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Abstract

The manifold hypothesis suggests that word
vectors live on a submanifold within their am-
bient vector space. We argue that we should,
more accurately, expect them to live on a
pinched manifold: a singular quotient of a
manifold obtained by identifying some of its
points. The identified, singular points corres-
pond to polysemous words, i.e. words with
multiple meanings. Our point of view sug-
gests that monosemous and polysemous words
can be distinguished based on the topology of
their neighbourhoods. We present two kinds
of empirical evidence to support this point of
view: (1) We introduce a topological meas-
ure of polysemy based on persistent homo-
logy that correlates well with the actual num-
ber of meanings of a word. (2) We propose a
simple, topologically motivated solution to the
SemEval-2010 task on Word Sense Induction
& Disambiguation that produces competitive
results.

1 Introduction

Static word embeddings attempt to represent words
by vectors in a high-dimensional vector space Rn
in such a way that words of similar meaning are
represented by (cosine) similar vectors, and vice
versa. According to the manifold hypothesis, we
should expect these vectors to lie within a lower-
dimensional word spaceW , a subspace of Rn that
resembles a manifold. To what extent this hypo-
thesis is true in this and other contexts is the subject
of ongoing research (Fefferman et al., 2016). In this
paper, we argue and demonstrate that for the word
space W , polysemy is a principal obstruction to
any strict interpretation of the manifold hypothesis.

That polysemy presents a serious obstacle to the
creation of adequate word vector representations

This work is licensed under a Creative Commons Attri-
bution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/.

is clear from the outset. Take, for example, a poly-
semous word like “mole”. We would want the
vectors representing “birthmark” and “counterspy”
to be similar to the vector of “mole”, but not similar
to each other. This is impossible. In order for sim-
ilarity of vectors to accurately encode similarity in
meaning, we need vectors representing meanings,
not words.

Let us therefore hypothesize a space of mean-
ings M that accurately represents all possible
meanings and their similarities. Our argument is a
simple topological observation based on the rela-
tionship between this spaceM and the word space
W . For an idealised language, where there is a
bijection between meanings and words, these two
spaces would agree. For a natural language, how-
ever, multiple points of M get identified with a
single point ofW . This process corresponds to a to-
pological construction that we refer to as pinching
(see Figure 2). It is easy to see that a space resulting
from pinching cannot be a manifold. Thus, even
if the space of meaningsM satisfies the manifold
hypothesis perfectly, the pinched spaceW cannot
satisfy the hypothesis near polysemous words.1

Based on this intuition, and using tools from
Topological Data Analysis, we introduce a meas-
ure for the polysemy of a word based on its vector
embedding. Our experiments show that this topo-
logical polysemy (TPS) correlates well with the
actual number of meanings that a word has. In
addition, we present an approach to the SemEval-
2010 task on Word Sense Induction & Disambig-
uation (task 14) (Manandhar et al., 2010). This
approach is independent of TPS, but based on the
same ideas. Despite its simplicity, it is almost on
par with the best performing algorithm within the

1It may appear that a similar complication arises from syn-
onyms, multiple words with a single meaning. However,
synonyms are irrelevant for our analysis; see the discussion
at the end of Section 3.1.

http://creativecommons.org/licenses/by/4.0/
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Figure 1: Some subspaces of R3: various deformations
of an open line segment (a, b, c), deformations of a
circle (d, e, f), a torus (g) and a deformation of the torus
(h), two intersecting line segments (i), and a surface
with a figure eight as boundary (j)

2010 challenge, and outperforms far more complic-
ated approaches.

We see these experimental results as strong evid-
ence that our interpretation of the word spaceW as
a pinched manifold is more adequate than a more
naı̈ve view ofW as an actual manifold.

2 Background

2.1 Topology

A space, for us, is a topological space. Readers un-
familiar with the notion may simply think of metric
spaces, or indeed of subspaces of euclidean space
Rn. Two such spaces are considered equivalent, or
homeomorphic, if they can be deformed into each
other. We will not make this precise here, but we
hope that Figure 1, in which homeomorphic spaces
are connected by the symbol “∼=”, gives a clear
intuition. As flexible as this notion may appear, the
deformations considered do keep certain proper-
ties of a space invariant. Crucially, homeomorphic
spaces always have the same number of connected
components and the same number of holes. Topo-

;

Figure 2: The effect of pinching on the torus (example
(g) from Figure 1): before (left) and after the identifica-
tion of three marked points to a singular point (right)

logists have developed a myriad of more subtle in-
variants that allow us to decide whether two spaces
are homeomorphic. We refer to Hatcher (2002) for
an introduction into this vast field.

