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Abstract

Successful application of Knowledge Repre-
sentation and Reasoning (KR) in Natural Lan-
guage Understanding (NLU) is largely limited
by the availability of a robust and general pur-
pose natural language parser. Even though sev-
eral projects have been launched in the pursuit
of developing a universal meaning represen-
tation language, the existence of an accurate
universal parser is far from reality. This has
severely limited the application of knowledge
representation and reasoning (KR) in the field
of NLP and also prevented a proper evaluation
of KR based NLU systems.

Our goal is to build KR based systems for Nat-
ural Language Understanding without relying
on a parser. Towards this we propose a method
named Deeply Embedded Knowledge Repre-
sentation & Reasoning (DeepEKR) where we
replace the parser by a neural network, soften
the symbolic representation so that a determin-
istic mapping exists between the parser neu-
ral network and the interpretable logical form,
and finally replace the symbolic solver by an
equivalent neural network, so the model can
be trained end-to-end.

We evaluate our method with respect to the
task of Qualitative Word Problem Solving
on the two available datasets (QuaRTz and
QuaRel). Our system achieves same accu-
racy as that of the state-of-the-art accuracy on
QuaRTz, outperforms the state-of-the-art on
QuaRel and severely outperforms a traditional
KR based system. The results show that the
bias introduced by a KR solution does not pre-
vent it from doing a better job at the end task.
Moreover, our method is interpretable due to
the bias introduced by the KR approach.

1 Introduction

Developing agents that understand natural lan-
guage is a long standing challenge in AI. Towards
this, several question answering challenges have

been proposed, namely SQuAD (Rajpurkar et al.,
2016) containing reading comprehension problems,
OBQA (Mihaylov et al., 2018), QASC (Khot et al.,
2019) containing science questions requiring in-
ference over multiple facts, ProPara (Mishra et al.,
2018), SocialIQA (Sap et al., 2019), RecipeQA
(Yagcioglu et al., 2018) requiring understanding of
events and effects, QuaRTz (Tafjord et al., 2019b),
QuaRel (Tafjord et al., 2019a) requiring qualitative
reasoning and bAbI (Weston et al., 2015) contain-
ing a broad set of synthetic tasks.

For most of these challenges there exists a KR
based methodology which typically says, if “the
problem and the associated knowledge is repre-
sented as ‘R’, then there exists an algorithm ‘A’
which can compute the answer”. However, almost
no end-to-end system that executes such a solution
exists (except for bAbI and QuaRel), as obtain-
ing the desired representation ‘R’ with precision
is a challenging task. For the dataset bAbI, which
contains synthetically generated simple sentences,
existing semantic parsers work well and thus sev-
eral KR systems (Mitra and Baral, 2016; Chabier-
ski et al., 2017; Wu et al., 2018) have been imple-
mented for it. But for other datasets, researchers
have had to build their own semantic parser when
implementing a KR solution. For e.g., the work in
(Tafjord et al., 2019a) has developed the QuaSP+

translation system for QuaRel. Data collection for
training a semantic parser is a costly process and
often parser error becomes a bottleneck to the fi-
nal system performance. Our goal is eliminate
reliance on a semantic parser and to allow rapid
implementation of KR based solutions so that the
gap between “there is a KR solution” and “there is
a system implementing a KR solution” diminishes.

Roughly speaking, our proposed approach takes
a KR solution and simulates it in a Neural Network.
There are three design choices that are involved
in the construction of the simulator Neural Net-
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work. The first design process aims to answer the
following question: “How to encode the symbolic
representation ‘R’ in terms of vectors so that a de-
terministic process can convert the vectors back to
the original symbolic form?”. The second design
process aims to construct a neural network which
is responsible for computing the desired vector en-
coding of ‘R’. The third process, implements the
reasoning algorithm ‘A’ in a neural network which
takes as input the vector encoding of the symbolic
representation ‘R’. The parameters of the networks
are learned jointly in an end-to-end fashion. We
call this approach, Deeply Embedded Knowledge
Representation & Reasoning (DeepEKR).

