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Abstract

We introduce a new dataset for training and
evaluating grounded language models. Our
data is collected within a virtual reality envi-
ronment and is designed to emulate the qual-
ity of language data to which a pre-verbal
child is likely to have access: That is, natu-
ralistic, spontaneous speech paired with richly
grounded visuospatial context. We use the col-
lected data to compare several distributional
semantics models for verb learning. We evalu-
ate neural models based on 2D (pixel) features
as well as feature-engineered models based on
3D (symbolic, spatial) features, and show that
neither modeling approach achieves satisfac-
tory performance. Our results are consistent
with evidence from child language acquisition
that emphasizes the difficulty of learning verbs
from naive distributional data. We discuss av-
enues for future work on cognitively-inspired
grounded language learning, and release our
corpus with the intent of facilitating research
on the topic.

1 Introduction

While distributional models of semantics have
seen incredible success in recent years (Devlin
et al., 2018), most current models lack “ground-
ing”, or a connection between words and their
referents in the non-linguistic world. Ground-
ing is an important aspect to representations of
meaning and arguably lies at the core of lan-
guage “understanding” (Bender and Koller, 2020).
Work on grounded language learning has tended
to make opportunistic use of large available cor-
pora, e.g. by learning from web-scale corpora
of image (Bruni et al., 2012) or video captions
(Sun et al., 2019), or has been driven by particular
downstream applications such as robot navigation
(Anderson et al., 2018).

In this work, we take an aspirational look at
grounded distributional semantics models, based
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on the type of situated contexts and weak supervi-
sion from which children are able to learn much
of their early vocabulary. Our approach is mo-
tivated by the assumption that building computa-
tional models which emulate human language pro-
cessing is in itself a worthwhile endeavor, which
can yield both scientific (Potts, 2019) and engi-
neering (Linzen, 2020) advances in NLP. Thus,
we aim to develop a dataset that better reflects
both the advantages and the challenges of humans’
naturalistic learning environments. For example,
unlike most vision-and-language models, children
likely have the advantage of access to symbolic
representations of objects and their physics prior
to beginning word learning (Spelke and Kinzler,
2007). However, also unlike NLP models, which
are typically trained on image or video captions
with strong signal, children’s language input is
highly unstructured and the content is often hard to
predict given only the grounded context (Gillette
et al., 1999).

We make two main contributions. First (§2),
using a virtual reality kitchen environment, we
collect and release! the New Brown Corpus?’:
A dataset containing 18K words of spontaneous
speech alongside rich visual and spatial informa-
tion about the context in which the language oc-
curs. Our protocol is designed to solicit natu-
ralistic speech and to have good coverage of vo-
cabulary items with low average ages of acqui-
sition according to data on child language devel-
opment (Frank et al., 2017). Second (§3), we
use our corpus to compare several distributional
semantics models, specifically comparing mod-

This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
"https://github.com/dylanebert/nbc
2Our university namesake, plus paying homage to impor-
tant Brown corpora in both NLP (Francis and Kucera, 1979)
and Child Language Acquisition (Brown, 1973).
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els which represent the environment in terms of
objects and their physics to models which repre-
sent the environment in terms of pixels. We fo-
cus on verbs, which have received considerably
less attention in work on grounded language learn-
ing than have nouns and adjectives (Forbes et al.,
2019). More so than nouns, verb learning is be-
lieved to rely on subtle combinations of both syn-
tactic and grounded contextual signals (Piccin and
Waxman, 2007) and thus progress on verb learn-
ing is likely to require new approaches to mod-
eling and supervision. In our experiments, we
find that strong baseline models, both feature-
engineered and neural network models, perform
only marginally above chance. However, com-
paring models reveals intuitive differences in er-
ror patterns, and points to directions for future re-
search.

2 Data

The goal of our data collection is to enable re-
search on grounded distributional semantics mod-
els using data that better resembles the type of in-
put young children receive on a regular basis dur-
ing language development. Doing this fully is am-
bitious if not impossible. Thus, we focus on a few
aspects of children’s language learning environ-
ment that are lacking from typical grounded lan-
guage datasets and that can be emulated well given
current technology: 1) spontaneous speech (i.e. as
opposed to contrived image or video captions) and
2) rich information about the 3D world (i.e. phys-
ical models of the environment as opposed to flat
pixels).