Two kinds of spaces will be important for us:
manifolds and pinched manifolds. A (topological)
manifold is a space in which each point has a
neighbourhood homeomorphic to an open ball of
Rd for some d (cf. Hatcher, 2002, § 3.3).2 We
call d the local dimension of the manifold at that
point. The spaces (a), (b) and (c) in Figure 1 are
manifolds since each point has a neighbourhood
homeomorphic to an open interval in R1, and so are
the spaces (d), (e), (f). The spaces (g) and (h) are
manifolds because each point has a neighbourhood
homeomorphic to an open disk in R2. Space (i),
on the other hand, is not a manifold, because the
point of intersection has no neighbourhood homeo-
morphic to an open ball of any dimension, and
neither is space (j), because the manifold condi-
tion is violated at all boundary points. The spaces
“without corners”, i.e. examples (a), (c), (d), (g)
and (h) in Figure 1 are not only topological man-
ifolds but even differentiable manifolds, but this
distinction will be of no importance to us.

By a pinched manifold, we will mean a space
obtained from a manifold by marking a finite num-
ber of points in different colours, and identifying
(“glueing together”) all points of the same colour,
as illustrated in Figure 2. In a pinched manifold,
the neighbourhoods of most points still look like
open balls, but the neighbourhoods of the identi-
fied points look like several balls glued together at
their centres. We will call these identified points
singular points.

Singular points can thus easily be distinguished
from non-singular points by the topology of their
neighbourhoods. More precisely, we can distin-

2Manifolds are moreover required to be Hausdorff, a technical
condition that all metric spaces satisfy.
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Figure 3: Points noisily sampled from the unit circle
(top left) and the corresponding spacesWr for different
radii r

guish them by counting the number of connected
components of their punctured neighbourhoods:
neighbourhoods of a point from which the point
itself has been removed. The punctured neighbour-
hood of a non-singular point is a single punctured
ball, and thus is connected, at least in dimensions
d ≥ 2. The punctured neighbourhood of a singular
point obtained by identifying k > 1 points, on the
other hand, is a disjoint union of k punctured balls,
and thus has several connected components. Thus,
in dimensions d ≥ 2, a point is singular if and only
if small punctured neighbourhoods of it have more
than one connected component.

Puncturing the neighbourhood, i.e. removing the
centre, is crucial for this distinction. The unpunc-
tured neighbourhoods of singular and non-singular
points are not distinguishable by the usual topolo-
gical invariants. (In technical terms, the neighbour-
hoods of both types of points are contractible.)

2.2 Topological data analysis
Topological data analysis (TDA) is an instru-
ment for extracting topological information from
a point cloud, that is a finite set of vectorsW0 =
{p1, p2, . . . , pN} ⊂ Rn. The point cloud itself is
trivial from a topological point of view. The fun-
damental assumption of TDA is that the vectors
ofW0 are not randomly distributed but instead are
sampled from some underlying space W ⊂ Rn
which – unlike the point cloud itself – is topologic-
ally interesting. A human immediately recognises
that the points in Figure 3 have been sampled from
a circle. TDA provides algorithms that encode this
intuition, and extend it to higher dimensions.

One such algorithm is persistent homology.

Figure 4: An example of a persistence diagram, sum-
marizing the persistent homology of some point cloud
W0 in degrees i = 0, 1, 2 and 3. Each dot encodes
the life span of a distinct feature. Features of different
degrees are displayed in different colours, as indicated
in the lower right corner. For the computations in this
paper, we will focus on the degree zero features, i.e. on
connected components, indicated in red. As all of these
are already present in the point cloudW0, they all have
horizontal coordinate equal to zero. Their vertical co-
ordinates are the radii at which different components
merge

The basic idea is to replace W0 with the union
Wr of all open balls of a certain radius r centred at
the points ofW0. As we vary this radius, we obtain
a sequence of spaces, starting for r = 0 with the
point cloud itself and ending at some high value of
r with a space in which all balls are merged into
a single big blob. We compute certain topological
invariants, the so-called Betti numbers bi, for each
space Wr. The Betti number bi counts certain i-
dimensional features of the space. For example, b0
is the number of connected components and b1 is
the “number of holes”; both are equal to 1 for the
two spaces in the lower half of Figure 3.

