (Koppel et al., 2011).

In addition to the N -way evaluation above, we
evaluated misclassification under Koppel with 1000
authors, randomly selected from SIAMAO’s test-
set. (Koppel does not require training, apart from
counting character n-grams, and so is fast to use
for many authors.) In the results we call this setup
K-LG.

4.1.2 Utility: Text similarity
We use the following measures to quantify the sim-
ilarity between original and perturbed texts. (1)
Bleu score (BL) (Papineni et al., 2002), measur-
ing n-gram overlap between original and generated
texts, previously used to assess difference in style
transfer (Shen et al., 2017). (2) Edit distance (ED),

considering the texts as strings and counting the
minimum number of operations required to trans-
form the original texts into their perturbed counter-
parts (Przybocki et al., 2006; Li et al., 2019). This
metric is believed to be used in commercial trans-
lation memory models (Bloodgood and Strauss,
2014). (3) Euclidean Distance (EC) between the
vector representations: closeness in vector space
typically corresponds to greater semantic similarity
(Li et al., 2019; Alzantot et al., 2018).

4.1.3 Utility: Language acceptability

The perturbed text should be natural-looking, in
terms of grammaticality / acceptability. Prediction
of language acceptability is now a standard NLP
task, e.g. the CoLA task that is part of the GLUE
benchmark (Wang et al., 2019). However, that is a
binary task: sentences are judged acceptable or not.
There is, instead, a notion of gradient grammatical-
ity, where sentence grammaticality is measured on
a scale of 0 to 1 (Lau et al., 2014); this could be
more suited to capturing the changes we might see
in our adversarial examples.

BERT has previously been fine-tuned to produce
a high-performing model for the CoLA task (De-
vlin et al., 2019). For gradient grammaticality,
a variety of models predating BERT have been
trained on the Statistical Models of Grammaticality
(SMOG) dataset,7 and have been shown to corre-
late fairly well with human judgements (Lau et al.,
2014, 2017). Given the improvements over earlier
models shown by BERT on the CoLA task, we built
our model of language naturalness by fine-tuning
BERT-large on the SMOG dataset. We refer to
this model as BERT-SMOG. To validate our BERT-
SMOG, we compare with models proposed in Lau
et al. (2017) on the original dataset: its Pearson’s r
correlation with human judgements is around 0.8,
much higher than their best scoring model (which
predates contextual LMs).

In this evaluation category, we also provide the
scores for the more common binary acceptability.
For this, we fine-tuned BERT only on the CoLA
dataset (BERT-CoLA). Evaluating BERT-CoLA on
CoLA testset, our results are in line with the pub-
lished benchmarks (Devlin et al., 2019). Final
evaluations are done on a subset of 700 randomly
selected sentences from the Fanfiction database go-
ing through backtranslation, RAND modification
and SIAMAO.

7Project website: https://clasp.gu.se/about/
people/shalom-lappin/smog.

https://clasp.gu.se/about/people/shalom-lappin/smog
https://clasp.gu.se/about/people/shalom-lappin/smog
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4.2 Data
Several datasets have been used for author identi-
fication, including various PAN datasets. We use
the dataset from Saedi and Dras (2019) consisting
of 10000 authors from the domain of fanfiction,8

as one that is large enough to train a deep learn-
ing system. We followed the FF-5K (5000 author)
dataset setup under the one-shot evaluation (i.e. dis-
joint authors between train and test sets). This test
set consists of over 10000 pairs covering 1665 au-
thors not seen in training (more information in the
supplementary material).
4.3 Models
Core Models As in a VAE, our SIAMAO system
starts with text that looks somewhat random, and
as training proceeds comes to look more like the
original text, encouraged by the reconstruction loss.
At each epoch, then, there will be varying effects
on misclassification and utility. Training the model
for 6 epochs, we present results for both epoch
3 (SIAMAO3) and epoch 5 (SIAMAO5) to show
the effect training has on different aspects of text
modification with opposing objectives.

