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Abstract

We present a semi-supervised model which
learns the semantics of negation purely
through analysis of syntactic structure. Lin-
guistic theory posits that the semantics of nega-
tion can be understood purely syntactically,
though recent research relies on combining
a variety of features including part-of-speech
tags, word embeddings, and semantic repre-
sentations to achieve high task performance.
Our simplified model returns to syntactic the-
ory and achieves state-of-the-art performance
on the task of Negation Scope Detection while
demonstrating the tight relationship between
the syntax and semantics of negation.

1 Introduction

Negation is a semantic phenomenon in natural lan-
guage which varies significantly. For example,
“Sherlock did not solve the case” contains a simple
negation cued by “not.” However, there are many
cue words such as “without” and “nothing,” and
word affixes like “un-" which instantiate negation,
and their effect on meaning can be different and
dependent on context.

We approach the meaning of negation using a
logical semantics, in which natural language nega-
tion is expressed with the negation operator on
logical expressions (Horn, 1989; Horn and Wans-
ing, 2017), such as in =SOLVE(Sherlock, case).
Further, in truth-theoretic logic the meaning of
negation is simply the inverted truth value of this
expression. Capturing the meaning of a negation
cue in language can thus be understood as simply
identifying the negated expression. This is the task
of Negation Scope Detection (NSD): given a nega-
tion cue in a sentence, identify the sentence tokens
which make up the negated expression.
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1.1 Negation Scope Detection Task

The task of NSD has been approached in several
formulations using different annotation schemes
(Kim et al., 2008; Szarvas et al., 2008), but these
older tasks do not define negation semantically,
in contrast to the commonly accepted *SEM2012
Shared Task competition (*SEM, 2012). Under the
*SEM definition cues scope over events and partic-
ipants, either directly or via predicate arguments
and complements. Linguistic theory explains nega-
tion semantics in terms of events, which are built
from syntactic phrase structures (Huddleston and
Pullum, 2005), i.e. that negation doesn’t just scope
over individual words, but rather whole phrases
and clauses which make up events. The following
examples drawn from the *SEM?2012 dataset of
Conan Doyle writing illustrate how scope is built
from phrase structures. Cues are in bold* with
underlined scope.

(1) Well, sir, I thought no* good could come of it.

Example (1) contains the main verb “thought”
which takes a complement clause. This clause con-
tains a simple verb “come” negated by its negative
subject “no good.” The correct negation scope cov-
ers this verb, its arguments, and its modifier “could”
(leaving out the cue itself, following *SEM conven-
tion). Figure 1 (a) shows that scope corresponds to
clause boundaries in the syntactic tree.

(2) He saw him once or twice but he is a deep one
and gives nothing* away.

The scope in example (2) has discontinuous span.
In this sentence “he” is a subject shared by two
clauses in coordination, but only one of these is
negated. Figure 1 (b) illustrates this. As cases add
complexity it’s clear that NSD requires reasoning
about the underlying structure of the sentence.
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1.2 Contributions

In this work we build on the theory of negation
scope as a syntactic phenomenon and reframe the
task of NSD as a tree tagging problem over syntac-
tic constituents. We develop a new Structural Tree
Recursive Neural Network for this task which la-
bels scope for constituents conditioned on just the
syntactic structure of the sentence, with no other
features. Our model achieves the highest score to
date on the *SEM?2012 dataset. We further show
that adding word embedding features does not im-
prove results, demonstrating that efficient use of
syntax is all you need to perform well on this task.

2 Previous Work

There have been a variety of approaches to NSD.
The *SEM shared task dataset is the only resource
available with semantic annotations (other NSD
datasets are annotated for different goals), but there
are many models which use *SEM to compare with
(Morante and Blanco, 2012).