We develop a virtual reality (VR) environment
within which we collect this data in a controlled
way. Our environment data is described in Sec-
tion 2.1 and our language data is described in Sec-
tion 2.2. Our collection process results in a cor-
pus of 152 minutes of concurrent video, audio,
and ground-truth environment information, total-
ing 18K words across 18 unique speakers perform-
ing six distinct tasks each. The current data is
available for download in json format at https://
github.com/dylanebert/nbc. The code needed
to implement the described environment and data
recording is available at https://github.com/
dylanebert/nbc_unity_scripts.

2.1 Environment Data Collection

2.1.1 Environment Construction

Our environment is a simple kitchen environment,
implemented in Unity with SteamVR and our ex-
periments are conducted using an HTC Vive head-
set. We choose to use VR as opposed to alterna-
tive interfaces for simulated interactions (e.g. key-
board or mouse control) since VR enables partic-
ipants to use their usual hand and arm motions
and to narrate in real time, leading to more nat-
ural speech and more faithful simulations of the
actions they are asked to perform.

We design six different kitchen environments,
using two different visual aesthetics (Fig. 1)
with three floorplans each. This variation is
so that we can test, for example, that learned
representations are not overfit to specific pixel
configurations or to exact hand positions that are
dependent on the training environment(s) (e.g.
“being in the northwest corner of the kitchen” as
opposed to “being near the sink). Each kitchen
contains at least 20 common objects (not every
kitchen contains every object). These objects
were selected because they represent words with
low average ages of acquisition (described in
detail in §2.2) and were available in different
Unity packages and thus could be included in
the environment with different appearances.
Across all kitchens, the movable objects used
are: Apple, Ball, Banana, Book, Bowl,
Cup, Fork, Knife, Lamp, Plant, Spoon,
Toyl:Bear|Bunny, Toy2:Doll|Dinosaur,
Toy3:Truck|Plane. The participant’s hands
and head are also included as movable objects.
We also include the following immovable ob-
jects: Cabinets, Ceiling, Chair, Clock,
Counter, Dishwasher, Door, Floor,
Fridge, Microwave, Oven, Pillar, Rug,
Sink, Stove, Table, Trash Bin, Wall,
Window.

Figure 1: Screenshots of a person picking up a banana
in each of our two kitchen aesthetics.
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Our environments are constructed using a com-
bination of Unity Asset Store assets and custom
models. All paid assets (most objects we used)
come from two packs: 3DEverything Kitchen Col-
lection 2 and Synty Studios Simple House Interi-
ors, from the Unity asset store®. These packs ac-
count for the two visual styles. VR interaction is
enabled using the SteamVR Unity plugin, avail-
able for free on the Unity asset store.

2.1.2 Data Recording

During data collection, we record the physical
state of each object in the environment, accord-
ing to the ground-truth in-game data, at a rate of
90fps (frames per second). The Vive provides ac-
curate motion capture, allowing us to record the
physical state of the user’s head and hands (Borges
et al., 2018) as well. For each object, we record
the physical features described in Table 1. Audio
data is also collected in parallel to spatial data, us-
ing the built-in microphone. We later transcribe
the audio using the Google Cloud Speech-to-Text
API*. Word-level timestamps from the API allow
us to match words to visuospatial frames. While
spatial and audio data are recorded in real-time,
video recording is not, since this would introduce
high computational overhead and drop frames. In-
stead, we iterate back over the spatial data, and re-
construct/rerender the playback frame-by-frame.
This approach makes it possible to render from
any perspective if needed, though our provided
image data is only from the original first-person
perspective.