In this work, we describe a DeepEKR solution
for the task of qualitative problem solving (Table
1). We describe a standard KR solution and then
describe a way to encode it in a Neural Network.
The resulting system is evaluated on the two avail-
able datasets, namely Quarel and Quartz. In our
evaluation we seek the answer to the following two
questions: 1) Can the DeepEKR system outperform
the available KR baseline? We find the answer to
be yes. 2) Can the DeepEKR system outperform
the state-of-the-art? We find the answer to be yes
for the QuaRel dataset, for the QuaRTz dataset the
performance is same as that of the existing state-of-
the-art system. The main contributions of our work
is that we propose a novel method to implement a
KR solution without relying on a natural language
parser and provide a proof of concept towards that.

2 Qualitative Word Problem Solving

A noticeable portion of textual knowledge, partic-
ularly in science, economics, and medicine, are
qualitative in nature, i.e. they describe how chang-
ing one entity (e.g., diesel car) affects another (e.g.,
air pollution). To help NLU systems become bet-
ter at understanding such sentences, recently two
datasets, Quarel and Quartz, containing Qualita-
tive Word Problems (Table 1) have been developed.
Each qualitative word problem is a multiple choice
question (Table 1) and is accompanied by a sen-
tence containing necessary qualitative knowledge,
both of which are given as input. The hope is that if
the system correctly answers the question, it most
likely understands the accompanied knowledge.

3 A KR Solution

A KR solution typically describes a high level lan-
guage where a parser translates the natural lan-

K1 Bigger stars produce more energy, so their
surfaces are hotter.

Q1 Jan is comparing stars, specifically a small
star and the larger Sun. Given the size of
each, Jan can tell that the Sun puts out heat
that is (A) greater (B) lesser

K2 An object with greater mass or greater veloc-
ity has more kinetic energy.

Q2 Milo threw both a basketball and a baseball
through the air. if the basketball has more
mass then the baseball, which ball has more
kinetic energy (A) basketball (B) baseball

K3 A sunscreen with a higher spf protects the
skin longer.

Q3 Billy is wearing sunscreen with a higher spf
than Lucy. who will be protected from the
sun for longer? (A) Lucy (B) Billy

Table 1: Examples of Qualitative word problems

guage input and a set of rules which then computes
the answer given the translated input.

3.1 Representation
For Qualitative Word Problems, the input contains
two parts. One is the qualitative knowledge sen-
tence and another is the multiple choice question.
The qualitative knowledge sentence can be com-
pactly represented as a four tuple :

(concept 1 value,
concept 1 description,
concept 2 value,
concept 2 description)

The “concept 1 value” and “concept 2 value” takes
value from the set {“more”,“less”} whereas the
concept descriptions are arbitrary. Each tuple ba-
sically describes whether “concept 1” and “con-
cept 2” are proportional to each other or inversely
proportional to each other. Table 2 shows the the
4-tuple representation of the knowledge sentences
for the problems in Table 1.

(more, size of star, more, production of energy)
(more, mass, more, kinetic energy)

(more, spf of sunscreen, more, skin protection)

Table 2: Representation of the knowledge sentences as
4-tuple. We omit a predicate name (e.g., knowledge)
for brevity.

Each qualitative fact e.g., “Billy is wearing sun-
screen with a higher spf”), or a query with option
(hereafter, “claim”) such as “who will be protected
from the sun for longer? (option) Lucy” can be
compactly represented as a 3-tuple :

(concept value,
concept description,
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frame of reference)

A 3-tuple either states or claims that some con-
cept (e.g., “ spf of sunscreen”) attains certain value
(e.g. “more”) for some reference of frame (e.g.,
“Billy”). The multiple choice question in the input
describes two claims (Claim A and Claim B) one
for each answer option A and B and one key fact
(hereafter Fact) to distinguish the correct claim.
Each multiple choice question for the qualitative
word problem thus can be represented as a collec-
tion of three 3-tuples as shown in Table 3.

Fact (more, size, sun)
Claim A (more, heat, sun)
Claim B (less, heat, sun)

Fact (more, mass, basketball)
Claim A (more, kinetic energy, basketball)
Claim B (more, kinetic energy, baseball)

Fact (more, spf of sunscreen, Billy)
Claim A (more, protection, Billy)
Claim B (more, protection, Lucy)

Table 3: Representation of multiple choice questions

Each qualitative word problem of interest thus
can be represented by 4+3×3 = 13 terms. Out of
these, the two terms, Claim A concept description
and Claim B concept description always have the
same value in the Quarel and Quartz dataset (See
Table 3). Thus there are 12 unique terms. We
will refer to this set as T . Among these 12 terms,
there exist five special terms, namely {concept 1
value, concept 2 value, Fact Concept Value, Claim
A Concept Value, Claim B Concept Value} which
takes values from the set {“more”,“less”}. We will
refer to this set containing these five special terms
as sT .

