
Proceedings of 4th Workshop on Structured Prediction for NLP, pages 62–73
November 20, 2020. c©2020 Association for Computational Linguistics

62

Improving Joint Training of Inference Networks and
Structured Prediction Energy Networks

Lifu Tu1 Richard Yuanzhe Pang2∗ Kevin Gimpel1
1Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

2New York University, New York, NY 10011, USA
lifu@ttic.edu, yzpang@nyu.edu, kgimpel@ttic.edu

Abstract

Deep energy-based models are powerful, but
pose challenges for learning and inference (Be-
langer and McCallum, 2016). Tu and Gimpel
(2018) developed an efficient framework for
energy-based models by training “inference
networks” to approximate structured inference
instead of using gradient descent. However,
their alternating optimization approach suffers
from instabilities during training, requiring ad-
ditional loss terms and careful hyperparameter
tuning. In this paper, we contribute several
strategies to stabilize and improve this joint
training of energy functions and inference net-
works for structured prediction. We design a
compound objective to jointly train both cost-
augmented and test-time inference networks
along with the energy function. We propose
joint parameterizations for the inference net-
works that encourage them to capture com-
plementary functionality during learning. We
empirically validate our strategies on two se-
quence labeling tasks, showing easier paths to
strong performance than prior work, as well
as further improvements with global energy
terms.

1 Introduction

Energy-based modeling (LeCun et al., 2006) asso-
ciates a scalar compatibility measure to each config-
uration of input and output variables. Belanger and
McCallum (2016) formulated deep energy-based
models for structured prediction, which they called
structured prediction energy networks (SPENs).
SPENs use arbitrary neural networks to define the
scoring function over input/output pairs. However,
this flexibility leads to challenges for learning and
inference. The original work on SPENs used gra-
dient descent for structured inference (Belanger
and McCallum, 2016; Belanger et al., 2017). Tu

∗ Work done at the University of Chicago and Toyota
Technological Institute at Chicago.

and Gimpel (2018, 2019) found improvements in
both speed and accuracy by replacing the use of
gradient descent with a method that trains a neural
network (called an “inference network”) to do in-
ference directly. Their formulation, which jointly
trains the inference network and energy function,
is similar to training in generative adversarial net-
works (Goodfellow et al., 2014), which is known
to suffer from practical difficulties in training due
to the use of alternating optimization (Salimans
et al., 2016). To stabilize training, Tu and Gimpel
(2018) experimented with several additional terms
in the training objectives, finding performance to
be dependent on their inclusion.

Moreover, when using the approach of Tu and
Gimpel (2018), there is a mismatch between the
training and test-time uses of the trained inference
network. During training with hinge loss, the in-
ference network is actually trained to do “cost-
augmented” inference. However, at test time, the
goal is to simply minimize the energy without any
cost term. Tu and Gimpel (2018) fine-tuned the
cost-augmented network to match the test-time cri-
terion, but found only minimal change from this
fine-tuning. This suggests that the cost-augmented
network was mostly acting as a test-time inference
network by convergence, which may be hindering
the potential contributions of cost-augmented infer-
ence in max-margin structured learning (Tsochan-
taridis et al., 2004; Taskar et al., 2004).

In this paper, we contribute a new training ob-
jective for SPENs that addresses the above concern
and also contribute several techniques for stabiliz-
ing and improving learning. We empirically vali-
date our strategies on two sequence labeling tasks
from natural language processing (NLP), namely
part-of-speech tagging and named entity recogni-
tion. We show easier paths to strong performance
than prior work, as well as further improvements
with global energy terms. We summarize our list

63

of contributions as follows.

• We design a compound objective under the
SPEN framework to jointly train the “training-
time” cost-augmented inference network and
test-time inference network (Section 3).

• We propose shared parameterizations for the
two inference networks so as to encourage
them to capture complementary functionality
while reducing the total number of trained pa-
rameters (Section 3.1). Quantitative and qual-
itative analysis shows clear differences in the
characteristics of the two networks (Table 3).

• We present three methods to streamline and
stabilize training that help with both the old
and new objectives (Section 4).

• We propose global energy terms to capture
long-distance dependencies and obtain further
improvements (Section 5).

While SPENs have been used for multiple NLP
tasks, including multi-label classification (Belanger
and McCallum, 2016), part-of-speech tagging (Tu
and Gimpel, 2018), and semantic role labeling (Be-
langer et al., 2017), they are not widely used in NLP.
Structured prediction is extremely common in NLP,
but is typically approached using methods that are
more limited than SPENs (such as conditional ran-
dom fields) or models that suffer from a train/test
mismatch (such as most auto-regressive models).
SPENs offer a maximally expressive framework for
structured prediction while avoiding the train/test
mismatch and therefore offer great potential for
NLP. However, the training and inference have de-
terred NLP researchers. While we have found ben-
efit from training inference networks for machine
translation in recent work (Tu et al., 2020b), that
work assumed a fixed, pretrained energy function.
Our hope is that the methods in this paper will
enable SPENs to be applied to a larger set of appli-
cations, including generation tasks in the future.