The radii at which different i-dimensional fea-
tures appear and disappear can be summarized into
a multiset and visualized as a two-dimensional per-
sistence diagram D as in Figure 4. Each dot in
this diagram encodes the life span of a distinct fea-
ture: its horizontal coordinate is the smallest radius
r at which the feature is present in Wr, its ver-
tical coordinate is the largest radius r at which it is
present. Points that lie far off the diagonal corres-
pond to features that persist across a wide range of
values of r, and are hence likely to reflect features
of the underlying spaceW . For technical reasons,
every point on the diagonal is also included in the
persistence diagram D with infinite multiplicity.
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The Wasserstein distance provides a notion of
distance between two such persistence diagrams,
and hence a measure of similarity between different
point clouds and their underlying spaces. For two
diagrams D and D̃ it is defined as:

W (D, D̃) := inf
η:D→D̃

(∑
x∈D
‖x− η(x)‖∞

)
where η runs over all bijections between the two
diagrams. As all points on the diagonal are in-
cluded in both diagrams, such bijections always
exist.

The computation of persistent homology can be
restricted to a range of degrees i. In this paper, we
will concentrate on persistent homology in degree
i = 0, which is essentially a systematic applica-
tion of single-linkage clustering. Computations in
higher dimensions quickly become very expensive.
For an in-depth discussion of the concepts men-
tioned in this section we recommend (Edelsbrunner
and Harer, 2010).

2.3 Word vector embeddings
The distributional hypothesis states that “the mean-
ing of words lies in their use” (Wittgenstein, 1953).
This provides the basis for distributional semantics,
a data driven study of word meanings. Words are
modelled as vectors in such a way that (cosine) sim-
ilarity of vectors corresponds to similarity in the
distributions of the corresponding words in natural
language, and hence to semantic similarity. In the
most naı̈ve approaches, the dimension of these vec-
tors corresponds to the number of distinct words in
the language. More sophisticated implementations
in which word vectors are real-valued but of sig-
nificantly smaller dimension are popularly known
as word vector embeddings. They have proven
important for various tasks of natural language pro-
cessing (Collobert et al., 2011; Lubis et al., 2020).

Early word vector embeddings were constructed
in latent semantic analysis using singular value
decomposition. Neural methods were introduced
by Bengio et al. (2003), and popularised by the
algorithms word2vec (Mikolov et al., 2013a,b) and
GloVe (Pennington et al., 2014). Our method of
choice in this paper is fastText (Bojanowski et al.,
2017), which can produce high-quality embeddings
from relatively small corpora. All of these methods
produce static embeddings: they assign to each
word a single, context-independent vector.

There is, of course, a lot of existing and on-
going research to overcome the difficulties inher-

ent in adequately representing polysemous words.
One way to address polysemy is to produce mul-
tiple, context-dependent embeddings for the same
word. The deep learning approaches mentioned
above are amenable to this by incorporating heur-
istics (Huang et al., 2012) or non-parametric clus-
tering (Neelakantan et al., 2014). More recently,
transformer based models that exploit massive data-
sets have been used to produce contextualised word
embeddings. Examples of these are CoVe (Mc-
Cann et al., 2017), ELMo (Peters et al., 2018),
and BERT (Devlin et al., 2019) and its variants
ERNIE (Sun et al., 2019) and RoBERTa (Liu
et al., 2019). Alternative approaches address poly-
semy by training multi-lingual word embeddings
on multi-lingual corpora (Dufter et al., 2018; Hey-
man et al., 2019).

As the problem of polysemy is, at least partially,
resolved in all of these more advanced approaches,
we would expect the phenomenon studied in this
paper to be less pronounced in the embeddings they
produce. We therefore concentrate exclusively on
mono-lingual static embeddings. Our analysis will
not require any data beyond such an embedding.

3 The topology of the word space

3.1 The word space as a pinched manifold

In order to explain the apparent efficiency of ma-
chine learning, the manifold hypothesis postulates
that, in general, real world data tends to live on a
small-dimensional submanifold of the vector space
in which it is represented (Bengio et al., 2013; Fef-
ferman et al., 2016). For word vector embeddings,
the ambient space Rn typically has dimension n
in the range 50 ≤ n ≤ 300. The hypothesis states
that word vectors in fact lie on, or are densely dis-
tributed around, a submanifoldW ⊂ Rn of much
smaller dimension. What this hypothetical word
spaceW might look like is an intriguing question.
Work of Arora et al. (2018) suggests a dimension of
W as low as five. It is easy to imagine even smaller
subspaces of W , like a line segment connecting
“cold”, “cool”, “lukewarm”, “warm” and “hot”, or
a circle connecting “north”, “east”, “south”, “west”.
But the global structure seems mysterious.