3.2 Reasoning

The reasoning algorithm is quite straightforward
for the qualitative word problems if the input is
presented in the desired symbolic representation.
To identify the correct answer choice, one can com-
pute and utilize five indicator variables (proposi-
tions) as described below.

Let IRel|K denote an indicator variable which
when true denotes that according to the knowledge
K, the qualitative concepts (e.g., “size of star” and
“production of energy”) in the word problem P is
proportional to each other and if false then in-
versely proportional. For each answer choice X
(where X ∈ A,B), let IXRel|F be another indicator
variable which denotes if the concept in claim X is

proportionally related to the concept in the given
Fact or inversely related. Similarly, for each an-
swer choice X (where X ∈ A,B) let IXReference|F
denote if the frame of reference in the claim X, e.g.,
“Billy”, (Hereafter, Claim X Ref ) matches with the
frame of reference in the given fact (Hereafter, Fact
Ref ) or not. Each of these indicator variables are
computed as follows:

IRel|K Concept 1 Value = Concept 2
Value

IXRel|F Claim X Concept Value = Fact
Concept Value

IXReference|F Claim X Ref = Fact Ref

Table 4: Definition of Indicator variables

The decision function for an answer choice X,
answer(X) can then be defined as follows:

IRel|K IXRel|F IXReference|F Correct Answer?
F F F F
F F T T
F T F T
F T T F
T F F T
T F T F
T T F F
T T T T

Table 5: Decision function: If answer choice X is the
correct answer

For the example 3 in Table 1, IRel|K is true,
IARel|F is true, IBRel|F is true, IAReference|F is true,
IBReference|F is false, thus according to Table 5,
answer(A) is true but answer(B) is false.

4 Encoding the Symbolic Representation
with Vectors

In this section we describe, how we encode the sym-
bolic representation in terms of vectors. We model
each term t whether it is a concept description (e.g.,
“spf of sunscreen”) , a concept value (e.g., “more”)
or a frame of reference (e.g., “Billy”) in terms of
two vectors, namely the term surface vector, at and
the term content vector, vt. The term surface vector,
at captures the attention over the natural language
input and surrogates for the symbolic description
(in our case, phrases like “spf of sunscreen”). The
term content vector vt surrogates for its meaning.
For the terms in sT , such as Concept 1 value, which
take values from a close set, the dimension of the
term content vector vt is equal to the size of that
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close set, essentially describing a distribution over
the members of the set.

In the symbolic form, each qualitative word prob-
lem is represented in terms of 12 terms. In its vector
form, each problem is thus represented as 12 pair of
vectors. Let m be the length of the input sequence
tokens (words or sub-words) containing both the
knowledge sentence and the multiple choice ques-
tion (See Figure 1). Each term surface vectors at is
then a member of the set [0, 1]n (Figure 1). Ideally,
we want at to be ∈ {0, 1}n, however we don’t put
such an hard constraint to keep the algorithm dif-
ferentiable and expect that the learned model will
exhibit such behavior.

4.1 Encoding Symbolic Reasoning over
Vector Space

The decision function for the symbolic representa-
tion works with five boolean indicator variables. To
work in the continuous space we relax the boolean
indicator variables to take any real value in the
range of [−∞, 0) ∪ (0,+∞]. If the value of an
indicator variable is less than 0, we assume it is
false and otherwise it is assumed to be true. We
first obtain a compact formula for the decision
function described by the truth table in Table 5.
Even though any truth table can be implemented
by layers of and, or and not gates with neural net-
works, we try to minimize number of such gates
to simplify the model. For the truth table in Ta-
ble 5, the entire truth table can be modelled with
two 2-input XNOR gates as follows: ans(X) =
((IXRel|F XNOR IXRel|F ) XNOR IXReference|F ).
Recall that, a 2-input XNOR gate denotes equiva-
lence and has the following truth table:

A B A XNOR B
F F T
F T F
T F F
T T T

Table 6: Truth table of a 2-input XNOR gate

With our choice of all negative vales as false and
all positive values as true, we use simple multipli-
cation to model the XNOR gate, thus the decision
function ans(X), which denotes ifX is the correct
answer, takes the following simplified form in the
continuous space:
anser(X) = IXRel|F × I

X
Rel|F × I

X
Reference|F

Figure 1: Figure shows a sample input to our model and
the predicted output of the parser layer and the reason-
ing layer. The input masks and the surface term vectors
at are shown with a heat map over the input sequence.
For each of the surface term at we also show on the left,
the tokens with a weight of more than 0.8. For the five
terms in sT we show the value vt within {} which is
“more” for all the five terms for this example.