Baselines The author obfuscation approaches of
the PAN competition are typically tailored to the
PAN setup (classification-based, over a relatively
small number of authors). Heuristic-based ap-
proaches are potentially applicable, but could not
be applied here.9

We therefore used backtranslation as our key
baseline, as one that has recently produced decent
results in related tasks (Prabhumoye et al., 2018).
Our experiments are done on two sets of languages
with different accuracy in Google machine trans-
lation, English-French (BT-FR: good quality MT)
and English-Persian (BT-PR: average-high MT).
Random character modification (RAND), follow-
ing the same rules explained in §3.2, is another
baseline.
Variant Models To examine the effect of choices
in the architecture (in particular, in §3.2 under Per-
turbation Operators), we explored various ways of
transferring the encoder’s outputs to the sampler
and generating the input to the decoder. The en-
coder generates two vectors, V1 and V2. These vec-
tors can be directly sent to the sampler (e.g. JUST-
SUM method below), or go through some changes

8https://github.com/ChakavehSaedi/
Siamese-Author-Identification.

9TextBugger (Li et al., 2019) does not have an available
associated code. Bevendorff et al. (2019) do helpfully provide
code, but we could not get it to work for our setup.

in the vector space before being fed to the sampler
(e.g. SHIFT and AVE below). The sampler uses its
input vector to sample a similar point (V ′) from the
normal distribution, which is then sent to the de-
coder. The decoder needs both V ′ and embedding
to generate an output sentence.

The five methods we report are 1) SHIFT (the
core method we define in §3): V1 and V2 are shifted
towards each other by 1/3 of their distance; the
resulting vectors are sent to the sampler. 2) JUST-
SUM: Vi is the input to the sampler. 3) AVE: the
element-wise average of V1 and V2 is the input to
the sampler. In all these three methods the sum over
cross-over between embedding vector and V ′ is the
input to the decoder. For both 4) CATEMB and 5)
NOCROSS, the first step is the same as the SHIFT

method. Then, in the former, the concatenation of
embedding and V ′ is the input to the decoder; in
the latter sum of embedding and V ′ is the input to
the decoder.

5 Evaluation Results and Analysis
5.1 Misclassification
Robust Vector Representation Replacing vec-
tors with their perturbed version as explained in
§4.1.1 changes the inputs to the Siamese Decision
sub-network (e.g (V1, V2)→ (V1, V

′
2)). This mod-

ification results in PW of over 90%, indicating au-
thorial information can be hidden in vector space
using SIAMAO.

Perturbation Win in Text Space In terms of the
classification across a large number of authors, K-
LG in Table 1 shows that Koppel’s accuracy of
0.644 over 1000 authors drops dramatically under
all modifications. SIAMAO3 causes the maximum
fall in accuracy, RAND ranks second, followed
by BT-PR. For SIAMAO, as expected, at epoch 5,
where the VAE-style architecture has reconstructed
the perturbed text to be closer to the original, the
drop in classification accuracy is smaller.

The two middle columns in Table 1 show the
accuracy on original and perturbed data for N -way
classification (N ∈ {3, 5, 10, 50}). We see differ-
ent behaviour across the two author identifiers and
under different Ns. Koppel classification accuracy
decreases with all methods, with one of the SIA-
MAO methods generally best. None of the methods
— SIAMAO, backtranslation, or random changes
— seem to be effective against the Siamese author
identifier, which is rather surprising. However, in
one way these results are in line with what Zhao
et al. (2018b) reported: success rate is noticeably

https://github.com/ChakavehSaedi/Siamese-Author-Identification
https://github.com/ChakavehSaedi/Siamese-Author-Identification
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Koppel Author Identification Siamese Author Identification K-LG
Model 3-way 5-way 10-way 50-way 3-way 5-way 10-way 50-way
Original 0.640 0.567 0.427 0.327 0.933 0.853 0.707 0.400 0.644
SIAMAO3 0.513 0.493 0.353 0.260 0.913 0.867 0.773 0.433 0.407
SIAMAO5 0.540 0.487 0.360 0.220 0.940 0.873 0.760 0.433 0.446
RAND 0.593 0.513 0.400 0.240 0.933 0.900 0.793 0.507 0.414
BT-FR 0.613 0.526 0.433 0.273 0.827 0.740 0.573 0.353 0.558
BT-PR 0.607 0.500 0.340 0.293 0.913 0.847 0.733 0.413 0.429

