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Abstract

Radiology reports contain important clinical
information about patients which are often tied
through spatial expressions. Spatial expres-
sions (or triggers) are mainly used to describe
the positioning of radiographic findings or
medical devices with respect to some anatom-
ical structures. As the expressions result from
the mental visualization of the radiologist’s
interpretations, they are varied and complex.
The focus of this work is to automatically iden-
tify the spatial expression terms from three dif-
ferent radiology sub-domains. We propose a
hybrid deep learning-based NLP method that
includes – 1) generating a set of candidate spa-
tial triggers by exact match with the known
trigger terms from the training data, 2) ap-
plying domain-specific constraints to filter the
candidate triggers, and 3) utilizing a BERT-
based classifier to predict whether a candidate
trigger is a true spatial trigger or not. The re-
sults are promising, with an improvement of
24 points in the average F1 measure compared
to a standard BERT-based sequence labeler.

1 Introduction

Radiology reports contain a radiologist’s interpreta-
tions of an imaging study of a patient. The mental
interpretations often get expressed through descrip-
tions of important radiological entities with ref-
erence to a particular anatomical structure (Datta
et al., 2020a). The radiological entities whose po-
sitions are described mainly include radiographic
findings (e.g., clinical findings like interstitial em-
physema and imaging observations like ground-
glass opacity) and medical devices (e.g., endotra-
cheal tube and central venous catheter). There
exists a wide variation in the spatial language used
by radiologists in expressing the exact positioning
of the radiological entities. Limited research has fo-
cused on effectively identifying the spatial expres-
sions from multiple imaging modalities. Therefore,

the focus of this work is to investigate different
automatic approaches to extract the spatial expres-
sions from the report sentences along with high-
lighting the various challenges involved in this task.
These extracted spatial expressions, if predicted
accurately, can also facilitate clinical applications
such as automatic labeling of radiographic images
for training image classifiers (Wang et al., 2017).

Identification of spatial expressions in a sentence
forms the foundation for other downstream spatial
information extraction tasks. Much of the clini-
cally relevant information appears in the context
of a spatial expression. Consider the following
sentence:

A lytic lesion at the left vertex extending into
the epidural region, scalp and soft tissues is
grossly unchanged in appearance.

Here, we note that it is very crucial to accurately
identify the spatial expressions such as at and ex-
tending into. Firstly, these trigger terms denote the
specific positioning of the lesion by associating the
lesion term with anatomical entities such as left ver-
tex and epidural region. Secondly, this indirectly
helps in identifying all the modifier information
about the lesion including its density (i.e., lytic)
and status (i.e., unchanged in appearance).

Spatial expressions are also used to describe the
positioning of the medical devices that are inserted
into specific body locations. Radiologists often
document the current position status of the devices
(e.g., malpositioned, satisfactory position) and of-
ten times indicate their changes in positioning. The
following is an example of the radiologist’s inter-
pretation about a device position:

PICC line enters from left arm, descends to
the lower inferior vena cava, then turns and
extends peripherally to left subclavian vein.
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This captures the mental visualization of the ra-
diologist as they interpret the specific position of
the PICC line from the corresponding image. We
note that there are diverse expressions belonging
to multiple part-of-speech categories (e.g., verbs,
prepositions, verbs followed by prepositions) that
the radiologists use in documenting the spatial po-
sition of both findings and devices.

In this work, our aim is to identify all the spa-
tial expressions given a radiology report sentence.
We experiment with a pre-trained language model,
BERT (Devlin et al., 2019), used as a sequence la-
beler to extract the spatial expressions (or triggers).
We further propose a hybrid deep learning method
where we use BERT as a classifier in combination
with domain-dependent heuristics. Specifically, in
this hybrid approach, we first extract the candi-
date trigger terms from the sentences with high
recall leveraging the terms from the training cor-
pus. We then filter the candidates by applying a
set of radiology-specific constraints. Finally, we
utilize BERT as a classification model to identify
if each of the filtered candidate terms is a trigger
expression or not.