The manifold hypothesis has two parts: (1) that
W is of small dimension, and (2) thatW is a man-
ifold.3 It is the second statement that we would
3It may not be evident what the correct notion of “dimension”
should be for arbitrary subspaces. However, there are much
larger classes of spaces than manifolds to which the notion
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Figure 5: An idealized picture of the word space W
near “mole”: four regions of the meaning manifold are
glued together to a single word

like to challenge. We argue that, in the vicinity of
polysemous words, W cannot possibly have the
structure of a manifold, i.e. it cannot resemble an
open ball of any dimension. The best we can ex-
pect is that this might be true for some space of
meaningsM – a space that parametrizes all pos-
sible meanings that words of a given language may
assume – from whichW is obtained by identifying
multiple meanings to a single word. This identific-
ation process is precisely the pinching construction
discussed in Section 2.1. For example, we should
expect the neighbourhood of the polysemous word
“mole” in W to be obtained from the neighbour-
hoods of its different meanings in M, all glued
together as in Figure 5. Thus, even if we optimist-
ically hypothesize the space of meaningsM to be
a manifold, the word spaceW cannot be: it is at
best a pinched manifold. It is this hypothesis that
we will pursue in the following. (IfM has more
complicated local structure, then a fortiori so does
W .)

The presence of synonyms in a language has no
bearing on this analysis. To explain this, we need to
temporarily distinguish carefully between a wordw
and its associated word vector vw. The word space
W should more precisely be called space of word
vectors, since this is the space in which the vectors
vw live, not the words themselves. Under a given
word vector embedding, synonyms w and w′ may
get mapped to the same word vector vw = vw′ .
However, this does not affect the relation of the

of dimension extends in a straight-forward manner.

M

��
{words}

word vector embedding
//W

Figure 6: The relation of the space of meanings M,
the space of word vectorsW and the set of words of a
language. Synonyms may get identified under a given
word vector embedding, symbolized here by the ho-
rizontal map. Multiple meanings get identified to a
single word vector under the vertical map

space of meaningsM to the space of word vectors
W in any way. The situation is summarized in
Figure 6.4

With this discussion out of the way, we will
from now on again simplify our terminology by
identifying words with their associated vectors, and
refer toW as word space.

3.2 A topological measure of polysemy

As explained at the end of Section 2.1, we can
distinguish a singular point of a pinched manifold
from a non-singular point by counting the connec-
ted components of a small punctured neighbour-
hood of the point. What is more, the number of
these components reflects the number of points that
were glued together in the pinching process. Thus,
according to our view of the word space W as a
pinched quotient of the manifold of meaningsM,
the number of different meanings of a word should
be reflected by the number of components of a
punctured neighbourhood of the word.

Of course, the relevant number of components
is not directly visible from the discrete point cloud
formed by the word vectors. Rather, the compon-
ents can only be estimated by some form of clus-
tering. In this section, we describe a measure of
the number of components based on degree zero
persistent homology, as introduced in Section 2.2.

Fix a word vector embedding, a target word w,
and a neighbourhood size n. As already indicated,
we will abuse language by identifying a word with
its vector under the embedding in the following.
The topological polysemy TPSn(w) of w with
respect to our fixed word vector embedding and
our chosen neighbourhood size n is the Wasserstein

4It is of course debatable whether the equation vw = vw′

would really hold for any pair of synonyms in practice. It
seems more likely that the vectors vw and vw′ would simply
lie very close together.



108

norm of a normalized punctured neighbourhood of
w. That is, TPSn(w) is computed as follows:

1. Normalize all word vectors v to have L2-norm
‖v‖ = 1.

2. Consider the punctured neighbourhood
Nn(w) consisting of the n closest neighbours
of w, excluding w itself.

3. Pass to the normalized punctured neighbour-
hood N ′

n(w) by translating w to lie at the
origin and projecting all vectors to the unit
sphere:

N ′
n(w) :=

{
v − w
‖v − w‖

∣∣∣∣ v ∈ Nn(w)
}

4. Compute the degree zero persistence diagram
of N ′

n(w).