Fancellu et al. (2016) show the most recent,
best-performing model on *SEM. It is a BiL-
STM sequence tagging model which produces in-
scope/out-of-scope classifications for each word,
and jointly learns word embeddings with additional
part-of-speech features for each token. However,
further analysis (Fancellu et al., 2017) shows the
model is over-reliant on punctuation like commas
(““,”) which often mark scope boundaries in En-
glish and especially in Conan Doyle’s older style
of writing (the content of the *SEM dataset). The
model does not learn a very robust semantics with-
out these markers, yet also does not make use of
the full syntactic structure of sentences. Fancellu
et al. (2018) address this with a Dependency-LSTM
model which processes dependency trees using en-
codings both for words and dependency relations.
On a modified *SEM dataset this model slightly im-
proves over the BILSTM when they are ensembled
together, showing again that the BiILSTM method
lacks some structural understanding.

The original winner of *SEM, U¢O; (Read et al.,
2012), uses an SVM classifier on constituents that
contain the cue. Constituents are shown to be use-
ful, but this is not enough to capture discontinuous
scopes (see example (2)) which do not align to a
single constituent. Read adds extra heuristics to
help with this, and Rosenberg (2013) continues
from this with a comprehensive set of syntactic
heuristics deployed on dependency graphs. This
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model performs well and demonstrates the strength
of syntax by itself for capturing negation semantics.

Packard et al. (2014) and Li et al. (2010) ap-
proach NSD “in the semantic domain.” Packard
first induces a Minimal Recursion Semantics parse
of a sentence (Copestake et al., 2005), then crawls
it to identify negated predicates and arguments.
Though intuitive, inducing a full parse may over-
shoot the problem — by itself the crawler doesn’t
compete because it loses much information during
parsing and backtracking to sentence words. En-
sembling with U:O; provides a boost over UiO;
itself, which indicates that MRS parsing provides
complementary information, possibly due to induc-
tion of additional structure.

3 A Structural Approach

We argue for a solution returning to syntax which
makes per-word scope judgements conditioned on
the full syntactic structure of the sentence. Section
1.1 discusses the theoretical basis in syntax for
negation semantics and section 2 details successful
models on the task. While syntax is used by several
models to a degree, full trees are rarely used and
recent models rely on additional features like word
embeddings to achieve high performance.

Combinatory Categorial Grammar (CCG) is a
nearly context-free constituency grammar capable
of describing complex phenomena like coordina-
tion (Steedman, 2000). CCG also has transparency
between syntax and semantics: a CCG syntactic
parse may be transformed into a logical form in
terms of events, similar to the Sherlock example in
section 1. Steedman (2011) separately formalizes
a theory for computing the polarity of lexical items
using a CCG-based calculus, which encourages an
automated approach to learning negation scope by
example.

Figure 1(a) shows the CCG parse tree for exam-
ple (1). Commonly, simple independent clauses in
English form one continuous scope span, which is
distinguishable in syntax. The scope of negation in
(1) is simply the complement clause.

However, it is not always the case that nega-
tion scope aligns cleanly to subtrees, like in ex-
ample Figure 1(b), the parse tree for sentence (2).
CCG provides structural insight which alleviates
this problem. In this example CCG’s explicit mod-
eling of coordination makes it straightforward to
identify the subject to the left of the coordinated
dependent clauses.
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Figure 1: (a) (left) The cue “no” negates the subject “good” and thus scopes over the related event. This corre-

sponds cleanly with the constituent subtree (headed by S[dcl]) which spans that text. (b) (right) The cue “nothing’

s

lies in a dependent clause, lacking a subject. This can be found on the left using the CCG parse structure.

Understanding how semantics is built from
phrase structures is key to our method. Analy-
ses from additional sentences support this (see ap-
pendix for parse trees).

(3) I never* hurt man or woman in my life that I
know of.

(4) Some people without* possessing genius
have a remarkable power of stimulating it.

4 Methods

The Global Belief Tree Recursive Neural Network
of Paulus et al. (2014) is adapted to solve this task.
The GB-TRNN takes as input a binarized syntax
tree (satisfied by CCG) and starting state vectors
for each word in the sentence, referred to now as
tree leaves. It first recursively combines constituent
states from leaves to root in an upward pass, build-
ing up to a single, global state vector. Conditioned
on this state, the downward pass recursively un-
folds the global vector following the parse tree
back down from the root to the leaves. The output
for each constituent in the downward pass can be
used to produce classifications conditioned on the
entire tree.