2.2 Language Data Collection

We design our protocol so as to solicit the use
of vocabulary items that are known to be com-
mon among children’s early-acquired words. To
do this, we first select 20 nouns, 20 verbs, and
20 prepositions/adjectives which have low aver-
age ages of acquisition according to Frank et al.
(2017) and which can be easily operationalized
within our VR environment (e.g. “apple”, “put
(down)”, “red”, see Appendix A for full word
list). We then choose six basic tasks which the
participants will be instructed to carry out within
the environment. These tasks are: set the table,
eat lunch, wash dishes, play with toys, describe
a given object, and clean up toys. The tasks are

Shttps://assetstore.unity.com/
*nttps://cloud.google.com/
text-to-speech/
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intended to solicit use of many of the target vo-
cabulary items without explicitly instructing par-
ticipants to use specific words, since we want to
avoid coached or stilted speech as much as pos-
sible. One exception is the “describe a given ob-
ject” task, in which we ask participants to describe
specific objects as though a child has just asked
what the object is, e.g. “What’s a spoon?”. We
use this task to ensure uniform coverage of vocab-
ulary items across environments, so that we can
construct good train/test splits across differently
appearing environments. See Appendix B for de-
tails on distributing vocabulary items.

We recruited 18 participants for our data collec-
tion. Participants were students and faculty mem-
bers from multiple departments involved with lan-
guage research. We asked each participant to per-
form each of our tasks, one by one, and to nar-
rate their actions as they went, as though they
were a parent or babysitter speaking to a young
child. The exact instructions given to participants
before each task are shown in Appendix C. An il-
lustrative example of the language in our corpus
is the following: “okay let’s pick up the ball and
play with that will it bounce let’s see if we can
bounce it exactly let’s let it drop off the edge yes
it bounced the ball bounced pick it up again...”.
The full data can be browsed at https://github.
com/dylanebert/nbc.

Our study design was determined not to be hu-
man subjects research by the university IRB. All
participants were informed of the purpose of the
study and provided signatures consenting to the
recording and release of their anonymized data for
research purposes (consent form in Appendix D).

2.3 Comparison to Child Directed Speech

Since our stated goal was to collect data that better
mirrors the distribution of language input a young
child is likely to receive, we run several corpus
analyses to assess whether this goal was met.

2.3.1 Vocabulary Distribution

First, we compare the distribution of vocabu-
lary in our collected data to that observed in the
Brent-Siskind Corpus (Brent and Siskind, 2001),
a corpus of child-directed speech consisting of 16
English-speaking mothers speaking to their pre-
verbal children. For reference, we also compare
with the vocabulary distributions of three existing
corpora which could be used for training distribu-
tional semantics models: 1) MSR-VTT (Xu et al.,
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Name (Type) Description

pos (Xyz) Absolute position of object center, computed using the transform.position property; equiva-
lent to position relative to an arbitrary world origin, approximately in the center of the floor.

rot (Xyzw) Absolute rotation of object, computed using the t ransform. rotation property.

vel (xyz) Absolute velocity of object center, computed using the VelocityEstimator class included with
SteamVR.

relPos (xyz) Position of object’s center relative to the person’s head, computed using Unity’s built-in

head.transform.TransformPoint (objectPosition).

relRot (xyzw)
to the object rotation.
relVel (xyz)
bound (xyz)
inView (bool)

Rotation of object relative to the person’s head, computed by applying the inverse of the head rotation

Velocity of the object’s center, from the frame of reference of the person’s head
Distance from object’s center to the edge of bounding box
Whether or not the object was in the person’s field of view,

computed using Unity’s

GeometryUtility to compute if an object is in the Camera renderer bounds. This is based on
the default camera’s 60 degree FOV, not the wide headset FOV. The head and hands are always con-

sidered inView.
img_url (img)

Snapshot of the person’s entire field of view as a 2D image. We compute this once per frame (as

opposed to the above features which are computed once per object per frame).

Table 1: Object features recorded during data collection. Object appearance does not vary across frames; img_url
does not vary across objects. All other features vary across object and frame.

2016), a large dataset of YouTube videos labeled
with captions, 2) Room2Room (R2R) (Anderson
et al., 2018), a dataset for instruction following
within a 3D virtual world, and 3) a random sam-
ple of sentences drawn from Wikipedia. Since our
primary focus is on grounded language, MSR and
R2R offer the more relevant points of comparison,
since each contains language aligned with some
kind of grounded semantic information (raw RGB
video feed for MSR and video+structured naviga-
tion map for R2R). We include Wikipedia to exem-
plify the type of web corpora that are ubiquitous in
work on representation learning for NLP.