2 Background

We denote the input space by X . For an input
x ∈ X , we denote the structured output space by
Y(x). The entire space of structured outputs is
denoted Y = ∪x∈XY(x). A SPEN (Belanger and
McCallum, 2016) defines an energy function EΘ :
X × Y → R parameterized by Θ that computes a
scalar energy for an input/output pair. At test time,

for a given input x, prediction is done by choosing
the output with lowest energy:

ŷ = arg miny∈Y(x)EΘ(x,y) (1)

However, solving equation (1) requires combinato-
rial algorithms because Y is a structured, discrete
space. This becomes intractable when EΘ does
not decompose into a sum over small “parts” of
y. Belanger and McCallum (2016) relaxed this
problem by allowing the discrete vector y to be
continuous; YR denotes the relaxed output space.
They solved the relaxed problem by using gradient
descent to iteratively minimize the energy with re-
spect to y. The energy function parameters Θ are
trained using a structured hinge loss which requires
repeated cost-augmented inference during train-
ing. Using gradient descent for the repeated cost-
augmented inference steps is time-consuming and
makes learning unstable (Belanger et al., 2017).

Tu and Gimpel (2018) replaced gradient descent
with a neural network trained to do efficient infer-
ence. This “inference network” AΨ : X → YR is
parameterized by Ψ and trained with the goal that

AΨ(x) ≈ arg min
y∈YR(x)

EΘ(x,y) (2)

When training the energy function parameters Θ,
Tu and Gimpel (2018) replaced the cost-augmented
inference step in the structured hinge loss from
Belanger and McCallum (2016) with a cost-
augmented inference network FΦ:

FΦ(x) ≈ arg min
y∈YR(x)

(EΘ(x,y)−4(y,y∗)) (3)

where4 is a structured cost function that computes
the distance between its two arguments. We use L1
distance for 4. This inference problem involves
finding an output with low energy but high cost
relative to the gold standard. Thus, it is not well-
aligned with the test-time inference problem.

Here is the specific objective to jointly train Θ
(parameters of the energy function) and Φ (param-
eters of the cost-augmented inference network):

min
Θ

max
Φ

∑
〈xi,yi〉∈D

[4(FΦ(xi),yi)

− EΘ(xi,FΦ(xi)) + EΘ(xi,yi)]+ (4)

where D is the set of training pairs, [h]+ =
max(0, h), and4 is a structured cost function that
computes the distance between its two arguments.

64

Tu and Gimpel (2018) alternatively optimized Θ
and Φ, which is similar to training in generative ad-
versarial networks (Goodfellow et al., 2014). The
inference network is analogous to the generator and
the energy function is analogous to the discrimina-
tor. As alternating optimization can be difficult in
practice (Salimans et al., 2016), Tu & Gimpel ex-
perimented with including several additional terms
in the above objective to stabilize training.

After the training of the energy function, an in-
ference network AΨ for test-time prediction is fine-
tuned with the goal shown in Eq. (2). More specifi-
cally, for the fine-tuning step, we first initialize Ψ
with Φ; next, we do gradient descent according to
the following objective to learn Ψ:

Ψ← arg min
Ψ′

∑
x∈X

EΘ(x, AΨ′(x))

where X is a set of training or validation inputs.
It could also be the test inputs in a transductive
setting.

3 An Objective for Joint Learning of
Inference Networks

One challenge with the above optimization prob-
lem is that it requires training a separate inference
network AΨ for test-time prediction after the en-
ergy function is trained. In this paper, we propose
an alternative that trains the energy function and
both inference networks jointly. In particular, we
use a “compound” objective that combines two
widely-used losses in structured prediction. We
first present it without inference networks:

min
Θ

∑
〈xi,yi〉∈D[

max
y

(4(y,yi)−EΘ(xi,y)+EΘ(xi,yi))

]
+︸ ︷︷ ︸

margin-rescaled hinge loss

+ λ

[
max
y

(−EΘ(xi,y) + EΘ(xi,yi))

]
+︸ ︷︷ ︸

perceptron loss

(5)

As indicated, this loss can be viewed as the sum
of the margin-rescaled hinge and perceptron losses
for SPENs. Two different inference problems are
represented. The margin-rescaled hinge loss con-
tains cost-augmented inference, shown as part of
Eq. (3). The perceptron loss contains the test-time
inference problem, which is shown in Eq. (1). Tu

and Gimpel (2018) used a single inference network
for solving both problems, so it was trained as a
cost-augmented inference network during training
and then fine-tuned as a test-time inference network
afterward. We avoid this issue by training two in-
ference networks, AΨ for test-time inference and
FΦ for cost-augmented inference:

min
Θ

max
Φ,Ψ

∑
〈xi,yi〉∈D

[4(FΦ(xi),yi)−EΘ(xi,FΦ(xi))+EΘ(xi,yi)]+

+ λ [−EΘ(xi,AΨ(xi))+EΘ(xi,yi)]+ (6)