2 Related Work

Some previous studies have focused on extracting
spatial relations from radiology reports (Roberts
et al., 2012; Rink et al., 2013). However, both
these studies are specific to appendicitis-related
reports. Our previous work has also aimed at iden-
tifying spatial expressions (mainly prepositional)
from chest X-ray reports (Datta et al., 2020a; Datta
and Roberts, 2020). Moreover, all these studies
have focused on identifying spatial relations asso-
ciated only with radiographic findings. We aim to
identify more complex and varied spatial expres-
sions associated with descriptions of both findings
and medical devices. Importantly, descriptions of
devices often utilize far richer spatial language, as
shown in the PICC line example above.

Both in the general and medical domains, hybrid
deep learning approaches have been used lately for
various natural language processing (NLP) tasks
such as document classification (Asim et al., 2019)
and named entity recognition (Li et al., 2019). A
recent work has also demonstrated the promising
results of applying a hybrid approach for extracting
clinical information from CT scan reports (Gupta
et al., 2019). Moreover, many NLP tasks have
leveraged the contextualized representations of pre-

Item Frequency
Spatial triggers 1372
POS sequence categories 33

Item Frequency Examples
Prepositions (IN) 1093 within, throughout
Verbs
(VBG|VBP|VBZ|VB|VBD)

163 demonstrate,
shows

Verb followed by preposi-
tion

52 extending into,
projected at

Noun followed by preposi-
tion

32 projects over,
grows into

Longest triggers (TO DT
NN IN, PDT DT NN TO)

7 to the left of, all
the way to

Table 1: Corpus statistics of spatial expressions.

trained language models such as BERT. However,
not much effort has been directed toward building
hybrid methods based on BERT. Extracting spatial
expressions from text often requires domain knowl-
edge of language characteristics. Thus, we inves-
tigate the impact of combining radiology-specific
constraints with a BERT-based model to extract
spatial expressions from radiology reports.

3 Dataset

We use a dataset of 400 radiology reports con-
taining annotated spatial expressions (Datta et al.,
2020b). These reports are taken from the MIMIC
III clinical corpus (Johnson et al., 2016). Our
dataset consists of an equal distribution of three
different imaging modalities, namely, chest X-rays,
brain MRIs, and babygrams. Some basic statis-
tics related to the spatial expressions in this dataset
are shown in Table 1. Note that this dataset in-
cludes multi-word spatial triggers and triggers with
varied part-of-speech categories. This makes the
task more challenging compared to using single
word triggers, mostly prepositions as in Rad-SpRL
(Datta et al., 2020a).

4 Methods

4.1 Sequence Labeling Method (Baseline)

We take a BERTBASE model pre-trained on MIMIC
(Si et al., 2019) and fine-tune on our annotated
corpus to identify the spatial triggers. We treat this
as a sequence labeling task where each sentence
is WordPiece-tokenized and represented as [[CLS]
sentence [SEP]] to construct an input sequence to
the BERT encoder as in Devlin et al. (2019). The
encoder output is fed into a linear classification
layer to predict labels per token. We use the BIO
scheme for tagging the spatial triggers.
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Figure 1: Pipeline of the proposed hybrid approach.

4.2 Proposed Hybrid Method

The proposed pipeline is shown in Figure 1.

Generating candidate spatial triggers This fo-
cuses on extracting spatial triggers in a sentence
with high recall. First, we construct a set of all the
unique spatial triggers encountered in the training
set. Then, we identify the triggers in an unseen radi-
ology report using case-insensitive exact matching
against the triggers in the constructed set. In case
of the triggers having overlapping spans, we use
the longest span as the final candidate trigger. For
example, when both the triggers - extends in and in
are identified in a sentence and have overlapping
spans, extends in is selected as the candidate trigger
for the next step.

Applying radiology-specific constraints As the
candidate generation phase aims to improve re-
call, this results in the common problem of low
precision. Thus we introduce a set of radiology
language-specific rules to reduce the number of
false positives. We develop the constraints such
that they are generalizable across different types of
radiology reports. For example, the left or the right
are frequent phrases which are usually followed by
the spatial trigger on. However, left and right do
not indicate any specific anatomical location. So
we exclude on from our final candidate trigger list
if it occurs in scenarios like this. Thus, for each of
the common spatial triggers such as with, in, and at,
we develop a set of frequent terms or phrases such
that when any of the phrase is seen surrounding
a trigger, that particular trigger will be excluded
from our final candidate trigger list. Note that we
construct separate list of such surrounding phrases

Spatial trigger Terms to left Terms to right

of
evidence,
suggestive,
possibility,. . .

time,
position,
uncertain, . . .

with
correlation,
compatible,
consistent, . . .

previous,
prior,
known, . . .

to
appear,
compared,
rotated, . . .

suggest,
assess,
be, . . .