Figure 2 shows, for each of the five corpora,
the token- and type-level frequency distributions
over major word categories® and of individual
lexical items. In terms of word categories, we
see that our data most closely mirrors the dis-
tribution of child-directed speech: Both our cor-
pus and the Brent corpus contain primarily verbs
(~23% when computed at the token level) fol-
lowed by pronouns (~19%) followed by nouns
at around 17%. In contrast, the MSR video cap-
tion corpus and Wikipedia both contain predom-
inantly nouns (~40%) and the R2R instruction
dataset contains nouns and verbs in equal propor-
tions (~33% each). None of the baseline corpora
contain significant counts of pronouns. Addition-
ally, in terms of specific vocabulary items, our cor-

>We preprocess all corpora using the SpaCy 2.3.2 prepro-
cessing pipeline with the en_core_web_1g model. For our
data and Brent, we process the entire corpus. Since MSR,
R2R, and Wikipedia are much larger, we process a random
sample of 5K sentences from each.
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pus contains decent coverage for many of the most
frequent verbs observed in CDS, while the base-
line corpora are dominated by a single verb each
(“go” for R2R and “be” for MSR and Wikipedia).
For nouns and adjectives, we also see better cov-
erage of top-CDS words in our data compared to
the other corpora analyzed, though we note that
the difference is less obvious and that the lexical
items in these categories are much more topically
determined.

2.3.2 Word-Context Alignment

We next look at how well the language corre-
sponds to the the salient objects and events in
the context of its use. This property is impor-
tant as it relates to how strong the “training sig-
nal” would be for a model that is attempting to
learn linguistic meaning from distributional sig-
nal. It is hard to directly estimate the quality of
the “training signal” available to children. How-
ever, experiments in psychology using the Hu-
man Simulation Paradigm (HSP) (Gillette et al.,
1999; Piccin and Waxman, 2007) come close.
In the HSP design, experimenters collect audio
and video recordings of a child’s normal activi-
ties (i.e. via head-mounted cameras). Given this
data, adults are asked to view segments of videos
and predict which words are said at given points
in time. This technique is used to estimate how
“predictable” language is given only the grounded
(non-linguistic) input to which a child has access.
Using this technique, Gillette et al. (1999) esti-
mates that nouns can be predicted at 45% accuracy
and verbs at 15% accuracy.



Captions

(MSR)

Instr.
(R2R)

Web
(Wiki))

VERB
PRON
NOUN
DET
AUX
ADV
INT)
NOUN
VERB
PROPN
AD)
ADV
INT)
NUM
go 7 1.0 10.9 | |0.6
come 0.4 . 0.6
can 0.3 . 0.9
see 0.5 . 0.5
say 0.3 . 0.6
get 1.1 0. 0.2
look 1.6 . 0.1
put 1.1 0.2
let 0.1 0.1
want 0.1 0.2
(c) Token Frequency of Individual Verbs
baby 0.9 0.0 0.0
boy 2.9 0.0 0.1
book 0.2 0.0 0.5
one 0.3 0.0 0.1
ball 1.1 0.0 0.1
foot 0.2 0.3 0.1
girl 66| 0.0 0.1
hand 1.0 0.0 0.2
kitty 0.0 0.0 0.0
water 1.5 0.1 0.4

ncy of Individual Nouns

0.2 0.0
mo.7 0.0
H0.4 0.0
0.2 0.0
0.0 0.1
0.0 0.0
0.3 0.0
0.0 0.0
0.1 0.0
.1 0.2

(e) Token Frequency of Individual Adjectives

Figure 2: Comparison of word category and lexi-
cal distributions. Lexical item frequencies labels are
x1000. Distributions are over the most frequent cate-
gories/words according to the Brent-Siskind corpus of
child-directed speech.