We treat this optimization problem as a minimax
game and find a saddle point for the game similar to
Tu and Gimpel (2018) and Goodfellow et al. (2014).
We use minibatch stochastic gradient descent and
alternately optimize Θ, Φ, and Ψ. The objective
for the energy parameters Θ in minibatchM is:

Θ̂←arg min
Θ

∑
〈xi,yi〉∈M[

4(FΦ(xi),yi)−EΘ(xi,FΦ(xi))+EΘ(xi,yi)
]
+

+ λ
[
−EΘ(xi,AΨ(xi))+EΘ(xi,yi)

]
+

When we remove 0-truncation (see Sec. 4.1 for the
motivation), the objective for the inference network
parameters in minibatchM is:

Ψ̂, Φ̂← arg max
Ψ,Φ

∑
〈xi,yi〉∈M

4(FΦ(xi),yi)−

EΘ(xi,FΦ(xi))− λEΘ(xi,AΨ(xi))

3.1 Joint Parameterizations
If we were to train independent inference networks
AΨ and FΦ, this new objective could be much
slower than the approach of Tu and Gimpel (2018).
However, the compound objective offers several
natural options for defining joint parameterizations
of the two inference networks. We consider three
options which are visualized in Figure 1 and de-
scribed below:

• separated: FΦ and AΨ are two independent
networks with their own architectures and pa-
rameters as shown in Figure 1(a).

• shared: FΦ and AΨ share a “feature” network
as shown in Figure 1(b). We consider this option
because both FΦ and AΨ are trained to produce
output labels with low energy. However FΦ also
needs to produce output labels with high cost4
(i.e., far from the gold standard).

65

Figure 1: Joint parameterizations for cost-augmented inference network FΦ and test-time inference network AΨ.

• stacked: the cost-augmented network FΦ is a
function of the output of the test-time network
AΨ and the gold standard output y. That is,
FΦ(x,y) = q(AΨ(x),y) where q is a parame-
terized function. This is depicted in Figure 1(c).
We block the gradient at AΨ when updating Φ.

For the q function in the stacked option, we use
an affine transformation on the concatenation of
the inference network label distribution and the
gold standard one-hot vector. That is, denoting the
vector at position t of the cost-augmented network
output by FΦ(x,y)t, we have:

FΦ(x,y)t = softmax(Wq[AΨ(x)t;y(t)] + bq)

where semicolon (;) is vertical concatenation, y(t)
(position t of y) is anL-dimensional one-hot vector,
AΨ(x)t is the vector at position t of AΨ(x), Wq

is an L× 2L matrix, and bq is a bias.
One motivation for these parameterizations is

to reduce the total number of parameters in the
procedure. Generally, the number of parameters is
expected to decrease when moving from separated
to shared to stacked. We will compare the three
options empirically in our experiments, in terms of
both accuracy and number of parameters.

Another motivation, specifically for the third op-
tion, is to distinguish the two inference networks
in terms of their learned functionality. With all
three parameterizations, the cost-augmented net-
work will be trained to produce an output that dif-
fers from the gold standard, due to the presence
of the4(·) term in the combined objective. How-
ever, Tu and Gimpel (2018) found that the trained
cost-augmented network was barely affected by
fine-tuning for the test-time inference objective.
This suggests that the cost-augmented network was

mostly acting as a test-time inference network by
the time of convergence. With the stacked parame-
terization, however, we explicitly provide the gold
standard y to the cost-augmented network, permit-
ting it to learn to change the predictions of the
test-time network in appropriate ways to improve
the energy function.

4 Training Stability and Effectiveness

We now discuss several methods that simplify and
stabilize training SPENs with inference networks.
When describing them, we will illustrate their im-
pact by showing training trajectories for the Twitter
part-of-speech tagging task.

4.1 Removing Zero Truncation
Tu and Gimpel (2018) used the following objective
for the cost-augmented inference network (maxi-
mizing it with respect to Φ): l0 =

[4(FΦ(x),y)− EΘ(x,FΦ(x)) + EΘ(x,y)]+

where [h]+ = max(0, h). However, there are
two potential reasons why l0 will equal zero and
trigger no gradient update. First, EΘ (the energy
function, corresponding to the discriminator in a
GAN) may already be well-trained, and it can eas-
ily separate the gold standard output from the cost-
augmented inference network output. Second, the
cost-augmented inference network (corresponding
to the generator in a GAN) could be so poorly
trained that the energy of its output is very large,
leading the margin constraints to be satisfied and
l0 to be zero.

In standard margin-rescaled max-margin learn-
ing in structured prediction (Taskar et al., 2004;
Tsochantaridis et al., 2004), the cost-augmented in-
ference step is performed exactly (or approximately

66

Epochs

0 50 100

A
c
c
u
ra

c
y
(%

)

0

10

20

30

40

50

60

70

80

90

with truncation

with truncation

with truncation

without truncation

without truncation

without truncation

(a) Truncating at 0 (without CE).