We add additional syntactic target inputs in both
passes and refer to this new architecture as a Struc-
tural Tree Recursive Neural Network (STRNN).
These additional inputs represent the current kind
of CCG combination. In the upward step the parent
tag (composed category) is additionally passed in
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with the two child states, while in the downward
step the two child tags (decomposed categories) are
passed in addition to the parent state.

The STRNN learns one embedding matrix for
CCG syntactic categories Fo, € RlVocalxs,
where Voog is the CCG category vocabulary
(~400 tags) and the embedding size s 50.
Figure 2 shows a diagram of the STRNN.

Upward Pass. The initial state u; for a leaf con-
stituent ¢ is the result of the transformation matrix
H € R(+9%h This consumes a category embed-
ding and the cue feature c to produce an initial
upward state u; of size h = 200. c is a binary indi-
cator expressing if the word is a cue. Note that only
a word’s CCG category and cue status are shown
to the model.

The STRNN first makes an upward pass through
the syntax tree. This pass recursively combines
two child constituent states w;c s; and w,.;4p¢ as well
as the target parent category embedding Spqrent €
Ecqt to produce an upward state for the parent con-
stituent Upqyens. A weight matrix W1 € R(Zh+s)xh
is learned for this operation.

X = [uleft > Uright 5 Sparent]
Wparent = tanh(xWT +b')

Downward Pass. The top level hidden state of
size h, GLOBAL', is then transformed with the ma-
trix G € R"*" to make the GLOBAL' downward
state following Paulus. This is recursively unfolded



Upward Pass Downward Pass

(GLOBAL®) (GLOBALY)
S[dcl]
S[del\NP
S[del\NP /\
/ \ NP (S\NP)/(SINP) S[dcl\NP
(HIDDEN STATE TRANSFORM) (CLASSIFICATION)
He never*  returned never®

Figure 2: (Left) Upward pass: recursive composition
of constituent states from leaves to root. (Right) Down-
ward pass: recursive decomposition of constituent
states from root to leaves. NB: The model sees only
the CCG parse and cue. Word identities are hidden.

down the tree to the leaves using the learned matrix
WJ, c R(2h+2s)><2h‘

The recursive cell consumes two recurrent in-
puts following Paulus: the downward parent state
dyarent and upward state Wpgrent. We supply ad-
ditional inputs which instruct the cell how to de-
compose the state vector, the target child category
embeddings Sjcf¢, Sright € Ecat- The cell pro-
duces a double-wide state vector which is split
into left- and right-child state vectors d.¢; and
d;;gnt. Completing the downward pass results in
a globally-informed information state d; for each
constituent j in the syntax tree.

X = [uparent 5 dparent > Sleft » sright]
[dleft ; dright] = tanh(XWl' + b‘L)

Classification. Classifications are produced
using the matrix C' € R?"*2 and a softmax activa-
tion. C takes as input, for any tree constituent j,
the concatenation of u; and d; vectors. This can
be applied in the same way to tree leaves (words)
and to any higher tree constituent to produce a
scope judgement.

Optimization. The model is semi-supervised.
The *SEM dataset provides supervision signal
only for which words are in scope, not general
constituents. However, like the GB-TRNN, the
STRNN produces classifications for all tree
constituents, learning the general pattern from
the supervision of words. During training the
Adam optimizer was used with cross-entropy loss
and 0.001 initial learning rate. Regularization is
important with a small training set, and we used
dropout following Gal and Ghahramani (2016)
with recurrent connections set to 0.2 and others 0.5.

Model Precision Recall F;
Fancellu BiLSTM 92.62 85.13 88.72
MRS Crawler 85.8 684 76.1
UiOq 81.99 88.81 85.26
STRNN 9481 84.04 89.10
STRNN + BERT 89.36 86.54 87.93
STRNN + ST 92.56 83.38 87.73
Punctuation
Baseline 65.60 89.47 75.70
Table 1: Table of Scope Tokens results for the

*SEM2012 Negation Scope Detection test set. “ST” is
self-trained embeddings learned jointly with the task.
“BERT” is with pretrained embeddings.