While not directly comparable to our setting,
this provides us with an approximate point of com-
parison against which to benchmark the word-to-
context alignment of our collected data. Rather
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than try to guess the word given a video clip, we
instead view a short (5 second) video clip along-
side an uttered word and make a binary judgement
for whether or not the clip depicts an instance of
the word: e.g., yes or no, does the clip depict
an instance of “pick up”? We chose this design
over the HSP design since it provides a more in-
terpretable measure of the quality of the training
signal from the perspective of NLP and ML re-
searchers using the data. We expect this variant
of the task to yield higher numbers than the HSP
design, since it does not require guessing from the
entire vocabulary. We take a sample of (up to) five
instances for each of our target nouns and verbs
(fewer if the word occurs less often in our data)
and label them in this way. We find inner anno-
tator agreement on this task to be very high (91%
when computed between two researchers on the
project) and thus have a single annotator label all
instances.

Table 2 shows the results of this analysis. We
see the expected trend, in which grounded context
is a considerably better signal of noun use than
verb use. We also note there is substantial vari-
ation in training signal across verbs. For example,
while some verbs (e.g. “pick”, “take”, “hold”)
have strong signal, other verbs (“eat”) tend to be
used in contexts sufficiently detached from the ac-
tivities themselves. The noisiness of this signal
is one of the biggest challenges of learning from
such naturalistic data, as we will discuss further in
§3.4.

3 Experiments

Using the above data, we now compare several
grounded distributional semantics models (DSM)
in terms of how well they encode verb meanings,
focusing in particular on differences in how the en-
vironment is represented when put in to the DSM.
Our hypothesis is that models will perform better
if they represent the environment in terms of 3D
objects and their physics rather than pixels, since
work in psychology has shown that children learn
to parse the physical world into objects and agents
very early in life (Spelke and Kinzler, 2007), long
before they show evidence of language under-
standing. We also explore how models vary when
they have access to linguistic supervision early
in the pipeline, during environment encoding, in
addition to later, during language learning. We
note that the models explored are intended as sim-



Nouns Verbs

w N P w N P
table 81 1.0 go 238 0.0
spoon 76 1.0 put 193 04
banana 75 0.8 pick 162 0.8
apple 68 1.0 eat 77 0.0
cup 57 1.0 take 63 0.8
ball 54 0.6 get 43 04
toy 48 1.0 wash 38 0.6
fork 47 0.8 play 37 0.8
bowl 42 1.0 walk 25 04
knife 40 0.8 throw 25 0.6
book 25 1.0 hold 21 1.0
plant 22 1.0 drop 17 0.4
bear 18 1.0 stop 13 0.0
chair 16 04 give 13 0.0
doll 13 0.8 open 3 03
clock 12 0.6

lamp 2 10

door 2 0.0

window 1 1.0

Avg. 37 0.8 Avg. 64 04

Table 2: Estimates of training signal quality for nouns
and verbs. N is the number of times the word occurs in
the training data. P is the precision—given a 5 second
clip in which the word is used, how often does the clip
depict an instance of the word? Note that the verb “go”
is an outlier, since it appears most often as “going to”.

ple instantiations to test the parameters of interest
given our (small) dataset. Future work on more
advanced models should no doubt yield improve-
ments.

3.1 Preprocessing

Our raw data consists of continuous video and
game-engine recordings of the environment, and
parallel transcriptions of the natural language nar-
ration. To convert this into a format usable by
our DSM, we perform the following preprocess-
ing steps. This preprocessing phase is common to
all the models evaluated. First, we segment the en-
vironment data into “clips”. Each clip is five sec-
onds long® and thus consists of 450 frames (since
the VR environment recording is at 90fps), which
we subsample to 50 frames (10fps). Since our
grounded DSMs require associating a word w with
its grounded context c, we consider the clip imme-

SThe length of 5 seconds was chosen heuristically prior to
model development.
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diately following the utterance of w to be the con-
text c. See earlier discussion (§2.3.2) for estimates
of the signal-to-noise ratio produced by this label-
ing method. Training clips that are not the context
of any word are discarded. We hold out two sub-
jects’ sessions (one from each visual aesthetic) for
test, and use the remaining 16 subjects’ sessions
for training.