Epochs

0 50 100

A
c
c
u
ra

c
y
(%

)

0

10

20

30

40

50

60

70

80

90

without CE

without CE

without CE

with CE

with CE

with CE

(b) Adding CE loss (without truncation).

Figure 2: Part-of-speech tagging training trajectories. The three curves in each setting correspond to different
random seeds. (a) Without the local CE loss, training fails when using zero truncation. (b) The CE loss reduces
the number of epochs for training. Tu and Gimpel (2018) used zero truncation and CE during training.

with reasonable guarantee of effectiveness), ensur-
ing that when l0 is zero, the energy parameters
are well trained. However, in our case, l0 may be
zero simply because the cost-augmented inference
network is undertrained, which will be the case
early in training. Then, when using zero truncation,
the gradient of the inference network parameters
will be 0. This is likely why Tu and Gimpel (2018)
found it important to add several stabilization terms
to the l0 objective. We find that by instead remov-
ing the truncation, learning stabilizes and becomes
less dependent on these additional terms. Note that
we retain the truncation at zero when updating the
energy parameters Θ.

As shown in Figure 2(a), without any stabiliza-
tion terms and with truncation, the inference net-
work will barely move from its starting point and
learning fails overall. However, without truncation,
the inference network can work well even without
any stabilization terms.

4.2 Local Cross Entropy (CE) Loss

Tu and Gimpel (2018) proposed adding a local
cross entropy (CE) loss, which is the sum of the
label cross entropy losses over all positions in the
sequence, to stabilize inference network training.
We similarly find this term to help speed up con-
vergence and improve accuracy. Figure 2(b) shows
faster convergence to high accuracy when adding
the local CE term. See Section 7 for more details.

4.3 Multiple Inference Network Update Steps

When training SPENs with inference networks, the
inference network parameters are nested within the
energy function. We found that the gradient com-
ponents of the inference network parameters con-
sequently have smaller absolute values than those
of the energy function parameters. So, we alternate
between k ≥ 1 steps of optimizing the inference
network parameters (“I steps”) and one step of opti-
mizing the energy function parameters (“E steps”).
We find this strategy especially helpful when using
complex inference network architectures.

To analyze, we compute the cost-augmented
loss l1 = 4(FΦ(x),y)− EΘ(x,FΦ(x)) and the
margin-rescaled hinge loss l0 = [4(FΦ(x),y)−
EΘ(x,FΦ(x)) + EΘ(x,y)]+ averaged over all
training pairs (x,y) after each set of I steps. The
I steps update Ψ and Φ to maximize these losses.
Meanwhile the E steps update Θ to minimize these
losses. Figs. 3(a) and (b) show l1 and l0 during
training for different numbers (k) of I steps for ev-
ery one E step. Fig. 3(c) shows the norm of the
energy parameters after the E steps, and Fig. 3(d)
shows the norm of ∂EΘ(x,AΨ)

∂Ψ after the I steps.
With k = 1, the setting used by Tu and Gim-

pel (2018), the inference network lags behind the
energy, making the energy parameter updates very
small, as shown by the small norms in Fig. 3(c).
The inference network gradient norm (Fig. 3(d))
remains high, indicating underfitting. However,
increasing k too much also harms learning, as evi-

67

Epochs

0 5 10 15 20

c
o
s
t-

a
u
g

m
e
n
te

d
 l
o
s
s
 a

ft
e
r

I
s
te

p
s

25

30

35

40

45

50

1

1

1

5

5

5

10

10

10

50

50

50

(a) cost-augmented loss l1

Epochs

0 5 10 15 20

lo
s
s
 a

ft
e
r

I
s
te

p
s

0

5

10

15

20

25

30
1

1

1

5

5

5

10

10

10

50

50

50

(b) margin-rescaled loss l0

Epochs

0 5 10 15 20

g
ra

d
ie

n
t

n
o
rm

 a
ft
e
r

E
 s

te
p
s

0

2

4

6

8

10

12

14

16
1

1

1

5

5

5

10

10

10

50

50

50

(c) gradient norm of Θ

Epochs

0 5 10 15 20

g
ra

d
ie

n
t
n

o
rm

 a
ft

e
r

I
s
te

p
s

0

2

4

6

8

10

12
1

1

1

5

5

5

10

10

10

50

50

50

(d) gradient norm of Ψ

Figure 3: POS training trajectories with different numbers of I steps. The three curves in each setting correspond
to different random seeds. (a) cost-augmented loss after I steps; (b) margin-rescaled hinge loss after I steps;
(c) gradient norm of energy function parameters after E steps; (d) gradient norm of test-time inference network
parameters after I steps.

denced by the “plateau” effect in the l1 curves for
k = 50; this indicates that the energy function is
lagging behind the inference network. Using k = 5
leads to more of a balance between l1 and l0 and
gradient norms that are mostly decreasing during
training. We treat k as a hyperparameter that is
tuned in our experiments.