5 Model

In this section we provide the complete detail about
how the term vectors, the indicator variables and
the correct answer choice is calculated using the to-
kenized input containing the qualitative knowledge
and the multiple choice question.

Model Input The knowledge sentence (k) and
the multiple choice question (question (A) optionA
(B) optionB) are concatenated together as a single
sequence “[CLS] k [SEP] question (A) optionA (B)
optionB [SEP]” and is passed to the Model (Fig-
ure 1). Let the length of the input sequence be m.
The model then additionally takes as input, four
binary masks ∈ {0, 1}m, namely maskknowledge,
maskquestion, maskoptionA and maskoptionB , re-
spectively describing which part of the input be-
longs to knowledge, question, option A and option
B. See Figure 1 for example.

Layer 1: Parser Layer The goal of the parser
layer is to recognize 12 important term vector pairs
from the input sequence w1, ..., wm. Towards that,
the parser layer first obtains contextual embeddings
for each of the token wi using BERT. Let ei ∈
Rd be the embedding for wi. Those vectors are
calculated as follows:

e1, ..., em = BERT (w1, ..., wm)
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Let E denote a two dimensional embedding ma-
trix ∈ Rd×m whose i-th column is ei.

Using the embeddings inE and the binary masks
provided in the input, first the term surface vector
at ∈ [0, 1]m are computed for each of the 12 terms
in T . Let f t(e) : Rd → R be a linear function of
the form W te+ bt. The j-th component of a vector
at, i.e., at[j] is computed as follows:

at[j] =
exp(f t(ej))

1 + exp(f t(ej))
×maskt[j]

t maskt

concept 1 value, concept 1
description, concept 2 value,
concept 2 description

maskknowledge

Fact description, Claim de-
scription, Fact Frame of Ref-
erence

maskquestion

Claim A value, Claim A
Frame of Reference

maskquestion +
maskoptionA

Claim B value, Claim B
Frame of Reference

maskquestion +
maskoptionB

Table 7: Describes the value of maskt for each of the
12 terms.

Table 7 provides the value of maskt for each of
the 12 terms. The maskt restricts the part of the
input sequence that can contain the surface form
for the associated term. Since the surface form of
each of Concept 1 value, Concept 1 description,
Concept 2 value, Concept 2 description, should
contain tokens from knowledge sentence part of the
input sequence, maskt for these four terms are set
to be the maskknowledge. Other values of maskt

are set accordingly.
The term content (vt) vector for each of the 7

terms in T \ sT which do not take values from the
closed set {more, less} is computed as follows:

vt =

m∑
j=0

ej × at[j]

For the remaining 5 terms in sT , we employ
a linear function fvalue : Rd → R to obtain the
mapping to the closed set {more, less}. The term
content vector, vt for each of these 5 terms are
defined as follows:

vt = fvalue(
m∑
j=0

ej × at[j])

If the value of vt for these 5 terms are less than
0, we assume that it is aligned towards the value
less, otherwise it is aligned towards the value more.

Layer 2: Reasoning Layer The reasoning layer
takes the output from the parser layer and outputs
0 if the correct answer choice is A otherwise it
outputs 1. To compute the correct answer, it first
obtains the values of the five indicator variables.
It computes the value of IRel|K , I

A
Rel|F , I

B
Rel|F as

follows:
IRel|K = vconcept 1 value ∗ vconcept 2 value

IARel|F = vfact concept value ∗ vclaim a concept value

IBRel|F = vfact concept value ∗ vclaim b concept value

Recall that each of IRel|K , I
A
Rel|F , I

B
Rel|F denotes

if a pair of qualitative values are same or not (see
Table 4 for definition). With our interpretation
of negative meaning false and positive denoting
true, multiplication operator is employed to detect
equality.