5. TPSn(w) is the Wasserstein norm of this per-
sistence diagram, i.e. the Wasserstein distance
between the computed and the empty persist-
ence diagram.

The general normalization in Step 1 is included
because word embeddings are trained only on co-
sine similarity; the length of each vector has no
apparent meaning. The normalization allows us to
compute directly with difference vectors between
word vectors of high cosine similarity. The normal-
ization in Step 3 is included because we have fixed
the cardinality n of the neighbourhood, not its dia-
meter. Without any normalization in this step, we
would be measuring mostly the density of the word
cloud around w. The normalization by projection
onto the unit sphere may seem somewhat radical,
but it is topologically motivated: the topological
invariants we use cannot distinguish a punctured
ball from its boundary sphere. (In technical terms,
the punctured ball and its boundary are homotopy
equivalent; cf. Hatcher (2002), Chapter 0.)

4 Empirical evidence

We present two pieces of empirical evidence that
support our view of the word space as a pinched
manifold. The experiments in Sections 4.2 and 4.3
show that the topological polysemy defined above
correlates with the actual number of meanings of
a word. In Section 4.4, we describe a simple ap-
proach to the SemEval-2010 task on word sense
induction based on our topological intuition.

“Don’t forget the Tatun Mountains, which shel-
ter the town. In the old days , Tanshui folk who
cultivated farms on the slopes had to walk for
an hour to get to their crops. These days you
can take a local mini-bus.”

Figure 7: An exemplary context of an instance of the
target word “cultivate”

4.1 Experimental setup

All experiments are based on data provided with
the SemEval-2010 task on Word Sense Induction &
Disambiguation (Manandhar et al., 2010). The task
is as follows: Assign a total of 8 915 instances,
extracted from various sources including CNN and
ABC, of 100 different polysemous target words
(50 nouns and 50 verbs) to clusters based on their
context, such that instances with different mean-
ings get mapped to different clusters and instances
with the same meaning get mapped to the same
cluster. A context is simply a paragraph of text that
the target word appears in. Figure 7 shows an ex-
emplary context for an instance of the target word
“cultivate”. Note that labels are only provided for a
test set; this is an unsupervised learning task.

The training set provided comprises 65M oc-
currences of 127 151 different words. We use this
corpus to train our own vector representations us-
ing the python module for fastText (Bojanowski
et al., 2017). For the computation of the persist-
ence diagrams and the Wasserstein distance we use
the GUDHI library (The GUDHI Project, 2020).

4.2 Correlation of TPS with the SemEval
gold standard

The SemEval data set includes a gold standard for
the 100 target words. The number of clusters in this
gold standard is equal to the number of true mean-
ings of each word, as perceived by humans. Fig-
ure 8 shows our measure of polysemy TPS50(w)
for the 100 target words w plotted against these
cluster counts.

Correlation coefficients between the gold stand-
ard and TPSn(w) for varying neighbourhood sizes
n are displayed in the first column of Table 1. We
found the highest correlation for n = 50, equal to
0.424. Neighbourhoods consisting of just ten or
less words are clearly too small to capture multiple
meanings. On the other hand, for high values of n,
the neighbourhoods become too large to adequately
reflect the local structure of the word space around
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Figure 8: The topological polysemy TPS50(w) plot-
ted against the number of clusters in the SemEval gold
standard, for the 100 SemEval target words w

n TPSn vs. TPSn vs. TPSn vs.
GS synsets frequency

10 – 0.001 0.122 0.002
40 0.411 0.096 – 0.003
50 0.424 0.085 – 0.006
60 0.414 0.076 – 0.008
100 0.333 0.055 – 0.013

sample
size 100 62 049 127 151

Table 1: Correlations between TPSn(w) and the num-
ber of meanings of w according to the SemEval gold
standard (Section 4.2), the number of WordNet synsets
(Section 4.3), and the frequency of w in the SemEval
training corpus. The last line indicates the number of
words on which the correlation is computed. The gray
entry is not statistically significant, but all other entries
are (p-value < 10−3)

the target word. This is likewise unsurprising: re-
call from Section 2.1 that the manifold condition is
a local condition around each point. Larger neigh-
bourhoods of a point on a manifold can be arbitrar-
ily complicated, and so can larger neighbourhoods
of singular points on a pinched manifold.