There is a potential connection between our use
of multiple I steps and a similar procedure used
in GANs (Goodfellow et al., 2014). In the GAN
objective, the discriminator D is updated in the
inner loop, and they alternate between multiple up-
date steps for D and one update step for G. In this
section, we similarly found benefit from multiple
steps of inner loop optimization for every step of
the outer loop. However, the analogy is limited,
since GAN training involves sampling noise vec-
tors and using them to generate data, while there
are no noise vectors or explicitly-generated sam-
ples in our framework.

5 Energies for Sequence Labeling

For our sequence labeling experiments in this paper,
the input x is a length-T sequence of tokens, and
the output y is a sequence of labels of length T .
We use yt to denote the output label at position
t, where yt is a vector of length L (the number of
labels in the label set) and where yt,j is the jth entry
of the vector yt. In the original output space Y(x),
yt,j is 1 for a single j and 0 for all others. In the
relaxed output space YR(x), yt,j can be interpreted
as the probability of the tth position being labeled
with label j. We then use the following energy for
sequence labeling (Tu and Gimpel, 2018):

EΘ(x,y) = −

(
T∑
t=1

L∑
j=1

yt,j

(
U>j b(x, t)

)

+

T∑
t=1

y>t−1Wyt

)
(7)

68

where Uj ∈ Rd is a parameter vector for label
j and the parameter matrix W ∈ RL×L contains
label-pair parameters. Also, b(x, t) ∈ Rd denotes
the “input feature vector” for position t. We define
b to be the d-dimensional BiLSTM (Hochreiter and
Schmidhuber, 1997) hidden vector at t. The full
set of energy parameters Θ includes the Uj vectors,
W , and the parameters of the BiLSTM.

Global Energies for Sequence Labeling. In ad-
dition to new training strategies, we also experi-
ment with several global energy terms for sequence
labeling. Eq. (7) shows the base energy, and to cap-
ture long-distance dependencies, we include global
energy (GE) terms in the form of Eq. (8).

We use h to denote an LSTM tag language model
(TLM) that takes a sequence of labels as input and
returns a distribution over next labels. We define
yt = h(y0, . . . ,yt−1) to be the distribution given
the preceding label vectors (under a LSTM lan-
guage model). Then, the energy term is:

ETLM(y) = −
T+1∑
t=1

log
(
y>t yt

)
(8)

where y0 is the start-of-sequence symbol and yT+1

is the end-of-sequence symbol. This energy re-
turns the negative log-likelihood under the TLM
of the candidate output y. Tu and Gimpel (2018)
pretrained their h on a large, automatically-tagged
corpus and fixed its parameters when optimizing
Θ. Our approach has one critical difference. We
instead do not pretrain h, and its parameters are
learned when optimizing Θ. We show that even
without pretraining, our global energy terms are
still able to capture useful additional information.

We also propose new global energy terms. De-
fine yt = h(y0, . . . ,yt−1) where h is an LSTM
TLM that takes a sequence of labels as input
and returns a distribution over next labels. First,
we add a TLM in the backward direction (de-
noted y′t analogously to the forward TLM). Sec-
ond, we include words as additional inputs to
forward and backward TLMs. We define ỹt =
g(x0, ...,xt−1,y0, ...,yt−1) where g is a forward
LSTM TLM. We define the backward version simi-
larly (denoted ỹ′t). The global energy is therefore

EGE(y) = −
T+1∑
t=1

log(y>t yt) + log(y>t y
′
t)

+ γ
(

log(y>t ỹt) + log(y>t ỹ
′
t)
)

(9)

Here γ is a hyperparameter that is tuned. We ex-
periment with three settings for the global energy:
GE(a): forward TLM as in Tu and Gimpel (2018);
GE(b): forward and backward TLMs (γ = 0);
GE(c): all four TLMs in Eq. (9).

6 Experimental Setup

We consider two sequence labeling tasks: Twit-
ter part-of-speech (POS) tagging (Gimpel et al.,
2011) and named entity recognition (NER; Tjong
Kim Sang and De Meulder, 2003).

Twitter Part-of-Speech (POS) Tagging. We
use the Twitter POS data from Gimpel et al. (2011)
and Owoputi et al. (2013) which contain 25 tags.
We use 100-dimensional skip-gram (Mikolov et al.,
2013) embeddings from Tu et al. (2017). Like Tu
and Gimpel (2018), we use a BiLSTM to compute
the input feature vector for each position, using
hidden size 100. We also use BiLSTMs for the
inference networks. The output of the inference
network is a softmax function, so the inference net-
work will produce a distribution over labels at each
position. The ∆ is L1 distance. We train the in-
ference network using stochastic gradient descent
(SGD) with momentum and train the energy param-
eters using Adam (Kingma and Ba, 2014). We also
explore training the inference network using Adam
when not using the local CE loss.1 In experiments
with the local CE term, its weight is set to 1.

