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Abstract

Two main transfer learning approaches are
used in recent work in NLP to improve neu-
ral networks performance for under-resourced
domains in terms of annotated data. 1) Multi-
task learning consists in training the task of
interest with related tasks to exploit their un-
derlying similarities. 2) Mono-task pretrain-
ing, where target model’s parameters are pre-
trained on large-scale labelled source domain
and then fine-tuned on labelled data from the
target domain (the domain of interest). In this
paper, we propose a new approach that takes
advantage of both approaches by learning a hi-
erarchical model trained across multiple tasks
from the source domain, then fine-tuned on
multiple tasks from the target domain. Our ex-
periments on four NLP tasks applied to social
media texts show that our proposed method
leads to significant improvements compared to
both approaches.

1 Introduction

Deep learning approaches are powerful when deal-
ing with large amounts of annotated data. However,
these are only available for a few languages and
domains due to the cost of the manual annotation
(Duong, 2017). Particularly, despite the valuable
importance of Social Media’s content for a variety
of applications (e.g. public security, health mon-
itoring, or trends highlight), this large domain is
still poor in terms of annotated data. Furthermore,
to build systems for such applications, the machine
might understand many low and high-level tasks.
Therefore, a model, able to recognise as many lin-
guistic properties as possible from a given sentence,
is required.

Many attempts have been done to exhibit the
performance of NLP models in low-resource sce-
narios. Particularly, two dominant approaches
of neural Transfer Learning (TL) (Pan and Yang,
2010) are used in the State-Of-The-Art (SOTA): 1)

Mono-Task Pretraining (MTP): Sequential Trans-
fer Learning (STL) (Ruder, 2019), performed in
two stages: pretraining on a rich source-domain
on enough training examples and then, fine-tuning
on the available few target-domain examples. This
approach has proved to be powerful in many NLP
tasks, outperforming the classic supervised learn-
ing paradigm, because it takes benefit from pre-
learned knowledge. And 2) Multi-Task Learning
(MTL) (Caruana, 1997), that showed many bene-
fits in several NLP tasks and applications, consists
of training different tasks simultaneously, leverag-
ing learned knowledge from related problems and
resulting richer representations with higher gener-
alisation (Collobert and Weston, 2008).

We introduce in this paper a novel method, that
we call Multi-Task Supervised Pre-training and
Adaptation (MuTSPad), which unifies both ap-
proaches discussed above. MuTSPad takes bene-
fit from both, by learning a hierarchical multi-task
model trained across multiple tasks from the source-
domain, and further fine-tuned on multiple tasks
from the target-domain. Hence, in addition to di-
verse linguistic properties learned from various su-
pervised NLP tasks, MuTSPad takes advantage of
the pre-learned knowledge from the high-resource
source-domain.

We demonstrate the effectiveness of our ap-
proach on domain adaptation from the high-
resource News-domain to the low-resourced
Tweets-domain. We carry out experiments on four
NLP tasks, from the low-level Part-of-Speech tag-
ging (POS) and Chunking (CK) to the higher-level
Named Entity Recognition (NER) and Dependency
Parsing (DP). MuTSPad exhibits significantly bet-
ter performance than both TL approaches and is
highly competitive compared to best SOTA meth-
ods.

Furthermore, to the best of our knowledge, there
are no available common datasets containing an-
notations for all the above-mentioned tasks, nei-
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ther for the News-domain or the Tweets-domain.
Though, many early works had highlighted the in-
tricacy of multi-task training from heterogeneous
datasets (Subramanian et al., 2018). Thus, we pro-
pose to build multi-task datasets for the News and
Tweets domains, by unifying the aforementioned
task-independent datasets.