Table 1: First two columns, Koppel and Siamese author identification accuracy on N -way classification. K-LG
shows Koppel accuracy on 1000 authors.

Model PW EC ED BL
SIAMAO3 0.238 2597 289 0.098
SIAMAO5 0.375 1927 215 0.168
RAND 0.340 3442 222 0.070
BT-FR 0.399 4649 235 0.486
BT-PR 0.512 4891 427 0.256

Table 2: Perturbation win (PW), Euclidean distance
(EC), edit distance (ED), and Bleu score (BL), compar-
ing perturbed text against the original.

lower when the classifier (i.e. Siamese author iden-
tifier in our case) is stronger.

For the binary classification task of author veri-
fication that underpins the classification across all
authors and N -way classification, we give some
results under PW in Table 2. It is interesting that
while the proportion of perturbation wins in the ver-
ification context is relatively low, it still results in
noticeable drops in the overall classification scores
for Koppel as noted above. This is likely to be
because the similarity scores are changed enough
to affect the selection among N authors while not
changing the pairwise binary prediction.

5.2 Text Similarity
Table 2 provides the Bleu scores, edit and Eu-
clidean distances in the verification task, under ran-
dom, back-translation and SIAMAO modifications.
For our two variants of SIAMAO, SIAMAO3 re-
sults in more modifications than SIAMAO5, reflect-
ing the nature of VAEs. However, due to the other
objective of the network, training must improve
perturbations too. We observe higher perturbation
win as well as higher Blue score for SIAMAO5.
Given the fact that Blue score is calculated on word
n-grams, this suggests the model may have learnt
to modify texts mostly at spaces that do not break
words (e.g. punctuation modification).

In terms of the baselines, BT-PR and BT-FR re-
sult in more modifications than RAND (higher edit
and Euclidean distances). However, they achieve
the highest Bleu score as well as perturbation win.
SIAMAO ranks in the middle, with SIAMAO5

showing the least text modification, being signifi-
cantly more successful than RAND in all the four

Rosie laughs as my cheeks cheaks
burn, and I watch as she stands ele-
gantly, blocking the sun from my eyes.
’I want to go swimming,’ she tells
tel1s me.

I felt my cheeks cheaks flush flu5h
slight1y. "Sh...well, uh..." Sam
and Embry chuckled at my response
resp0n5e .

Figure 2: Samples of SIAMAO’s perturbation that suc-
cessfully fooled classification.

metrics but less successful in perturbation win and
Bleu compared to the back-translation models.

In Figure 2 we give two sample extracts of per-
turbed texts from SIAMAO that fooled classifiers,
to illustrate how the system changes text. It can
be seen that the perturbation operators described
in §3.2 are applied only at some places: for exam-
ple, the replacement of s by 5 does not occur at all
possible locations, and similarly l by 1.

Training and finding a balance An obfuscation
model has several objectives that contradict each
other. So, the network learning process involves
finding a balance between them; specifically, find-
ing important positions in the input text to mini-
mally modify, as well as improving obfuscation
success. Using SIAMAO’s test set after each train-
ing epoch, we evaluated the 4 aforementioned pa-
rameters. Figure 3 displays the trends for edit dis-
tance, Euclidean distance, Bleu and perturbation
win follow during SIAMAO’s 6 training epochs.