Finally, since this verb-learning problem proves
quite challenging, we scope down our analysis
to the following 14 verbs, which come from the
20 verbs specified in our initial target vocabulary
(§2.2) less 6 which did not ultimately occur in

our data: “walk”, “throw”, “put (down)”, “get”,
((go ”’ “give ’)’ ((Wash 4'” ((Open 4'” ((hold )), ((eat”’
“play”, “take”, “drop”, “pick (up)”. Again,

these words all have low average ages of acqui-
sition (19 to 28 months) and thus should represent
reasonable targets for evaluation. Nonetheless, we
will see in §3.3 that models struggle to perform
well on this task; we elaborate on this discussion
in §4.

3.2 Models

We train and evaluate four different DSMs, each of
which represent a word w in terms of its grounded
context c. The parameters we vary are 1) the fea-
ture representation of ¢ ($3.2.1) and 2) the type
of supervision provided to the DSM (§3.2.2). All
models share the same simple pipeline. First, we
build a word-context matrix M which maps each
token-level instance of w to a featurized represen-
tation of c. We then run dimensionality reduction
on M. Finally, we take the type-level represen-
tation of w to be the average row vector of M,
across all instances of w. All of our model code
is available at http://github.com/dylanebert/

nbc_starsem.

3.2.1 Context Encoders

Object-Based. In our Object-Based encoder,
we take a feature-engineered approach intended
to provide the model with a knowledge of the
basic object physics likely to be relevant to the
semantics of the verbs we target. Specifically,
we represent each clip using four feature tem-
plates (trajectory, vel, dist_to_head,
relPos), defined as follows. First, we find
the “most moving object”, i.e., the object with
the highest average velocity over the clip. We
then compute our four sets of features for this
most moving object.  Our velocity and
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relPos features are simply the mean, min,
max, start, end, and variance of the
object’s velocity and relative position, respec-
tively, over the clip. For our dist_to_head
feature, for each position dimension (xyz), we
compute the following values of the distance
from the object’s center to the participant’s head:
start, end, mean, var, min, max,
min_idx, max_idx, where min/max index is
the point at which min/max value was reached
(recorded as a % of the way through the clip).
Finally, our trajectory features are intended
to capture the shape of the objects trajectory over
the clip. To compute this, for each of position
dimension (xyz), we compute four points during
the clip: start, peak (max), trough (min), end.
Then, if max happens before min, we consider
the max to be “key point 1” (kp1) and the min to
be “key point 2” (kp2), and vice-versa if the min
happens before the max. We then compute the
following features: kpl-start, kp2-kpl,
end-kp2, end-start.

Pretrained CNN. To contrast with the above
featured-engineered approach, we also implement
an encoder based on the features extracted by a
pretained CNN. Our CNN encoder has an advan-
tage over the Object-Based encoder in that it has
been trained on far more image data, but has a
disadvantage in that it lacks domain-specific fea-
ture engineering. We use pretrained VGG16 (Si-
monyan and Zisserman, 2014), which is a 16-layer
CNN trained on ImageNet that produces a 4096-
dimensional vector for each image. We compute
this vector for each frame in the clip, and then
compute the following features along each dimen-
sion in order to get a vector representation of the
full clip: start_value,

end_value, min,

max, mean.

3.2.2 Dimensionality Reduction

Given a matrix M that maps each word instance to
a feature vector using one of the encoders above,
we run dimensionality reduction to get a 10d vec-
tor’ for each word instance. We consider two set-
tings. In the unsupervised setting, we run vanilla
SVD. In the supervised setting, we run supervised
LDA in which the “labels” are the words uttered at
the start of the clip as described in §3.1.

710d is chosen since we are only attempting to differenti-
ate between 14 words, and thus our supervised LDA cannot
use more than 13d.

3.3 Evaluation

We evaluate our models in terms of their precision
when assigning verbs to unseen clips. Specifically,
for our two heldout subjects, we partition the full
session into consecutive 5-second clips, resulting
in 189 clips total. For testing, unlike in training,
we include all clips, even those in which the sub-
ject is not speaking. Then, for each model, we en-
code each clip using the model’s encoder and then
find the verb with the highest cosine similarity to
the encoded clip. The authors then view each clip
alongside the predicted verb and make a binary
judgement for whether or not the verb accurately
depicts the action in the clip, e.g. yes or no, does
the clip depict an instance of “pick up”? To avoid
annotation bias, all four models plus a random
baseline are shuffled and evaluated together, and
annotators do not know which prediction comes
from which model. Annotator agreement was high
91%).

