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Abstract
Our paper offers a computational model of
the semantic recoverability of verb arguments,
tested in particular on direct objects and In-
struments. Our fully distributional model is
intended to improve on older taxonomy-based
models, which require a lexicon in addition to
the training corpus. We computed the selec-
tional preferences of 99 transitive verbs and
173 Instrument verbs as the mean value of the
pairwise cosine similarity between their argu-
ments (a weighted mean between all the argu-
ments, or an unweighted mean with the top-
most k arguments). Results show that our
model can predict the recoverability of objects
and Instruments, providing a similar result to
that of taxonomy-based models but at a much
cheaper computational cost.

1 Introduction

Verb meaning, together with pragmatic and
discourse-related factors, has long been identified
as playing a major role in determining argument
optionality (Levin, 1993). Here, we specifically fo-
cus on the semantic recoverability of arguments,
which has often been claimed to be the key determi-
nant of object omission (Jespersen, 1927; Hopper
and Thompson, 1980; Levin, 1993; Resnik, 1993,
1996; Conklin et al., 2004; Medina, 2007; Glass,
2020). Resnik (1993, 1996) link argument recov-
erability to selectional preferences by means of an
experiment we detail in Section 2, and also show
that it is correlated with plausibility and typicality
judgments provided by human subjects.
The relation linking a verb to its optional argument
is a grammatical function in Resnik (1993, 1996),
such as “subject” or “direct object”, but it may also
be a semantic role, such as “Instrument” or “Pa-
tient”. The choice between the two depends on

This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

computational requirements rather than on theoret-
ical constraints.
Let us consider some examples. Recoverability
affects the grammaticality of the sentences in (1),
since the Patient of an eating event (as in (1a)) is
easily recoverable as a member of the class of edi-
bles, but there are no such strict constraints on what
one can make (as in (1b)).

(1) a. John ate ∅object.
b. *John made ∅object.

The same applies to prepositional phrases filling
the Instrument role, albeit in a more nuanced fash-
ion. Koenig et al. (2002, 2003, 2007) have shown
that verbs describing actions may be divided into
two classes based on whether they semantically
require an Instrument (as in (2a)) or they merely
allow it (as in (2b)). Require-Instrument verbs se-
lect for a smaller range of Instruments than Allow-
Instrument verbs: For instance, a beheading event
is very likely to involve a heavy bladed tool like
a sword, while a killing event may happen with a
much larger set of tools or even without any. While
both sentences in (2) are grammatically acceptable,
given that Instruments are syntactic adjuncts (Riss-
man and Rawlins, 2017), it is much easier to infer
the type of instrument used in the event depicted
in (2a) than the one in (2b), given the high recov-
erability of the tool used in the former from verb
meaning.

(2) a. John beheaded the prisoner ∅Instrument.
b. John killed the prisoner ∅Instrument.

Instruments are an interesting object of study for a
number of reasons. First of all, they are arguably
underesearched with respect to recoverability if
compared to direct objects, and to our knowledge
there are no computational models of Instrument
recoverability. Moreover, this semantic role is usu-
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ally overtly realized with prepositional phrases in
English and typologically similar languages, mak-
ing it very different from direct objects and a com-
putationally challenging problem to tackle.
The first attempt to formalize the requirement that a
verbal dependent be recoverable in order to be omit-
ted was provided by Resnik (1993, 1996). Resnik’s
result is a probabilistic information-theoretic model
of selectional constraints relying on a manually-
built lexicon. In this paper, we propose a fully dis-
tributional model of argument recoverability. The
crucial idea is that the more mutually similar the
arguments selected by a verb are, the more recover-
able they are from the meaning of the verb alone.
This intuition builds upon the hypotheses and re-
sults by Resnik (1993, 1996); Koenig et al. (2007),
adding a distributional dimension that those works
lacked. We will show that this solution reproduces
Resnik’s findings about direct objects, addresses
the drawbacks of Resnik’s model, and is robust
enough to predict the recoverability of Instruments.
A model such as ours can find a wide range of ap-
plications, both in Natural Language Processing
(e.g., in semantic role labeling and word sense dis-
ambiguation), in linguistic research (e.g., language
acquisition and processing), and even in real-life
technology (e.g., to provide robots with common-
sense knowledge).