Table 2: Example terms for 3 common spatial triggers.

for left and right side of a spatial trigger. A few
examples of the developed phrases are shown in
Table 2. The complete list is in appendix Table 4.

BERT Classifier A BERT-based classification
model is used determine whether each candidate
trigger identified in the previous step is correct. We
construct the input data as follows:

• Identify the triggers with distinct spans com-
bining both gold triggers and the candidate
triggers in a sentence.

• Create a separate sentence instance for each
of the triggers obtained from the above step.

• Assign a positive (correct) label to an instance
if the associated trigger is a gold trigger and a
negative (incorrect) label otherwise.

We construct an input sequence to BERT by con-
verting each of the above instances to the standard
BERT input format [[CLS] sentence [SEP]], sim-
ilar to Section 4.1. Note that the classification of
being correct/incorrect is based on a specific spa-
tial trigger in a sentence. In order to inform the
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model about the positional information of the spa-
tial trigger, we insert a special character sequence
‘$’ both to the left and right of the trigger. The
other aspects of the model architecture is similar to
the original BERT paper’s implementation (Devlin
et al., 2019).

5 Evaluation and Experimental settings

We perform 10-fold cross validation (CV) to evalu-
ate the performance of both the BERT-based meth-
ods. For each of the 10 iterations, reports in 8 folds
are used for training and 1 fold each are used for
validation and testing. Average precision, recall,
and F1 measures are reported for these methods.
We also report these performance metric values for
the rule-based methods (both for exact matching
and exact matching + constraints) by evaluating on
the same test folds. Note that we train the BERT
classifier using the candidates directly obtained af-
ter the exact matching step. While evaluating, we
apply the additional domain constraints over the
candidate triggers generated from exact matching.
We make this decision based on the results of our
preliminary experiments.

We use the BERTBASE variant for both sequence
labeling and classification models. The models are
pre-trained on MIMIC-III clinical notes (Si et al.,
2019) for 320K steps. The maximum sequence
length for both the tasks is set at 128 and learning
rate at 2e-5. Based on the validation set perfor-
mance, we select the number of training epochs as
4. We use the cased version of the models.

6 Results

The results of spatial trigger extraction are shown in
Table 3. The average accuracy of the BERT-based
classifier model over 10-fold CV is 88.7%.

We notice that the sequence labeling method
obtained high precision and low recall. The ex-
act matching achieved a much improved recall
(96.77%) compared to the sequence labeling sys-
tem. However, it resulted in too many false positive
spatial triggers, mainly because of common prepo-
sitional and verb terms such as of, with, and are (as
indicated by a very low precision). We achieved
slightly better precision by applying constraints
over the exact matched triggers (shown in the third
row of Table 3). Our proposed method which uti-
lizes a set of domain-inspired constraints on top
of a BERT-based classifier helps in obtaining a
balanced precision and recall, improving the F1

Method P(%) R(%) F1
BERT-Based
Sequence Labeling 92.20 43.04 57.52

Exact matching 18.71 96.77 31.32
Exact matching + Constraints 34.56 93.02 50.21
Exact matching + Constraints
+ BERT-Based Classification 84.43 79.19 81.10

Table 3: Spatial trigger extraction results. Average Pre-
cision (P), Recall (R), and F1 across 10 test folds. 10-
fold cross validation is performed for the BERT-based
models (first and last rows).

by almost 24 points compared to standard BERT
sequence labeling.

7 Discussion

We focus on extracting varied spatial expressions
from radiology reports using a sequence labeling
method as well as a hybrid approach that first ap-
plies domain-specific rules to extract the candidate
triggers and later employs a deep learning-based
classifier to judge every candidate. Our proposed
method (Exact matching + Constraints + BERT-
based classification) achieves much improved aver-
age F1 measure in CV.

Error Analysis We observe that, after applying
constraints, most of the triggers that are missed
by the rule-based approach are uncommon phrases
that are not seen in the training data, e.g., verbs
followed by prepositions such as grows into and
verbs such as filling. Whereas, for the proposed
hybrid approach, missed triggers are usually verbs
such as demonstrates and appears.