2 Related Work

Our work is related to two lines of research, Se-
quential Transfer Learning and Multi-Task Learn-
ing. In the following, we briefly present the SOTA
of each one. Then, we discuss some papers from
the literature with a loosely close idea to multi-task
pretraining and fine-tuning.
Sequential Transfer Learning (STL) is a TL set-
ting performed in two stages: Pretraining and
Adaptation. The purpose behind using STL tech-
niques for NLP can be divided into two main re-
search areas, “universal representations” and “do-
main adaptation”. The former aims to build neu-
ral features transferable and beneficial to a wide
range of NLP tasks and domains. e.g. ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), etc.
The second aims to harness the knowledge rep-
resented in features learned on a source domain
(high-resourced in most cases) to improve learning
a target domain (low-resourced in most cases) (Zen-
naki et al., 2016, 2019). The source and the target
problems may differ on the task, the language or
the domain. For instance, cross-lingual adaptation
has been explored for sentiment analysis (Chen
et al., 2016) and cross-domain adaptation has been
applied for POS models adaptation from News to
Tweets domain (Gui et al., 2017; Meftah et al.,
2017, 2018). Our research falls into the second
research area, since we aim, as the last two works,
to transfer the knowledge learned when training on
the News-domain to improve the Tweets-domain’s
training.
Multi-Task Learning (MTL) consists in a joint
learning of related tasks and thus leverages train-
ing signals generated by different tasks (Caruana,
1997). The advantage of using MTL over indepen-
dent task learning has been shown in many NLP
tasks and applications (Lin et al., 2018). The pro-
cessing (training) order of examples from different
tasks (datasets), also called Scheduling, is partic-
ularly studied in the literature. This could be im-
plicit or explicit (Jean et al., 2018). The formal
include, for instance, affecting different learning

rates for task-specific parameters. While the sec-
ond, modify the importance of each task statically
or dynamically. e.g. Kiperwasser and Ballesteros
(2018) proposed variable schedules that increas-
ingly favour the principal task over batches and
Jean et al. (2018) proposed adaptive schedules that
vary according to the validation performance of
each task during training.
Multi-Task Pretraining and Fine-tuning: Multi-
task pretraining has been especially explored for
learning universal representations (Conneau et al.,
2017; Ahmad et al., 2018). Multi-task fine-tuning
was recently explored to fine-tune BERT pre-
trained model in a multi-task fashion on multiple
tasks (Liu et al., 2019). Furthermore, in term of
using multi-task features for domain adaptation,
Søgaard and Goldberg (2016) showed the bene-
fit of multi-task learning for domain adaptation
from News-domain to Weblogs-domain for CK
task, when disposing CK’s supervision only for
the source-domain, and lower-level POS supervi-
sion for the target-domain. Finally, in terms of
unifying multi-task learning and fine-tuning, Kiper-
wasser and Ballesteros (2018) proposed to improve
machine translation with the help of POS and DEP
tasks by scheduling tasks during training, starting
with multi-tasking of the principal task with auxil-
iary lower-level tasks (POS and DEP), and as the
training graduates, the model trains only to the
main task. However, to the best of our knowledge,
performing pretraining and fine-tuning on multi-
task models for domain adaptation has not been
explored in the literature.

3 Model Architecture

3.1 Sequence Labelling Architecture

Regarding the exact architecture of each task, POS,
CK and NER tasks are Sequence Labelling (SL)
tasks. Given an input sentence of n successive
tokens [w1, . . . , wn], SL predicts the tag ci ∈ C of
every wi, with C being the tag-set.

We followed the literature (Ma and Hovy, 2016;
Yang et al., 2018) and used a common SL ar-
chitecture, including three main components: (i)
a Word Representation Extractor (WRE), (ii)
a Features Extractor (FE) and (iii) a Classifier
(Cl). WRE computes, for each token wi, a
word and a character-level biLSTMs encoder-
based embeddings (respectively, wei=WE(wi)
and cei=CE(wi)), and concatenates them to get
a final representation xi=(wei,cei). WRE’s out-
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Figure 1: Illustrative scheme of our Hierarchical multi-
task architecture.