Named Entity Recognition (NER). We use the
CoNLL 2003 English dataset (Tjong Kim Sang
and De Meulder, 2003). We use the BIOES tag-
ging scheme, following previous work (Ratinov
and Roth, 2009), resulting in 17 NER labels. We
use 100-dimensional pretrained GloVe embeddings
(Pennington et al., 2014). The task is evaluated
using F1 score computed with the conlleval
script. The architectures for the feature networks in
the energy function and inference networks are all
BiLSTMs. The architectures for tag language mod-
els are LSTMs. We use a dropout keep-prob
of 0.7 for all LSTM cells. The hidden size for all
LSTMs is 128. We use Adam (Kingma and Ba,
2014) and do early stopping on the development
set. We use a learning rate of 5 · 10−4. Similar to
above, the weight for the CE term is set to 1.

We consider three NER modeling configurations.
NER uses only words as input and pretrained, fixed

1We find that Adam works better than SGD when training
the inference network without the local cross entropy term.

69

zero POS NER NER+
loss trunc. CE acc (%) F1 (%) F1 (%)

yes no 13.9 3.91 3.91
margin- no no 87.9 85.1 88.6
rescaled yes yes 89.4* 85.2* 89.5*

no yes 89.4 85.2 89.5

perceptron no no 88.2 84.0 88.1
no yes 88.6 84.7 89.0

Table 1: Test results for POS and NER for several
SPEN configurations. Results with * correspond to the
setting of Tu and Gimpel (2018). The inference net-
work architecture is a one-layer BiLSTM.

GloVe embeddings. NER+ uses words, the case of
the first letter, POS tags, and chunk labels, as well
as pretrained GloVe embeddings with fine-tuning.
NER++ includes everything in NER+ as well as
character-based word representations obtained us-
ing a convolutional network over the character se-
quence in each word. Unless otherwise indicated,
our SPENs use the energy in Eq. (7).

7 Results and Analysis

Effect of Zero Truncation and Local CE Loss.
Table 1 shows results for zero truncation and the
local CE term. Training fails for both tasks when
using zero truncation without CE. Removing trun-
cation makes learning succeed and leads to effec-
tive models even without using CE. However, when
using the local CE term, truncation has little effect
on performance. The importance of CE in prior
work (Tu and Gimpel, 2018) is likely due to the
fact that truncation was being used.

The local CE term is useful for both tasks,
though it appears more helpful for tagging.2 This
may be because POS tagging is a more local task.
Regardless, for both tasks, as shown in Section 4.2,
the inclusion of the CE term speeds convergence
and improves training stability. For example, on
NER, using the CE term reduces the number of
epochs chosen by early stopping from ∼100 to
∼25. For POS, using the CE term reduces the
number of epochs from ∼150 to ∼60.

Effect of Compound Objective and Joint Pa-
rameterizations. The compound objective is the
sum of the margin-rescaled and perceptron losses,
and outperforms them both (see Table 2). Across
all tasks, the shared and stacked parameterizations
are more accurate than the previous objectives. For
the separated parameterization, the performance

2We found the local CE term to be useful for both the cost-
augmented and test-time inference networks during training.

drops slightly for NER, likely due to the larger
number of parameters. The shared and stacked
options have fewer parameters to train than the sep-
arated option, and the stacked version processes
examples at the fastest rate during training.

The top part of Table 3 shows how the perfor-
mance of the test-time inference network AΨ and
the cost-augmented inference network FΦ vary
when using the new compound objective. The dif-
ferences between FΦ and AΨ are larger than in
the baseline configuration, showing that the two
are learning complementary functionality. With the
stacked parameterization, the cost-augmented net-
work FΦ receives as an additional input the gold
standard label sequence, which leads to the largest
differences as the cost-augmented network can ex-
plicitly favor incorrect labels.3

The bottom part of Table 3 shows qualitative
differences between the two inference networks.
On the POS development set, we count the differ-
ences between the predictions of AΨ and FΦ when
AΨ makes the correct prediction.4 FΦ tends to
output tags that are highly confusable with those
output by AΨ. For example, it often outputs proper
noun when the gold standard is common noun or
vice versa. It also captures the ambiguities among
adverbs, adjectives, and prepositions.

Global Energies. The results are shown in Table
4. Adding the backward (b) and word-augmented
TLMs (c) improves over using only the forward
TLM from Tu and Gimpel (2018). With the global
energies, our performance is comparable to sev-
eral strong results (90.94 of Lample et al., 2016
and 91.37 of Ma and Hovy, 2016). However, it
is still lower than the state of the art (Akbik et al.,
2018; Devlin et al., 2019), likely due to the lack
of contextualized embeddings. In other work, we
proposed and evaluated several other high-order en-
ergy terms for sequence labeling using our frame-
work (Tu et al., 2020a).

8 Related Work

There are several efforts aimed at stabilizing and
improving learning in generative adversarial net-
works (GANs) (Goodfellow et al., 2014; Salimans
et al., 2016; Zhao et al., 2017; Arjovsky et al.,
2017). Progress in training GANs has come largely

3We also tried a BiLSTM in the final layer of the stacked
parameterization but results were similar to the simpler affine
architecture, so we only report results for the latter.

4We used the stacked parameterization.