2 Related work

Given a verb-relation pair (such as the verb-object
relation) Resnik (1993, 1996) formulate the selec-
tional preference strength (SPS) of the verb with
respect to the possible fillers in the given role (see
Eq. 1) as the Kullback-Leibler divergence between
the (posterior) distribution of WordNet synsets for
the given verb–relation pair and the (prior) distri-
bution of synsets participating in the given relation
over all verbs in the corpus. In 1, “classes” refers
to the taxonomic classes used in WordNet:

SPSv,r =
∑

c∈classes
p(c|v, r) log p(c|v, r)

p(c|r)
(1)

This yields higher SPS scores for verb-relation
pairs admitting only a restricted range of argu-
ments.

Resnik also defines the selectional association
(SA) of a verb-relation-class triple as the ratio of
the SPS for that class and the overall SPS of the
verb-relation pair (see Eq. 2), and the SA of a

verb-relation-argument triple as the highest verb-
relation-class SA among those computed for each
WordNet class the argument belongs to:

SAv,r,c =
p(c|v, r) log p(c|v,r)

p(c|r)

SPSv,r
(2)

Resnik’s work inspired more taxonomy-based mod-
els of SA over the years (Grishman and Sterling,
1992; Abe and Li, 1996; Ciaramita and Johnson,
2000; Clark and Weir, 2001; Alishahi and Steven-
son, 2007; Padó et al., 2009), but no further refine-
ments of the SPS itself.

Distributional Semantic Models (DSMs) (Lenci,
2018) instead tackle the main drawback of
taxonomy-based models, i.e. the need for a
manually-built lexicon, by requiring no other re-
source than the corpus they are trained on. They
rely on different strategies to compute SA, such
as clustering (Pereira et al., 1993), Support Vector
Machines (Bergsma et al., 2008), and hybrid ap-
proaches (Schulte im Walde et al., 2008).
Erk (2007) and Erk et al. (2010) provide a cog-
nitively plausible distributional model that proves
particularly relevant for our purposes. Given a
verb-relation pair, it computes the plausibility of
a potential argument of the pair (i.e., the SA of
the triple) via the weighted similarity between that
argument and the exemplar arguments stored in the
model as vectors, as shown in Eq. 3:

SAv,r(a0) =
∑

a∈args(v,r)

wtv,r(a) sim(a0, a) (3)

3 PISA: a novel measure of Preference In
Selection of Arguments

We introduce PISA, our own distributional mea-
sure of Preference In Selection of Arguments,
which we use to model argument recoverability
in the spirit of Resnik’s SPS. It stems from the
intuition that the vector-based SPS of a given verb-
relation pair should be positively correlated with
the distributional similarity of their arguments. The
simplest way to capture this notion is by comput-
ing the semantic density of the verb-relation pair
as the mean value of the pairwise cosine similar-
ity between the arguments of the pair. In order
to take into account the fact that some arguments
are more associated with a given verb-relation pair
than others, it is possible to compute a weighted
measure of semantic density. This is tantamount to
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averaging Erk et al. (2010)’s SA in Eq. 3 over n
arguments of a given verb-relation pair:

PISAv,r =
1

n

n∑
i=1

SAv,r(ai) (4)

As in previous literature, relations in our model
may be syntactic ones or semantic roles, depending
on their availability in a corpus. We used only one
similarity measure, cosine.

3.1 Weighted models
We assigned a weight to each argument in our equa-
tion based on the 5 weight functions below. The
weight functions UNI, FRQ and IDF are taken from
Erk et al. (2010):

UNI assumes a uniform distribution:

wtv,r(a) = 1 (5)

FRQ is the co-occurrence frequency of a given
argument with the verb-relation pair:

wtv,r(a) = freq(a, v, r) (6)

IDF is inspired to the well-known Inverse Docu-
ment Frequency weighting scheme, which assigns
higher scores to arguments occurring with fewer
verb-relation pairs:

wtv,r(a) = log
|v, r|

|v, r : a ∈ v, r|
(7)

LMI is the Local Mutual Information of the ar-
gument and a given verb-relation pair:

wtv,r(a) = f(a, v, r) log2
p(a, v, r)

p(a)p(v, r)
(8)

ENT is the entropy of the argument of a given
verb-relation pair:

wtv,r(a) = −
∑

a∈args(v,r)

p(a) log2 p(a) (9)

with p(x) = f(x)∑
a∈A f(a) where A is the complete set

of arguments extracted. We entered in the equation
only the verbs of our interest.