3.4 Results and Analysis

Table 3 reports our main results for each model.
We compute both “strict” precision, in which a
prediction is only considered correct if both an-
notators deemed it correct, as well as “soft” pre-
cision, in which a prediction is correct as long as
one annotator deemed it correct. As the results
show, no model performs especially well. Ran-
dom guessing achieves 32% (soft) precision on av-
erage. The supervised Object-Based model and
the unsupervised CNN model both perform a bit
better (40% on average), but we note that the sam-
ples are small and we cannot call these differences
significant (see 95% bootstrapped confidence in-
tervals given in Table 3). Only the unsupervised
Object-Based model stands out in that it performs
significantly worse than all other models (20% soft
precision). For the CNN models, we do not see a
significant difference with the supervised dimen-
sionality reduction. Figure 3 shows example clips
for each encoder.

Table 4 shows a breakdown of model perfor-
mance by verb. We see a few intuitive differences
between the CNN-based model and the Object-
Based model, discussed below. We note these ob-
servations are based on a small number of predic-
tions, and thus should be taken only as suggestive.

Low-level actions. The Object-Based models
achieve higher precision on low-level verbs like
“pick”, “take”, and “hold”. This makes intuitive
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Figure 3: Example clips, subsampled to 6 frames. (b) is (a)’s nearest-neighbor using the Object-Based model. In
each of these clips, the participant picks up an object with their right hand. (d) is (c)’s nearest-neighbor using the
CNN. In each, the participant is washing dishes in a similar looking sink.

Soft Strict
Random 0.32 (0.25-0.39) 0.23 (0.17-0.29)
Ob;. 0.20 (0.14-0.25) 0.13 (0.08-0.19)
CNN 0.40 (0.33-0.47) 0.29 (0.22-0.36)
Obj+Sup. 0.40 (0.33-0.47) 0.28 (0.22-0.34)
CNN+Sup. 0.35(0.28-0.42) 0.25 (0.19-0.31)

Table 3: Precision of each method with 95% boot-
strapped CI. “Soft” means a prediction is correct as
long as one annotator considers it to be so; “strict”
means prediction is only considered correct if both an-
notators agree that it is correct.

sense, since the 3D spatial features are designed
to capture these types of mechanical actions, inde-
pendent of the objects with which they co-occur.
The 2D visual data, on the other hand, may strug-
gle to ground a visually diverse set of objects-in-
motion to these low-level mechanical actions.

Visual cues. Some actions are strongly pre-
dicted by specific objects, which are well captured
by visual cues. This is most obvious in the case of
“wash”, on which the CNN achieves higher preci-
sion than the Object-Based models. This is again
intuitive as wash tends to co-occur with a clear
view of the sink, which is a large, visually-distinct
part of the field of view.

»

Vague actions. Actions like “go”, “walk”, and
“hold” occur frequently, even when the language
signal does not reflect it. That is, in any given clip,
there is a high chance that the participant walks,
goes somewhere, or holds something. Thus, mod-
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CNN Obj Obj+Sup.

N Prec. | N Prec. | N Prec.

pick 0 0.00 1 1.00 4 1.00
take 0.00 3 1.00 | 12 0.67
hold 11 0.64 5 080 |17 0.65
get 32 0.56 5 000 |13 054
go 29 0.21 1 0.00 | 17 047
put 4 000 |11 027 |31 029
play 7 029 | 17 0.18 6 0.17
walk | 16 044 | 33 030 | 26 0.15
throw | 36 0.08 | 25 0.00 | 16 0.06
drop 4 02516 0.06 2 0.00
eat 2 0.00 2 000 |19 0.00
give 17 0.00 | 35 0.00 5 0.00
open 8 000 |30 0.00 |10 0.00
wash | 23 0.48 5 000 |11 0.00

Table 4: Analysis of model precision broken down by
verb. Top-level columns are the unsupervised CNN,
unsupervised obj model, and supervised obj model.?
For each, N is the number of times the model predicts
that verb. Precision is the proportion of the time that
prediction was correct.

els which happen to predict these verbs frequently
may have artificially high accuracy. For exam-
ple, the unsupervised Object-Based model only
predicts “go” once and “hold” 5 times , which
may contribute to the unsupervised Object-Based
model performing significantly worse than ran-
dom, despite seeming to capture low-level actions
well.