70

POS NER NER+
acc. (%) |T | |I| speed F1 (%) |T | |I| speed F1 (%)

BiLSTM 88.8 166K 166K – 84.9 239K 239K – 89.3

SPENs with inference networks (Tu and Gimpel, 2018):
margin-rescaled 89.4 333K 166K – 85.2 479K 239K – 89.5
perceptron 88.6 333K 166K – 84.4 479K 239K – 89.0

SPENs with inference networks, compound objective, CE, no zero truncation (this paper):
separated 89.7 500K 166K 66 85.0 719K 239K 32 89.8
shared 89.8 339K 166K 78 85.6 485K 239K 38 90.1
stacked 89.8 335K 166K 92 85.6 481K 239K 46 90.1

Table 2: Test results for POS and NER. |T | is the number of trained parameters; |I| is the number of parameters
needed during inference. Training speeds (examples/second) are shown for joint parameterizations to compare
them in terms of efficiency. Best setting (best performance with fewest parameters and fastest training) is in bold.

POS NER
AΨ − FΦ AΨ − FΦ

margin-rescaled 0.2 0
separated 2.2 0.4

compound shared 1.9 0.5
stacked 2.6 1.7

test-time (AΨ) cost-augmented (FΦ)
common noun proper noun
proper noun common noun

common noun adjective
proper noun proper noun + possessive

adverb adjective
preposition adverb

adverb preposition
verb common noun

adjective verb

Table 3: Top: differences in accuracy/F1 between
test-time inference networks AΨ and cost-augmented
networks FΦ (on development sets). The “margin-
rescaled” row uses a SPEN with the local CE term and
without zero truncation, where AΨ is obtained by fine-
tuning FΦ as done by Tu and Gimpel (2018). Bottom:
most frequent output differences between AΨ and FΦ

on the development set.

NER NER+ NER++
margin-rescaled 85.2 89.5 90.2
compound, stacked, CE,
no truncation 85.6 90.1 90.8

+ global energy GE(a) 85.8 90.2 90.7
+ global energy GE(b) 85.9 90.2 90.8
+ global energy GE(c) 86.3 90.4 91.0

Table 4: NER test F1 scores with global energy terms.

from overcoming learning difficulties by modifying
loss functions and optimization, and GANs have
become more successful and popular as a result.
Notably, Wasserstein GANs (Arjovsky et al., 2017)
provided the first convergence measure in GAN
training using Wasserstein distance. To compute
Wasserstein distance, the discriminator uses weight
clipping, which limits network capacity. Weight

clipping was subsequently replaced with a gradient
norm constraint (Gulrajani et al., 2017). Miyato
et al. (2018) proposed a novel weight normaliza-
tion technique called spectral normalization. These
methods may be applicable to the similar optimiza-
tion problems solved in learning SPENs. Another
direction may be to explore alternative training ob-
jectives for SPENs, such as those that use weaker
supervision than complete structures (Rooshenas
et al., 2018, 2019; Naskar et al., 2020).

9 Conclusions and Future Work

We contributed several strategies to stabilize and
improve joint training of SPENs and inference net-
works. Our use of joint parameterizations mitigates
the need for inference network fine-tuning, leads to
complementarity in the learned inference networks,
and yields improved performance overall. These
developments offer promise for SPENs to be more
easily applied to a broad range of NLP tasks.

Future work will explore other structured predic-
tion tasks, such as parsing and generation. We have
taken initial steps in this direction, considering con-
stituency parsing with the sequence-to-sequence
model of Tran et al. (2018). Preliminary experi-
ments are positive,5 but significant challenges re-
main, specifically in defining appropriate inference
network architectures to enable efficient learning.

Acknowledgments

We would like to thank the reviewers for insightful
comments. This research was supported in part by
an Amazon Research Award to K. Gimpel.

5On NXT Switchboard (Calhoun et al., 2010), the base-
line achieves 82.80 F1 on the development set and the SPEN
(stacked parameterization) achieves 83.22. More details are in
the appendix.

71

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference
on Machine Learning.

David Belanger and Andrew McCallum. 2016. Struc-
tured prediction energy networks. In Proceedings
of the 33rd International Conference on Machine
Learning.

David Belanger, Bishan Yang, and Andrew McCallum.
2017. End-to-end learning for structured prediction
energy networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning.

Sasha Calhoun, Jean Carletta, Jason M Brenier, Neil
Mayo, Dan Jurafsky, Mark Steedman, and David
Beaver. 2010. The NXT-format Switchboard Cor-
pus: a rich resource for investigating the syntax, se-
mantics, pragmatics and prosody of dialogue. Lan-
guage resources and evaluation, 44(4):387–419.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 42–47, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron C Courville. 2017. Im-
proved training of Wasserstein GANs. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
5767–5777.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Yann LeCun, Sumit Chopra, Raia Hadsell,
Marc’Aurelio Ranzato, and Fu-Jie Huang. 2006. A
tutorial on energy-based learning. In Predicting
Structured Data. MIT Press.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama,
and Yuichi Yoshida. 2018. Spectral normalization
for generative adversarial networks. In Proceedings
of International Conference on Learning Represen-
tations (ICLR).