3.2 Unweighted models
In addition to the weighted models, we created
unweighted models taking into consideration only
the top/bottom k argument nouns for each verb-
relation pair, sorted based on the FRQ, IDF, LMI

and ENT weighting functions. In particular we
considered the top/bottom 300 nouns for the di-
rect object relation and the top/bottom 20 for the
Instrument semantic role. The parameters were de-
termined empirically depending on the fact that our
transitive verbs occur with a large number of direct
objects, while our Instrument-verbs occur with a
much smaller set of Instruments. Both top-k and
bottom-k models were computed as not all weight-
ing functions are directly proportional to PISA (e.g.
a high IDF means that the nouns is quite selective
with respect to what verbs it appears with, whereas
high entropy means the opposite).

4 Experimental settings

The datasets and the scripts we used to run our
model are freely available on GitHub1.

4.1 Datasets
We tested our model on two datasets:

• 99 transitive verbs (50 recoverable-object + 49
non-recoverable-object), comprising Resnik’s
original 34-verb dataset, 35 recoverable-
object verbs from Levin (1993), and 30 non-
recoverable-object verbs we sampled among
high-frequency transitive verbs.

• 173 Instrument verbs (116 recoverable-
Instrument + 57 non-recoverable-Instrument),
taken from Koenig et al. (2007).

4.2 Extraction of verb arguments
We extracted the arguments participating in the
verb-relation pairs of our interest from ukWaC, a 2-
billion token part-of-speech tagged and lemmatized
corpus of English (Ferraresi et al., 2008). We lim-
ited the extraction to the head nouns of the phrases
involved in a direct object or Instrument relation
with each verb, excluding determiners and modi-
fiers (e.g., sword instead of a big rusty sword). We
mapped the Instrument role to PPs headed by with
and having an Artifact as a noun argument2, fol-
lowing Erk et al. (2010) in considering syntactic
relations as noisy approximations of semantic roles.
Since we are only interested in implicit argument
alternations (Ex. (3)), we discarded sentences hav-
ing an Artifact subject to avoid including inchoat-
ive/causative alternations (Ex. (4)) and instrument
alternations (Ex. (5)) in our computation.

1https://github.com/ellepannitto/PISA
2As defined in WordNet 3.0 (Miller, 1995)

https://github.com/ellepannitto/PISA
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SVD w2v w2vf
synt.c1000 CBOW.w10 SGNS.synt.c1000
synt.c500 CBOW.w2 SGNS.synt.c500
w10 SGNS.w10 SGNS.w10
w2 SGNS.w2 SGNS.w2

Table 1: Tested embedding types (w2v = word2vec;
w2vf = word2vecf).

(3) a. John broke the vase with a hammer.
b. John broke the vase.

(4) a. John broke the vase with a hammer.
b. The vase broke.

(5) a. John broke the vase with a hammer.
b. The hammer broke the vase.

4.3 Word embeddings

As for the vector representation of arguments, we
a variety of 300-dimensional embeddings trained
on a concatenation of ukWaC and a 2018-dump
of English Wikipedia. The embeddings we tested
include both SVD reduced count-based DSMs
and neural embeddings created via word2vec3

(Mikolov et al., 2013), testing both SGNS and
CBOW models, and word2vecf (Levy and Gold-
berg, 2014). We used both window-based and
syntax-based contexts, and we tested different win-
dow sizes (2 or 10) for word2vec and SVD mod-
els, for a total of 12 models (Table 1).

5 Results and discussion

5.1 Resnik’s SPS

We tested the hypothesis that recoverable-argument
verbs have higher SPS scores than non-recoverable
argument verbs, by means of Mann-Whitney U
tests. We replicated Resnik’s experiment by cal-
culating the SPS scores for our transitive and In-
strument verbs, based on the distribution of their
arguments in ukWaC. The results are consistent
with our and Resnik’s hypothesis.

The mean score for transitive verbs is 4.27
for recoverable-object verbs and 1.89 for non-
recoverable-object verbs. The difference between
the two groups is significant (U = 264, n1 = 50, n2 =
49, P < .001). Similarly, the mean score for Instru-
ment verbs is 4.72 for recoverable-Instrument verbs
and 3.60 for non-recoverable-Instrument verbs, and
their difference is significant too (U = 4646, n1 =
116, n2 = 57, P < .001).