The third column of Table 1 shows that
TPSn(w) does not correlate with the frequency
of the words in the SemEval corpus. This is import-
ant, as frequency itself correlates with polysemy.
The absence of correlation between TPSn(w) and
frequency strengthens our assertion that TPSn(w)
indeed measures polysemy.

Figure 9: The topological polysemy TPS50(w) plot-
ted against the number of synsets in WordNet, for all
62 049 words w in the SemEval corpus that have a
WordNet entry

GS WordNet TPS50

sniff 3 3 27.262
reap 2 2 26.658
bow 5 14 28.533
chip 13 14 28.910
house 14 14 28.999

Table 2: Some examples of words and their correspond-
ing cluster count in the SemEval gold standard and
WordNet as well as their TPS-measure for n = 50

4.3 Correlation of TPS with WordNet synsets

The correlation with the gold standard is a good
indication of the validity of our method, but it is
based on just 100 samples. The number of mean-
ings, as perceived by humans, of a much larger
set of words can be extracted from WordNet (Fell-
baum, 1998), specifically the number of synsets
associated with each word. Of course, we can-
not expect the correlation between our topological
polysemy and these numbers of synsets to be as
high as for the SemEval gold standard. Firstly, we
have trained our fastText vectors specifically on
the SemEval training set, which does not capture
the breadth of WordNet, and which does not com-
prise enough data to yield adequate embeddings
for non-target words. Secondly, WordNet captures
distinctions in meaning far more granular that one
could hope to detect within the, say, 50 closest
neighbours of a word.

Nonetheless, plotting TPS50(w) against the
number of synsets for all 62 049 words of the Sem-
Eval corpus that have a WordNet entry indicates a
clear trend, see Figure 9. Correlation coefficients



110

for varying n are included in Table 1.

4.4 The SemEval task
Our hypothesis that the word space is a manifold
pinched at polysemous words also suggests the
following, direct approach to the SemEval-2010
task itself, which we call Overlap with Punctured
Neighbourhood (OPN). Fix a neighbourhood size
n. In a first step, we cluster punctured neighbour-
hoods of size n of the 100 target words using a
common clustering algorithm like k-means or db-
scan (Ester et al., 1996). The different clusters
of the neighbourhood cloud obtained in this way
are taken to represent different meanings of the
target word. In a second step, we assign a given
instance of the target word to the cluster of the
neighbourhood cloud that has the highest relative
word overlap with the context of that instance.

For clustering with dbscan, we found that the
best results are achieved with parameter values
Eps = 0.09 and MinPts = 2 and large neighbour-
hood sizes n. The k-means clustering algorithm
requires the number k of clusters aimed for as a
parameter. We experimented both with fixed val-
ues of k and with a word-dependent variable value
k(w), predicted using TPS as follows. Define the
TPS-percentile %(w) of a target word w as

%(w) :=

⌈
TPS50(w)− TPSmin

TPSmax − TPSmin
· 100

⌉
,

where TPSmin and TPSmax denote the minimum
and maximum values that TPS50(·) assumes on
all target words, respectively, and where d·e de-
notes rounding to the next largest integer. Thus,
the percentile is an integer between 0 and 100 that
reflects how large TPS50(w) is in comparison to
all other target words. The expected number of
clusters k(w) is defined as

k(w) :=


2 if %(w) ≤ 1

%(w) + 1 if 1 < %(w) < 100

100 if %(w) = 100

Thus, the predicted number of clusters k(w) varies
between 2 and 100.

The performance is commonly measured by two
scores, the F-score and the V-measure, which cap-
ture to what extent a clustering agrees with the
gold standard clustering. Since both scores are im-
portant, we rank different approaches based on the
product of these scores. This automatically dis-
counts the performance of trivial approaches: MFS,

which assigns each occurrence to the same cluster,
and 1cl1inst, which assigns each occurrence to its
own cluster. Table 3 shows the results for OPN
with different clustering algorithms and different
parameters. For comparison, the table moreover
includes the best performing models of the Sem-
Eval task, as well as some other models published
since. Our best performing set-up (OPN with db-
scan, n = 5000) achieves the second best results,
outperforming much more complex methods. Note
that, unlike Arora et al. (2018) and Mu et al. (2017),
we do not use any additional data to train embed-
dings.