The value of IAReference|F is always set to 1 as
we assume the terms in the fact tuple should be
translated with respect to the frame of reference
in claim A to have an unique translation. Then
the value of IBReference|F is true if the frame of
reference in claim A matches the frame of reference
in claim B and false otherwise. We compute the
value of IBReference|F as follows:

1− summ
j=0|aclaim−a−ref [j]− aclaim−b−ref [j]|

Note that we use term surface vector to detect
equality. If the two terms (roughly) attends to
same positions which should be the case when
claim a frame of reference and claim b frame
of reference are same (see examples in Table
1 for clarity), the value of IBReference|F is posi-
tive and thus interpreted as true. When the two
surface term vectors are disjoint, the value of
IBReference|F is −1 as summ

j=0a
claim−a−ref [j] =

summ
j=0a

claim−b−ref [j] = 1. and is interpreted as
false.

The score for option A and B is computed as
follows,
answer(A) = IXRel|F × I

A
Rel|F × I

A
Reference|F

answer(B) = IXRel|F × I
B
Rel|F × I

B
Reference|F

The answer is 0 if answer(A) > answer(B)
other the answer is 1. See Figure 1 for the trace of
the reasoning process for the problem 2 in Table 1.
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6 Training

Both the Quartz and Quarel dataset provide the
correct answer choice for each qualitative word
problem. The Quartz dataset additionally provides
the concept description (i.e. at) and concept value
(vt) annotation for the five terms in sT which we
use as additional supervision. This additional in-
formation is not supplied for all the word problems
in the training dataset. 2280 number of problems
out of 2696 problems in the training dataset con-
tain this annotation. The Quarel dataset provides
annotation for the concept value for the terms in
sT .

In this section we describe our loss function
which uses these supervisions and some additional
constraints. The loss functions takes as input the
following information:

1. y ∈ R2 contains the confidence score for
answer choice A and answer choice B, i.e.,
ŷ = [answer(A), answer(B)].

2. c ∈ {0, 1} which denotes the correct answer.

3. v̂t ∈ {−1, 1} for the the qualitative values.

4. γt ∈ {0, 1} which denotes whether the loss
function should use the annotation v̂t. This
helps to deal with the missing annotation sce-
nario and also in performing some ablation
studies.

5. ât ∈ {0, 1}m for the target value of at .

6. λt ∈ {0, 1} which denotes whether the loss
function should use the annotation ât.

The loss value L is then computed as follows:

L = lossanswer(y, c)

+
∑
t∈Cl

γt ∗ losscontent(vt, v̂t)

+
∑
t∈Cl

t ∗ losssurface(at, ât)

+ lossconstraint
1

+ lossconstraint
2

(1)

We use the standard cross entropy function
as lossanswer(y, c), L1 loss for losscontent i.e.,
losscontent(vt, v̂t) = |vt − v̂t| and binary cross
entropy loss function for losssurface(at, ât).

The lossconstraint
1

tells the model that the
aconcept 1 value and aconcept 2 value should be

disjoint and similarly aconcept 1 description and
aconcept 2 description should be disjoint. This is
computed as follows:

lossconstraint
1
=

mean(aconcept 1 value ◦ aconcept 2 value) +
mean(aconcept 1 description ◦ aconcept 2 description)

Here, ◦ denotes element-wise multiplication,
mean(x) : Rm → R computes the average of
all the elements of the input vector x.

Recall that the two options in the multiple choice
question either contain two different concept
values or two different frame of references. Using
this information we add constraints over the term
surface vector aclaim a ref and aclaim b ref . Let,
β if 1 denote that the option choices contain two
different frame of reference and 0 otherwise. Note
that β can be computed by using the masks ât.
The lossconstraint

2
is then computed as follows:

lossconstraint
2
=

β ∗ subset(aclaim a ref ,maskoptionA) +
β ∗ subset(aclaim b ref ,maskoptionB) +
(1− β) ∗ subset(aclaim a ref ,maskquestion) +
(1− β) ∗ ∗subset(aclaim b ref ,maskquestion) +
(1− β) ∗mean(|aclaim a ref − aclaim b ref |)

The subset(a, b) function returns 0 if the surface
vector a is “subset” of the binary mask b and a
positive value otherwise and is defined as follows:

subset(a, b) = sum((1− b) ◦ a)

Here, sum(x) : Rm → R computes the sum of all
the elements of the input vector x.