Subhajit Naskar, Amirmohammad Rooshenas, Simeng
Sun, Mohit Iyyer, and Andrew McCallum. 2020.
Energy-based reranking: Improving neural ma-
chine translation using energy-based models. arXiv
preprint arXiv:2009.13267.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–390, Atlanta, Georgia. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

https://www.aclweb.org/anthology/C18-1139
https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/P11-2008
https://www.aclweb.org/anthology/P11-2008
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/N13-1039
https://www.aclweb.org/anthology/N13-1039
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162

72

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155.

Amirmohammad Rooshenas, Aishwarya Kamath, and
Andrew McCallum. 2018. Training structured pre-
diction energy networks with indirect supervision.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 130–135.

Amirmohammad Rooshenas, Dongxu Zhang, Gopal
Sharma, and Andrew McCallum. 2019. Search-
guided, lightly-supervised training of structured
prediction energy networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 13522–
13532.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training GANs. In Ad-
vances in Neural Information Processing Systems,
pages 2234–2242.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin Markov networks. In Advances in Neu-
ral Information Processing Systems, pages 25–32.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin
Gimpel, Karen Livescu, and Mari Ostendorf. 2018.
Parsing speech: a neural approach to integrating lex-
ical and acoustic-prosodic information. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 69–81, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vector
machine learning for interdependent and structured
output spaces. In Proceedings of the Twenty-first In-
ternational Conference on Machine Learning.

Lifu Tu and Kevin Gimpel. 2018. Learning ap-
proximate inference networks for structured predic-
tion. In Proceedings of International Conference on
Learning Representations (ICLR).

Lifu Tu and Kevin Gimpel. 2019. Benchmarking ap-
proximate inference methods for neural structured
prediction. In Proceedings of the 2019 Conference

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3313–3324, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lifu Tu, Kevin Gimpel, and Karen Livescu. 2017.
Learning to embed words in context for syntactic
tasks. In Proceedings of the 2nd Workshop on Rep-
resentation Learning for NLP, pages 265–275.

Lifu Tu, Tianyu Liu, and Kevin Gimpel. 2020a. An
exploration of arbitrary-order sequence labeling via
energy-based inference networks. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020b. ENGINE: Energy-based in-
ference networks for non-autoregressive machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2819–2826, Online. Association for Computa-
tional Linguistics.

Junbo Jake Zhao, Michaël Mathieu, and Yann Le-
Cun. 2017. Energy-based generative adversarial net-
work. In Proceedings of International Conference
on Learning Representations (ICLR).

A Appendices

A.1 Constituency Parsing Experiments
We linearize the constituency parsing outputs, sim-
ilar to Tran et al. (2018). We use the following
equation plus global energy in the form of Eq. (8)
as the energy function:

EΘ(x,y) = −

(
T∑
t=1

L∑
j=1

yt,j

(
U>j b(x, t)

)

+
T∑
t=1

y>t−1Wyt

)

Here, b has a seq2seq-with-attention architecture
identical to Tran et al. (2018). In particular, here is
the list of implementation decisions.

• We can write b = g ◦ f where f (which we
call the “feature network”) takes in an input sen-
tence, passes it through the encoder, and passes
the encoder output to the decoder feature layer to
obtain hidden states; g takes in the hidden states
and passes them into the rest of the layers in the
decoder. In our experiments, the cost-augmented
inference network FΦ, test-time inference net-
work AΨ, and b of the energy function above
share the same feature network (defined as f
above).

https://www.aclweb.org/anthology/W09-1119
https://www.aclweb.org/anthology/W09-1119
https://www.aclweb.org/anthology/W09-1119
https://doi.org/10.18653/v1/N18-2021
https://doi.org/10.18653/v1/N18-2021
http://papers.nips.cc/paper/9507-search-guided-lightly-supervised-training-of-structured-prediction-energy-networks.pdf
http://papers.nips.cc/paper/9507-search-guided-lightly-supervised-training-of-structured-prediction-energy-networks.pdf
http://papers.nips.cc/paper/9507-search-guided-lightly-supervised-training-of-structured-prediction-energy-networks.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/2397-max-margin-markov-networks.pdf
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://doi.org/10.18653/v1/N18-1007
https://doi.org/10.18653/v1/N18-1007
https://doi.org/10.18653/v1/N19-1335
https://doi.org/10.18653/v1/N19-1335
https://doi.org/10.18653/v1/N19-1335
https://www.aclweb.org/anthology/W17-2632
https://www.aclweb.org/anthology/W17-2632
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251

73

• The feature network (f) component of b is
pretrained using the feed-forward local cross-
entropy objective. The cost-augmented inference
network FΦ and the test-time inference network
AΨ are both pretrained using the feed-forward
local cross-entropy objective.

The seq2seq baseline achieves 82.80 F1 on the
development set in our replication of Tran et al.
(2018). Using a SPEN with our stacked parameter-
ization, we obtain 83.22 F1.