Special cases. We note that some verbs are very
difficult or impossible to detect given limitations
of our data. In particular, “give”, “eat”, and
“open” have a precision of 0 across all models, as
well as in the training signal (§2.3.2). For exam-
ple, “give” only occurs twice in our data (“fluffy
teddy bear going to give it a little hug” and “turn
on the water give it a little sore[sic] and we can let
it dry there”), but cannot occur in its prototypical
sense since there is no clear second agent to be a
recipient. During instances of “eat” and “open”,
participants tended to mime the actions, but the in-
game physics data does not faithfully capture the
semantics of these verbs (e.g., containers do not
actually open). These words highlight limitations
of the environment which may be addressed in fu-
ture work.

3

4 Discussion

We compare two types of models for grounded
verb learning, one based on 2D visual features and
one based on 3D symbolic and spatial features.
Our analysis suggests that these approaches favor
in different aspects of verb semantics. One open
question is how to combine these differing signals,
and how to design training objectives that encour-
age models to chose the right sensory inputs and
time scale to which to ground each verb.

We evaluated on a small set of verbs that are
acquired comparably early by children. Nonethe-
less, our models perform only marginally better
than random. This disconnect highlights an im-
portant challenge to be addressed by work on com-
putational models of grounded language learning:
Can statistical associations between words and
contexts result in more than simple noun-centric
image or video captioning, eventually forming
general-purpose language models? While that
question is still wide open, research from psychol-
ogy could better inform work on grounded NLP.
For example, Piccin and Waxman (2007) argues
that verb learning in particular is not learned from
purely grounded signal, but rather is “scaffolded”
by earlier-acquired knowledge of nouns and of
syntax. From this perspective, the models we ex-
plored here, which are similar to what is used for
noun-learning, are far too simplistic for verb learn-
ing. More research is needed on ways to combine
linguistic and grounded signal in order to learn
more abstract semantic concepts.
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5 Related Work

We contribute to a large body of research on
learning grounded representations of language.
Grounded representations have been shown to im-
prove performance on intrinsic semantic similary
metrics (Hill et al., 2017; Vuli¢ et al., 2017) as well
as to be better predictors of human brain activity
(Anderson et al., 2015; Bulat et al., 2017). Much
prior work has explored the augmentation of stan-
dard language modeling objectives with 2D image
(Bruni et al., 2011; Kiela et al., 2017; Lazaridou
et al., 2015; Silberer and Lapata, 2012; Divvala
et al., 2014) and video (Sun et al., 2019) data.
Recent work on detecting fine-grained events in
videos is particularly relevant (Hendricks et al.,
2018; Zhukov et al., 2019; Fried et al., 2020,
among others). Especially relevant is the data col-
lected by Gaspers et al. (2014), in which human
subjects were asked to play simple games with a
physical robot and narrate while doing so. Our
data and work differs primarily in that we focus
on the ability to ground to symbolic objects and
physics rather than only to pixel data. Past work
on “situated language learning”, inspired by emer-
gence theories of language acquisition (MacWhin-
ney, 2013), has trained Al agents to learn language
from scratch by interacting with humans and/or
each other in simulated environments or games
(Wang et al., 2016; Mirowski et al., 2016; Urbanek
et al., 2019; Beattie et al., 2016; Hill et al., 2018;
Mirowski et al., 2016),

6 Conclusion

We introduce the New Brown Corpus, a dataset
of spontaneous speech aligned with rich environ-
ment data, collected in a VR kitchen environment.
We show that, compared to existing corpora, the
distribution of vocabulary collected is more com-
parable to that found in child-directed speech. We
analyze several baseline distributional models for
verb learning. Our results highlight the challenges
of learning from naturalistic data, and outlines di-
rections for future research.
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