7 Related Work

Our work is related to all the works in Neuro-
Symbolic reasoning (Serafini and Garcez, 2016;
Cohen et al., 2020; Rocktäschel and Riedel, 2017;
Kazemi and Poole, 2018; Aspis et al., 2018;
Ebrahimi et al., 2018; Evans and Grefenstette,
2018) that aims at implementing a symbolic the-
orem prover with Neural Networks. These works
provides proof that more complicated symbolic rea-
soning algorithms than the one used in this work,
can be implemented using neural nets. However the
algorithms proposed in these work operates over
symbolic input, which again calls for a parser. On
the other hand several neural systems have been de-
veloped for constituency parsing (Stern et al., 2017;
Shen et al., 2018), dependency parsing (Chen and
Manning, 2014; Dyer et al., 2015), Semantic Role
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Constraints Test Acc % Concept 1 Value Concept 2 Value Fact Concept Value Claim A Value Claim B Value

lossanswer 50 80 82 50 37 60
lossanswer, lossconstraint2 50 78 82 49 37 60
lossanswer , lossconstraint1 50 19 18 50 62 39
lossanswer , losssurface 74.1 16 17 50 50 50
lossanswer , lossconstraint1 ,
lossconstraint2

50 80 82 50 62 39

lossanswer , lossconstraint1 ,
lossconstraint2 , losscontent

50 80 88 50 62 39

lossanswer , lossconstraint1 ,
lossconstraint2 , losscontent,
losssurface

79.84 89 92 80 94 95

lossanswer , losssurface,
losscontent

78.18 91 88 78 91 94

Table 8: Ablation Analysis of different supervisions

Labelling (He et al., 2018), parsing to the language
of Abstract Meaning Representation (Konstas et al.,
2017) or task specific semantic parsing(Dong and
Lapata, 2018; Krishnamurthy et al., 2017). These
works also provide useful knowledge while con-
structing a DeepEKR solution.

In this work, the input problem is translated to
a set of fixed number of terms. However, depend-
ing on the end application the representation for-
mat could be a graph, stack, table. Thus the work
in Graph Neural Networks (Scarselli et al., 2008;
Lamb et al., 2020), which operates over graphs or
the Neural State Machine (Hudson and Manning,
2019) that operates over automata is also related to
our work.

In this work we have proposed to replace the
symbolic representation by vectors so that depen-
dency over an accurate parser can be avoided. With
a similar goal, the work in (Mitra et al., 2019b)
proposes to use textual entailment to replace the
parser. The central idea behind the proposal is, if
the input is supposed to be translated to a pred-
icate e.g., claimA(“protection”,“more”,“Billy”),
instead of asking the parser to translate it to the
symbolic form, generate a textual description for
the predicate e.g., “protection is more for Billy”
and use a textual entailment system to check if
the input string entails it. A drawback of this ap-
proach is that generation of the textual description
of a symbolic term currently requires handwritten
templates. A system, namely gvQPS (Mitra et al.,
2019a) following this approach has been built for
the QuaRel dataset.

Our work is directly related to the QUASP+ sys-
tem (Tafjord et al., 2019a) for QuaRel that trains
a parser to obtain a symbolic representation of a

qualitative word problem and uses a symbolic rea-
soner implemented in Prolog to obtain the answer.
Our work is also related to the BERT (Devlin et al.,
2018) based multiple choice question solver that
takes as input “[CLS] knowledge [SEP] question
[SEP] option X [SEP]” and computes the score for
option X.

8 Experiments

We evaluate our system on the QuaRTz and QuaRel
dataset. The QuaRTz dataset contains a total of
3864 problems. The train, dev and test split respec-
tively contain 2696, 384 and 784 problems. The
QuaRel dataset contains a total of 2771 problems.
The train, dev and test split respectively contain
1941, 278 and 552 problems. We have used the
bert-large-uncased-whole-word-masking model in
our experimentation.

Performance on QuaRTz Table 9 compares the
accuracy of our system (DeepEKR) with the two re-
ported solvers, namely BERT (standard BERT mul-
tiple choice question solver trained on the QuaRTz
dataset) and BERT-PFT-Race ( BERT multiple
choice question solver trained on the Race dataset
(Lai et al., 2017) and then on the QuaRTz dataset)
. Our system achieves same accuracy to that of
the BERT-PFT-Race model. However, DeepEKR
provides better interpretability.