Challenges Many of the spatial expressions
which describe the presence of an abnormality in
a specific anatomical location are common En-
glish language terms such as of, with, and are.
Some other challenges include identifying whether
a ‘verb followed by prepositional/adverb’ phrase
always indicates a spatial expression or not, since
in a few cases they imply intermediate change in
position (e.g., kinks back) rather than the position
where a radiological entity is actually located.

Future Directions Our next steps include exam-
ining the generalizability of our proposed approach
when applied to other types of radiology reports
(e.g., ultrasound, computed tomography, etc.). We
also aim to incorporate additional rules that can
extract spatial expressions beyond the ones seen in
the training set. One of the potential rules may be
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to automatically generate more variations of trig-
gers with the form ‘verb followed by preposition’.
Using part-of-speech (POS) information to auto-
matically extract triggers holds potential but this
may introduce errors from the POS taggers.

8 Conclusion

This work proposes a BERT-based hybrid method
to extract spatial expressions from radiology re-
ports. This method achieves satisfactory perfor-
mance with an average F1 measure of 81.10 over
10-fold CV. We also extract spatial expressions by
formulating the problem as a sequence labeling task
(used as baseline). We find that the BERT-based se-
quence labeling model suffers from low recall. Our
proposed hybrid approach combining radiology-
specific constraints with a BERT-based classifier
helps to improve the recall by around 36%. We
also address some of the challenges involved in the
task of spatial trigger extraction in the radiology do-
main. We plan to further improve the performance
of the system by adding more granular domain con-
straints as well as evaluate the generalizability of
the method across multi-institutional datasets.

Acknowledgments

This work was supported in part by the National
Institute of Biomedical Imaging and Bioengi-
neering (NIBIB: R21EB029575) and the Patient-
Centered Outcomes Research Institute (PCORI:
ME-2018C1-10963).

References
Muhammad Nabeel Asim, Muhammad Usman Ghani

Khan, Muhammad Imran Malik, Andreas Dengel,
and Sheraz Ahmed. 2019. A Robust Hybrid Ap-
proach for Textual Document Classification.

Surabhi Datta and Kirk Roberts. 2020. A dataset of
chest X-ray reports annotated with Spatial Role La-
beling annotations. Data in Brief, 32:106056.

Surabhi Datta, Yuqi Si, Laritza Rodriguez, Sonya E
Shooshan, Dina Demner-Fushman, and Kirk
Roberts. 2020a. Understanding spatial language in
radiology: Representation framework, annotation,
and spatial relation extraction from chest X-ray
reports using deep learning. Journal of Biomedical
Informatics, 108:103473.

Surabhi Datta, Morgan Ulinski, Jordan Godfrey-
Stovall, Shekhar Khanpara, Roy F. Riascos-
Castaneda, and Kirk Roberts. 2020b. Rad-
SpatialNet: A Frame-based Resource for Fine-
Grained Spatial Relations in Radiology Reports. In

Proceedings of The 12th Language Resources and
Evaluation Conference, pages 2251–2260.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Er. Khushbu Gupta, Ratchainant Thammasudjarit, and
Ammarin Thakkinstian. 2019. A Hybrid Engine for
Clinical Information Extraction from Radiology Re-
ports. In 2019 16th International Joint Conference
on Computer Science and Software Engineering (JC-
SSE), pages 293–297.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen,
Li Wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo
Anthony Celi, and Roger G. Mark. 2016. MIMIC-
III, a freely accessible critical care database. Scien-
tific Data, 3:160035.

Xusheng Li, Chengcheng Fu, Ran Zhong, Duo Zhong,
Tingting He, and Xingpeng Jiang. 2019. A hybrid
deep learning framework for bacterial named entity
recognition with domain features. BMC Bioinfor-
matics, 20(16):583.

Bryan Rink, Kirk Roberts, Sanda Harabagiu,
Richard H Scheuermann, Seth Toomay, Travis
Browning, Teresa Bosler, and Ronald Peshock.
2013. Extracting actionable findings of appendicitis
from radiology reports using natural language pro-
cessing. In AMIA Joint Summits on Translational
Science Proceedings, volume 2013, page 221.

Kirk Roberts, Bryan Rink, Sanda M Harabagiu,
Richard H Scheuermann, Seth Toomay, Travis
Browning, Teresa Bosler, and Ronald Peshock.
2012. A machine learning approach for identifying
anatomical locations of actionable findings in radiol-
ogy reports. In AMIA Annual Symposium Proceed-
ings, volume 2012, pages 779–788.