puts [x1, . . . , xn] are fed into the FE that outputs a
context sensitive representation for each token, con-
sisting of a single biLSTMs layer which iteratively
passes through the sentence in both directions. Fi-
nally, Cl consists of a fully-connected layer (de-
noted Ψ) that classifies every given xi following:

ŷwi = (C ◦ FE ◦WRE)(wi). (1)

3.2 Dependency Parsing Architecture
For the DP branch, a similar procedure is applied,
except that, compared to previous tasks, DP is a
a harder problem and thus requires a more com-
plex model. We followed Qi et al. (2018) and
used their “neural arc-factored graph-based depen-
dency parser”, which is based on the “Deep bi-
Affine parser” (Dozat and Manning, 2016)). In-
deed, given an input sentence of n successive to-
kens [w1, . . . , wn], the goal of DP is two folds: 1)
identifying, for each wi, its head wj ∈ S. The
couple of tokens wi and wj are called the depen-
dent and the head, respectively. Then, 2) predicting
the dependency syntactic relation’s class rij ∈ Rdp

relating each dependent-head pair, whereRdp be-
ing the dependency-relations set. More precisely,
for each token wi we predict its out-going labelled
arc (wi, wj , r

i
j). Thus, constructing a syntactic tree

structure of the sentence, where words are treated
as nodes in a graph, connected by labelled directed
arcs.

Hence, as in SL models, the DP architecture is
composed of a WRE followed by a FEdp and a
Cldp. Except that Cldp consists of four classifiers,

producing four distinct vectors for representing the
word: (i) as a dependent seeking its head; (ii), as
a head seeking all its dependants; (iii), as a depen-
dent deciding on its relation; and (iv), as a head
deciding on the labels of its dependants. These
representations are then passed to biAffine softmax
classifiers.

3.3 Hierarchical Multi-Task Architecture
As mentioned above, POS, CK, NER and DP are
the four tasks considered in this work. As we aim
to learn a multi-task model where the four tasks are
learned jointly, the architecture of our model con-
tains a common branch as well as four exits, one per
task. Also, as the tasks are hierarchically related to
each other, we adopted a hierarchical architecture
(similar to Hashimoto et al. (2017) and Sanh et al.
(2019)). More specifically, we organised the four
tasks from low-level to high-level, with each task
being fed with a shared word embedding as well
as the outputs of all the lower tasks. To construct
that hierarchy of tasks, we followed some linguis-
tic hints from the literature. Indeed, many works
have shown that POS improves CK (Yang et al.,
2017; Ruder12 et al., 2019); NER benefits from
POS (Meftah and Semmar, 2018; Ruder, 2019) and
CK (Collobert and Weston, 2008); and DP profits
from POS and CK (Hashimoto et al., 2017). In
simple terms, POS and CK are considered as “uni-
versal helpers” (Changpinyo et al., 2018). Thus,
based on these linguistic hierarchy observations,
we feed POS features to CK; then POS and CK
features to both NER and DP.

An illustration of our multi-task hierarchical
model is given in Fig.1. More specifically, WRE
is shared across all tasks, its output (namely xi =
WREshared(wi)) is fed to all branches. The lower
component of the POS tagging branch (FEpos) is
fed with the shared embedding and after process-
ing, it outputs BiLSTMs features hpos

i . This is
then fed into the POS classifier Cpos to calculate
predictions through:

ŷposwi
= (Cpos ◦ FEpos)(xi) (2)

These POS features (hpos
i ) as well as the shared

embeddings xi are then fed to the CK branch that
outputs a probability distribution for the CK tag-set
as follows:

ŷckwi
= (Cck ◦ FEck)(xi,T

pos(hpos
i )) (3)

Note that, rather than directly using FEpos’s out-
put, we first reduce its dimensionality by applying
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a learnable FC layer transformation denoted Tpos.
In the same vein, following our hierarchy, the

shared embedding, plus the output features of POS
(hpos

i ) as well as the output features of CK (hck
i )

are fed to the NER branch that outputs one class
probability per named entity. Formally, this is com-
puted using:

ŷner
wi

= (Cner ◦ FEner)(xi,T
pos(hpos

i ),Tck(hck
i )) (4)

For DP, similarly to the NER branch, the shared
embedding, plus the output features of POS as well
as the output features of CK are fed to FEdp, fol-
lowed by Cdp which outputs:

ŷdpwi
= (Cdp ◦ FEdp)(xi,T

pos(hpos
i ),Tck(hck

i )) (5)

4 Our Approach

In low-resources scenarios, two approaches are
commonly used to alleviate the lack of training
data:

1. “Mono-Task Pre-training”: pre-training the
neural model (supervisedly or unsupervis-
edly) on a rich source-task before updating
its weights on the task of interest (target task);

2. “Multi-task learning”: training the task of in-
terest jointly with other auxiliary tasks with
labelled data that might force the network to
learn useful features.

The first approach is known to work very well
since a while, and yielded impressive results in
recent years but the last approach seems to strug-
gle as it still faces the problem of annotated data
scarcity.

In this paper, to make sure that we learn useful
features that are relevant for the tasks of our in-
terest, we propose an approach that combines pre-
training and multi-task learning, and thus takes ben-
efits from the rich source-domain, and especially
all its available annotated data and tasks. We called
our method Multi-Task Supervised Pre-training
and Adaptation (MuTSPad). This is described in
details in Sec. 4.1, before we describe (in Sec.4.2)
how we alleviated the problem of datasets hetero-
geneity in multi-task learning (i.e., only mono-task
labelled datasets are available).

4.1 MuTSPad: Multi-Task Supervised
Pretraining and Adaptation

MuTSPad roughly consists in pretraining on a large
annotated multi-task source dataset and then fine-
tuning it on the multi-task target dataset, that cor-
responds to that task of interest. As supervised
and unsupervised pretraining, MuTSPad alleviates
the lack of annotated data by taking benefit from
rich source-domains. However, compared to them
it does the pre-training on multiple tasks, and not
only one. This brings even more real supervision
to the network and thus gives more chance to end
up with more features. Also important, as source-
domains are usually richer than target-domains, we
might always find source-datasets that are labelled
exactly with all the tasks we want to solve in the
target-domain. This enforces the network to learn
only features that might be relevant for our tasks of
interest, and thus avoid filling up the network with
irrelevant features.

More specifically, we considered four commonly
used tasks in this work, POS, CK, NER and DP. In
classical multi-task scenario all sentences have all
needed tasks annotation (i.e. an annotation dataset
for each task). However, in our case we have two
datasets, the first for News domain and the second
for Tweets domain, both are heterogeneous, hav-
ing one task-annotation per sentence. In contrary
to the classical multi-task scenario that assumes
having one dataset where words and sentences are
labelled for all the tasks, in reality, this is very
hard to encounter. Thus, let us consider a more
realistic scenario: a set of datasets is given, with
each dataset being labelled to only one task. For
instance, one dataset is labelled with POS, the other
with NER. Note that, though the first is labelled
with POS only, it might certainly contain named
entities. For this reason, we call this scenario “Het-
erogeneous multi-task learning”. The difficulties of
learning in such a scenario are described in details
in Sec. 4.2.

Back to MuTSPad, let us assume a set of tasks T ,
and one dataset Di per task Ti. A source multitask
modelMs (described in Fig.1) is first trained on
these heterogeneous source-datasets DS . And the
set of all parameters learned for each task Ti as well
as task-agnostic ones, are then used to initialise
the target multi-task model, denotedMt. All the
weights of this last Mt are then adapted on the
set of target-datasets DT . Note that, though the
sets of target-tasks T T and source-tasks T S might
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be the same, their label-sets might differ, thus as
in classical fine-tuning, the weights of each task-
classifier are randomly initialised. However, for
the labels that might be the same, we initialise the
weights of the target task-classifiers with those pre-
trained on the source-domain.