For OPN with k-means clustering, we found that
k = 30 gives the best results among possible fixed
values for k. As Table 3 shows, the performance of
our method with the TPS-informed variable value
k(w) is better than the performance with this fixed
value. This provides further evidence to our claim
that TPS is positively correlated with the true num-
ber of meanings. A comparison of the performance
of OPN with dbscan and of OPN with k-means
indicates that the size n of the neighbourhood to
be considered for clustering needs to be an order
of magnitude larger when we do not incorporate
any information from TPS. Our interpretation is
that TPS witnesses the disturbance that an addi-
tional meaning causes in a small neighbourhood of
a word, even when no word related to that meaning
is present in the neighbourhood.

In Table 4, we single out the three best perform-
ing and the three worst performing target words
with our best performing model and give the asso-
ciated scores as an illustration.

5 Conclusion

In this work, we challenge the manifold hypothesis
for static word vector embeddings and experiment-
ally show that it is more accurate and helpful to
view the space of word embeddings as a pinched
manifold. We introduce a topological measure of
polysemy that correlates well with the number of
meanings of a word according to the gold standard
of the SemEval-2010 task on Word Sense Induction
& Disambiguation. We also produce a surprisingly
simple, but topologically motivated solution to the
task itself that achieves highly competitive results.

We stress that our measure of polysemy, TPS, is
computed solely on the topology of the point cloud
consisting of the vectors of a fixed word vector em-
bedding. Of course, any solution to the described
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Method Parameters V-Measure F-Score Product

UoY (Korkontzelos and Manandhar, 2010) 0.157 0.498 0.0782
OPN with dbscan n = 5000 0.175 0.420 0.0735
OPN with dbscan n = 2000 0.135 0.493 0.0666
(Mu et al., 2016) k = 5 0.145 0.441 0.0639
OPN with k-means n = 500, k = k(w) 0.165 0.356 0.0588
KSU KDD (Elshamy et al., 2010) 0.157 0.369 0.0579
OPN with k-means n = 500, k = 30 0.161 0.352 0.0567
(Arora et al., 2018) k = 5 0.115 0.464 0.0533
(Mu et al., 2016) k = 2 0.073 0.571 0.0417
OPN with dbscan n = 500 0.070 0.571 0.0400
(Arora et al., 2018) k = 2 0.061 0.586 0.0357

1cl1inst 0.317 0.090 0.0285
MFS 0.000 0.634 0.0000

Table 3: Performance of different methods on task 14 of SemEval-2010. According to our ranking by product of
V-measure and F-score, the algorithms UoY and KSU KDD were the strongest contenders in the initial challenge.
The algorithms MFS and 1cl1inst in the last two rows are trivial baseline algorithms

Target word F-Score Precision Recall V-Measure Homo-
geneity

Com-
pleteness Product

presume.v 0.827 0.957 0.728 0.477 0.683 0.366 0.3945
cultivate.v 0.657 0.648 0.667 0.518 0.564 0.479 0.3403
accommodate.v 0.465 0.476 0.455 0.605 0.777 0.495 0.2813
...
violate.v 0.153 0.813 0.085 0.023 0.292 0.012 0.0035
root.v 0.574 0.405 0.984 0.000 0.000 1.000 0.0000
sniff.v 0.453 0.295 0.969 0.000 0.000 1.000 0.0000

Table 4: The performance of our best solution to SemEval on the three best performing vs. the three worst perform-
ing words, as evaluated according to the product of F-score and V-measure

SemEval task will also predict, in particular, the
number of meanings of the target words. However,
these predictions rely on access to the underlying
corpus, or at least parts thereof. Similarly, the first
step (clustering) of our solution to the SemEval task
is performed directly on the word vectors, without
recourse to any corpus. This is in sharp contrast
with early clustering approaches to word sense dis-
ambiguation such as (Schütze, 1998) (which of
course had to rely on far less sophisticated word
vector embeddings than are now available).

A number of avenues could be pursued to further
improve the results presented here. To allow a fair
comparison with other solutions to the SemEval
task, we have used word vector embeddings trained
on a fairly small corpus. We have used only degree
zero persistent homology. Our method of taking

the Wasserstein norm of a persistance diagram is
rather crude. The elimination of noise from the
embeddings could also improve the results.

We conjecture that other NLP tasks that also
rely, implicitly or explicitly, on the manifold hypo-
thesis could similarly benefit from a more refined
topological analysis.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associ-
ation for Computational Linguistics, 5:135–146.

Ronan Collobert, Jason Weston, Léon Bottou, Mi-
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