Models ↓ Test Acc.
BERT 67.7

BERT-PFT-Race 79.8
DeepEKR 79.8

Table 9: Performance of various models on QuaRTz
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Ablation Analysis on Supervision The loss
function takes five different supervisions as de-
scribed in equation 1. Table 8 displays the ef-
fect of different combination of supervisions on
the question-answering accuracy on the test set
and the accuracy of vt ∈ {“less”,“more”} for the
t ∈ sT . We observe that a combination of all con-
straints results in the best test accuracy. However,
losssurface i.e. the supervision for term surface
vector is the most significant one, as without this
supervision accuracy remains stuck at 50%. Due
to this, while training on QuaRel, we either pre-
train the model on QuaRTz or expand the QuaRel
training data with QuaRTz training data.

Performance on QuaRel Table 10 compares the
accuracy of our system on the QuaRel dataset.
DeepEKR model first trained on QuaRTz and then
later fine-tuned on QuaRel achieves the state-of-
the-art-accuracy.

Models ↓ Test Acc.
BERT 53

BERT-PFT-Race 79.89
BERT-PFT-QuaRTz 53

BERT-PFT-Race and PFT-QuarTz 77
QuaSP+ 68.7
gvQPS 76.63

DeepEKR PFT on QuaRTz 81.15
DeepEKR augmented with QuaRTz training

data
78.98

Table 10: Performance of various models on Quarel

8.1 Error Analysis

We carefully examine all the 87 examples in the
dev set of the QuaRTz dataset where the system
picks the incorrect answer. We break down the
errors in 5 categories.

Incorrect Value Prediction The majority of the
errors (41) fall in this category where at is correctly
computed for the terms t in sT but one of IRel|K or
IXRel|F is wrong. Table 11 displays an example with
this error. Here, the two concepts being compared
are energy of vibrations and proximity of particles.
Our system incorrectly classifies vfact concept value

(“further”) as “more” even though the associated
concept is proximity of particles resulting in an er-
ror in the computation. This happens as “farther”
often correlates with “more” in the dataset. We be-
lieve adding more examples to teach the model that
vfact concept value sometimes depends on concept
description is necessary to deal with this issue.

K When particles of matter are closer together,
they can more quickly pass the energy of
vibrations to nearby particles.

Q If jim moves some particles of matter far-
ther apart, what will happen to the rate at
which they can pass vibrations on to nearby
particles? (A) decrease (B) increase

Table 11: An Example of Incorrect Value Prediction

Attention over Incorrect Tokens For 28 prob-
lems, the incorrect token gets a high attention score
i.e. at is wrong, leading to incorrect vt and ulti-
mately in an incorrect prediction. This occurs for
the example in Table 12, where afact concept value

points to the token “increases” but does not contain
“removing” which results in incorrect vt.

K When particles of matter are closer together,
they can more quickly pass the energy of
vibrations to nearby particles.

Q If mona is removing helium from a balloon
and she increases the amount she is remov-
ing, what happens to the amount of energy
the helium particles can pass amongst each
other? (A) decrease (B) increase

Table 12: An example of Attention over Incorrect To-
kens.

Others For the reaming 18 problems, 9 re-
quires numerical reasoning (number comparisons),
4 requires commonsense knowledge such as
“K=Objects that are closer together have a stronger
force of gravity. Q = Which planet has the most
gravity exerted on it from the sun?(A) Mercury (B)
Mars”. For 5 problems the gold answer provided
is actually wrong and the model actually predicted
the correct answer.

9 Conclusion

Knowledge Representation and Reasoning (KR)
based solutions are interesting for Natural Lan-
guage Understanding as they are interpretable and
can work with declarative knowledge. However,
systems that implement KR solution with tradi-
tional parser and symbolic solvers normally fall
short on performance when compared to neural
systems. These observations and issues related to
parser and symbolic reasoning have resulted in less
interest towards KR solutions. However, we show
that we can take a KR solution and implement in
a way that is competitive with neural systems and
is also explainable. For the qualitative word prob-
lems, the reasoning is fairly simple. Our future
work includes applying this method to other areas
requiring more complex reasoning.
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