Yuqi Si, Jingqi Wang, Hua Xu, and Kirk Roberts. 2019.
Enhancing clinical concept extraction with contex-
tual embeddings. Journal of the American Medical
Informatics Association, 26(11):1297–1304.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu,
Mohammadhadi Bagheri, and Ronald M. Sum-
mers. 2017. ChestX-ray8: Hospital-scale chest X-
ray database and benchmarks on weakly-supervised
classification and localization of common thorax dis-
eases. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3462–
3471.

A Appendix

https://arxiv.org/abs/1909.05478v1
https://arxiv.org/abs/1909.05478v1
https://doi.org/10.1016/j.dib.2020.106056
https://doi.org/10.1016/j.dib.2020.106056
https://doi.org/10.1016/j.dib.2020.106056
https://doi.org/10.1016/j.jbi.2020.103473
https://doi.org/10.1016/j.jbi.2020.103473
https://doi.org/10.1016/j.jbi.2020.103473
https://doi.org/10.1016/j.jbi.2020.103473
https://www.aclweb.org/anthology/2020.lrec-1.274
https://www.aclweb.org/anthology/2020.lrec-1.274
https://www.aclweb.org/anthology/2020.lrec-1.274
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/JCSSE.2019.8864178
https://doi.org/10.1109/JCSSE.2019.8864178
https://doi.org/10.1109/JCSSE.2019.8864178
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1186/s12859-019-3071-3
https://doi.org/10.1186/s12859-019-3071-3
https://doi.org/10.1186/s12859-019-3071-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845763/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845763/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845763/
https://www.ncbi.nlm.nih.gov/pubmed/23304352
https://www.ncbi.nlm.nih.gov/pubmed/23304352
https://www.ncbi.nlm.nih.gov/pubmed/23304352
https://doi.org/10.1093/jamia/ocz096
https://doi.org/10.1093/jamia/ocz096
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2017.369
https://doi.org/10.1109/CVPR.2017.369


55

Spatial trigger Terms to the left Terms to the right

of

mri, mra, mrv, xray, projection, babygram,
head, view, history, evidence, suggestive, pos-
sibility, evaluation, repositioning, ct, loop,
free, level, floor, top, area, circle, suggestion,
remainder, shortness, position, component,
foci, focus, hour, examination, date, study,
reposition, positioning

time, position, normal, certain, uncertain

with
made, correlation, brain, xray, ct, mri, mra,
mrv, projection, infant, patient, baby, compat-
ible, consistent, catheter, associated

previous, prior, known, exam, lead, port, side-
port, wire, its, no, tip, distal

to appear, similar, due, compared, rotated,
made, secondary, attributed, related suggest, assess, be

in increase, decrease, normal, result
size, position, good, satisfactory, appearance,
(+ limit as the second or third term to the
right)

show/demonstrate mri, mra, mrv, xray, projection, babygram,
head, view, history, ct, which –

from mri, mra, mrv, xray, projection, ct, lead, port,
sideport, wire –

on as, appearance mri, mra, mrv, xray, projection, ct, chest,
brain, head

for evidence, assess –

is/are there, finding, findings, noted, demonstrated,
size, this, nonspecific

normal, stable, clear, maintained, preserved,
age-appropriate, unchanged, identified, made,
within, recommended, removed, reposi-
tioned, replaced, low, high, seen, located,
present, absent, unremarkable, remarkable,
marked, approximately, noted, no, in, large,
larger, small, smaller, otherwise, intact,
slightly

has been – removed, repositioned, replaced, reviewed,
resolution

within – normal
has/have – increased, decreased, improved

above described –

by edited, recommended, suggested, reviewed,
signed, read –

over – to
at – time mentions (example format–8:18 AM)

on/to – left, right (second term to the right)

all

image, imaging, radiograph, radiography,
film, series, comparison is made, time, map
(any of these terms to the left of the trigger
with window length 3)

image, imaging, radiograph, radiography,
film, series, comparison is made, time, map
(any of these terms to the right of the trigger
with window length 3)

Table 4: A more exhaustive list of the terms used for building the constraints for a set of spatial triggers in the
dataset.