Epochs 1 to 3 present rather sharp upward trends
for edit distance, Euclidean distance and perturba-
tion win, coinciding with an expected major drop
in Bleu. Epochs 3 to 5, on the other hand, show
Bleu score increasing to its maximum in epoch 4
while edit and Euclidean distance experience a no-
ticeable fall. Epoch 5 reaches an favorable balance
in the parameters plus the most successful modifi-
cation from a privacy point of view. However, this
doesn’t continue in epoch 6 which is an indicator
of over-training.
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Original BT-FR BT-PR SIAMAO3 SIAMAO5 RAND
BERT-SMOG 0.751 0.733 0.724 0.522 0.535 0.506
BERT-CoLA 0.773 0.788 0.796 0.485 0.549 0.567
# OOVs 16.7 14.5 9.6 76.4 73.5 95.7

Table 3: Language acceptability scores on a subset of original and perturbed Fanfiction data. Also included are
average number of OOV tokens in texts.

Figure 3: Effect of 6 epochs of training on edit distance,
Euclidean distance, Bleu and perturbation win.

5.3 Language Acceptability

Table 3 presents the results for language acceptabil-
ity as measured by BERT-SMOG and BERT-CoLA
on a subset of perturbed Fanfiction database. One
issue with applying these models to the obfuscated
text is that SIAMAO is more likely to generate out-
of-vocabulary (OOV) words (e.g. cheaks) than the
backtranslation models, and this affects the accept-
ability score, even if the OOV words themselves
might be considered reasonable. The table thus
also contains average number of OOV tokens in
generated texts.

The scores on the original are relatively high;
the scores on the backtranslation models are close.
This is not surprising given that number of OOV
tokens is similar (in fact, it is surprising that num-
ber of OOV tokens is actually lower than in the
original texts, even more for BT-PR than for BT-
FR— perhaps the original OOVs are lost in transla-
tion). The average number of OOVs is much larger
for the SIAMAO models and RAND. To under-
stand the effect of number of OOVs, we took the
original CoLA dataset and systematically replaced
words with OOV tokens, and carried out some
curve fitting of number of OOVs against BERT-
CoLA score; this would allow us to estimate how
a score might drop with an increasing number of
OOVs. An exponential decay function appears to
be a good fit. However, because CoLA sentences
are much shorter than the generated texts, it is not

possible to use such a curve for direct extrapola-
tion.10 Nevertheless, it does illustrate that it is not
surprising for the language acceptability scores to
be lower for the SIAMAO models, and that this
is not necessarily indicative of substantially worse
quality.
5.4 Variant Models
As noted in §4.3, we studied the effect of different
ways of transferring the encoder’s outputs to the
sampler, beyond just a standard concatenation as
in regular VAEs. SHIFT approach outperforms the
other variants in most respects (misclassification,
etc) while being similar in the text similarity mea-
sures (edit and Euclidean distance). This supports
the intuition that regular VAE concatenation is not
sufficient for this task, and perturbation operators
of the sort we have proposed are necessary (scores
are included in the supplementary material).

6 Conclusion and Further Work

This work is the first to propose a deep learning
architecture for generating textual adversarial ex-
amples that incorporates a similarity-based infer-
ence model rather than a standard classifier-based
one. We explored this in the context of authorship
obfuscation, where the goal is to hide the author
from a similarity-based authorship identifier. Re-
sults indicate that our SIAMAO model can degrade
the performance of a key standard authorship iden-
tification system, compared to baseline systems,
with modifications that are of similar magnitude
or lower. All approaches had difficulty against a
Siamese authorship identification system, however.

As this is the first work in this direction, many
improvements are possible, particularly in the area
of language acceptability. These improvements
would be both to SIAMAO, in encouraging the ad-
versarial examples towards greater acceptability,
also in terms of the automatic evaluation metrics.
Employing other deep learning adversarial archi-
tectures as a base would also be interesting.

10Adjusting the scores on the original texts to match the
number of OOVs in the SIAMAO and RAND models leads to
values close to the curve asymptote, of around 0.3.
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