5 Results

Table 1 shows performance results for the STRNN
and key comparison models on the *SEM?2012 test
corpus. The conventional *SEM test metric is the
F1 measure of individual sentence tokens predicted
in-scope of the cue. Not shown here is Fancellu’s
Dependency-LSTM, which published results on a
modified version of *SEM. The corpus consists
of sentences where each word is annotated with
a gold label of in-scope or out-of-scope, and the
negation cue. We augment these with CCG parses
(Stanojevi¢ and Steedman, 2019).

Adapted from Fancellu et al. (2017) is a naive
baseline which predicts scope within the nearest
punctuation marks left and right of the cue. It per-
forms fairly well because punctuation indicates and
defines grammatical structure. Compared to the
STRNN this model overpredicts things like subor-
dinate clauses (e.g. sentence (3)) and underpredicts
distant arguments separated by e.g. an appositive.

Our base syntactic model outperforms the com-
parison models on the task, achieving a new state
of the art on this dataset. Notably, it performs at
least as well as the word embedding-based model,
also the highest-scoring model to date, Fancellu’s
BiLSTM. Figure 1 actually shows correct model
output on the example sentences, demonstrating
the model on a simple case and a complex coordi-
nation. Given this, it might be interesting to ablate
Fancellu’s BiILSTM to see if it still performs well
only using embeddings for POS tags. We note that
POS tags contain punctuation markers, and as dis-
cussed in section 2 this model has been found to
lean heavily on punctuation. The BiLSTM would
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be able to take advantage of these markers in the
same way as before.

Word embeddings frequently boost performance
in language disambiguation tasks by incorporating
many kinds of information (Mikolov et al., 2013).
We tested augmented STRNN models by adding
word embeddings to leaves in addition to syntax
embeddings. We obtain an embedding for each
word in the sentence using BERT (Devlin et al.,
2019) and concatenate this word embedding with
our basic syntactic vector, which includes the CCG
category embedding and cue status for the given
word. We then proceed as before with learning
and classification. We also tested a variant with
randomly initialized word vectors which are jointly
learned with the task. We found that both self-
trained word embeddings and pretrained BERT em-
beddings provided no noticeable benefit to F; score
on the task.

The model classifies all constituents in the syn-
tax tree. We examined local labeling decisions
within trees in the development set and found that
in 89.9% of cases where a parent constituent has
both children classified in-scope, the model also
classifies the parent in-scope. On average, a con-
stituent has a 24.1% chance of in-scope classifica-
tion. This shows the model’s preference for repre-
senting scope in larger phrase structures, aligning
with the syntactic theory.

5.1 Error Analysis

Development set results for the base STRNN model
were analyzed and 18 difficult sentences were
found with accuracy below random chance guess-
ing. The largest group of errors (11 sentences)
were likely caused by CCG parsing errors. Some
have speech-like text with stuttering, parentheticals,
etc, and four have improper attachments within the
parse tree affecting the scoped text. A few other
sentences have fine CCG parses but are very com-
plex, including one with a 19-word noun phrase.
Many of these are related to the style of the genre.

To analyze model robustness, Pearson correla-
tions of accuracy vs several factors were calculated.
Negation cues do not always take a scope (such as
with interjections) so we measure with accuracy
instead of Fj. No correlation with accuracy was
found for sentence length, maximum tree depth,
cue depth in the tree, or tree balance.
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6 Conclusions

We show the STRNN model effectively predicts
negation scope using syntactic parse trees. State-of-
the-art performance is achieved on the *SEM2012
Shared Task without identifying individual words
or extracting features beyond syntax.

This result reverts to earlier theories about the re-
lationship between syntax and negation semantics.
Both word embeddings and semantic reasoning re-
quire large resource overhead in model parameters
and processing, but efficient use of syntax is all that
is needed for high performance on this task.
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