3https://code.google.com/archive/p/
word2vec/

weighted top k bot k
SVD *** - -

UNI w2v *** - -
w2vf ** (***) - -
SVD *** ** (***) ns

FRQ w2v *** *** ns
w2vf *** ** (***) ns
SVD *** ** (ns) ns (***)

IDF w2v *** *** (ns) ***
w2vf ** (***) ns ns
SVD *** (**) ** (ns) ns (**)

LMI w2v *** * (ns) *
w2vf *** (*) * (ns) * (**)
SVD *** (*) ns (***) ns

ENT w2v *** (**) *** ns
w2vf *** (**) * (ns) *

Table 2: Mann-Whitney U tests comparing
recoverable- and non-recoverable-argument verbs (sig-
nificance levels). Whenever transitive and Instrument-
verb results are different, the former are on the left and
the latter on the right of the same cell

5.2 PISA

In Tables 2 to 4, we collapsed the results from the
12 distributional models into three types (see Table
1), since there are no within-group notable differ-
ences. For each group, we report the worst score.
Significance levels are given as follows: *** p ≤
0.001, ** p ≤ 0.01, * p ≤ 0.05, ns p > 0.05.
As shown in Table 2, PISA can reliably separate the
two groups of recoverable- and non-recoverable-
argument verbs based on Mann-Whitney U tests
comparing the mean score of the two groups. Look-
ing closer at the results, it appears that the weighted
versions of PISA yield highly significant results
overall, while the versions using the top k nouns
yield varying results depending on both the weights
and the distributional spaces. The most notable pat-
tern within the top-k models is that the word2vec
spaces lead to consistently significant results, and
FRQ appears to be the best-performing weight.
The same significance pattern observed for the
Mann-Whitney U scores is found, with slight dif-
ferences, in the Spearman correlations (Tables 3
and 4). In this case, we considered how much the
ranking of our set of verbs based on PISA is similar
to the ranking yielded by Resnik’s SPS, since PISA
is intended to improve on Resnik’s methodology,
while building on the same theoretical premises.
Once again, the best scores come from the weighted
models (especially those weighted with entropy),
and the FRQ models are the best within the top-k
group.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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weighted top300 bot300
SVD .832*** - -

UNI w2v .851*** - -
w2vf .250* - -
SVD .854*** .341*** -.041 ns

FRQ w2v .835*** .712*** -.024 ns
w2vf .743*** -.368*** -.090 ns
SVD .750*** -.328*** .211 ns

IDF w2v .818*** -.388*** .457***
w2vf .256* -.154 ns .164 ns
SVD .791*** -.385*** -.092 ns

LMI w2v .711*** -.135 ns .129 ns
w2vf .667*** -.092 ns .091 ns
SVD -.905*** .163 ns .111 ns

ENT w2v -.908*** .579*** .134 ns
w2vf -.911*** .254* .320**

Table 3: Spearman correlations between PISA and
Resnik scores for transitive verbs.

weighted top20 bot20
SVD .404*** - -

UNI w2v .244*** - -
w2vf .105 ns - -
SVD .283*** .481*** -.025 ns

FRQ w2v .179* .519*** -.005 ns
w2vf .127 ns .326*** .037 ns
SVD .384*** .005 ns .135 ns

IDF w2v .242*** .09 ns .265***
w2vf .082 ns .176* .03 ns
SVD .170* .152* -.011 ns

LMI w2v .134 ns .134 ns -.065 ns
w2vf .077 ns .266*** -.013 ns
SVD -.885*** .118 ns .003 ns

ENT w2v -.920*** .256*** .088 ns
w2vf -.928*** .031 ns .334***

Table 4: Spearman correlations between PISA and
Resnik scores for Instrument verbs.

6 Conclusions and future work

In this paper, we presented a novel distributional
measure of semantic selectivity (PISA) and used
it to quantify direct object and Instrument recov-
erability. Most notably, PISA achieves a degree
of precision comparable with Resnik’s SPS but at
a much cheaper computational cost, since it does
not require a taxonomy or other lexical resources
external to the training corpus.
Considering the full picture provided in Tables 2
to 4, the question arises of which is the best choice
amongst the various PISA variants. We believe
there is no univocal answer. The simplest solution
would be to choose a UNI weighted model, since it
does requires neither an additional step to compute
the weight nor an assessment of the optimal value
of k to compute the top-k models. If one cares
for their results to resemble Resnik’s in the verb
ranking, the most conservative solution would be to
choose an ENT weighted model. If one works with
a very large set of verbs, each occurring with many
different arguments, the computationally most par-
simonious solution would be to choose a UNI or
better a FRQ top-k model.
It will be interesting to use our new measure to pre-
dict the recoverability of arguments participating
in other syntactic relations or semantic roles, to see
whether it generalizes to them and to what extent.
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