In terms of loss functions, as in classical multi-
task learning, we minimise the weighted sum of
each task loss:

L =

∑j=N
j=1 αtaskj × Ltaskj

N
(6)

Where αtaskj represents task-weight and N is
tasks number. As we used a hierarchical model for
reasons mentioned in Sec. 3.3, we propose to focus
the early-stage training on low-level tasks and pro-
gressively increase the focus on higher-level ones
(along the same line of thought of Kiperwasser
and Ballesteros (2018)). However, unlike (Kiper-
wasser and Ballesteros, 2018) who modified tasks
sampling during training, we propose to tune loss
calculation minimisation. During training, tasks
weights αpos, αck, αner and αdp are respectively
set up to: [1, 0.5, 0.25, 0.25], and doubled at each
epoch until α = 1.

4.2 Heterogeneous Multi-Task Learning

As mentioned in the previous section, we mostly
face the heterogeneous multi-task learning scenario,
where only one task-labels might be assigned to a
dataset. In that case, the classical multi-task learn-
ing approach is not directly applicable, thus we
propose to use the “Scheduling process” (Zare-
moodi et al., 2018; Lu et al., 2019) (described in
the following paragraph). However, since train-
ing with different datasets for each task remains
difficult (Subramanian et al., 2018) ) we proposed
“Dataset Unification” a much simpler and easy to
learn method for that scenario.

4.2.1 Tasks Scheduling Procedure

To deal with this heterogeneous aspect, we first
use simple frozen uniform scheduling, which we
call “one task per batch”, similar to (Zaremoodi
et al., 2018) and (Lu et al., 2019), where at each
iteration of the training process, the task to train
is selected randomly. Specifically, the base steps
of “one task per mini-batch” scheduling process
are as follows: 1) picking a mini-batch of samples
from only one particular task and 2) updating only
the parameters corresponding to the selected task,

as well as the subsequent tasks (including the task-
agnostic parameters). Thus, at every step only one
task is trained. We successively pick all the tasks
following a constant ordering strategy “from lower-
level to higher-level tasks” (Hashimoto et al., 2017):
POS then CK then NER then DP. Thus, every 4
steps, the model sees all the tasks once and learns
their corresponding parameters once.

4.2.2 Datasets Unification
To overcome the intricacy of “tasks scheduling pro-
cess”, we propose to construct a unified dataset by
combining several sources of independent textual
annotations. Furthermore, since we are interested
in benefiting from pretraining and fine-tuning, we
apply unification process on both, source and target-
domains.

These datasets contain samples of a broad range
of heterogeneous annotations in a variety of con-
texts (initially sentences are labelled only with one
task rather than all), making the multi-task train-
ing challenging. Thus, to circumvent this problem,
we propose to unify the Twitter-domain datasets to
form a unified Tweets dataset that we call Tweet-
All. We do the same with standard News-domain
datasets to form a unified multi-task dataset that
we name EnglishAll. Concretely, we enrich the
gold annotations of each task with an automatic
annotation by applying on its training-set our base-
line Mono-Task Learning model of the other 3
tasks. In the end, we obtain two unified data-
sets one for Tweet (TweetAll) and one for English
(EnglishAll). Thus, in both datasets each sentence
is labelled with all tasks (one label is the initial
manual annotation and three are generated automat-
ically). Consequently, using our unified datasets
brings us to the classical multi-task scenario, where
each sentence is annotated with all tasks, thus at
each iteration, all tasks are learned and thus all
multi-task model’s parameters are updated.

5 Experiments

5.1 Domains, Tasks and Datasets

As mentioned above, we conducted experiments on
four tasks: two low-level tasks (POS and CK) and
two higher-level ones: (NER and DP). In terms
of domain, data and annotations for the source-
datasets, we used the standard English domain and
chose the following datasets: The WSJ part of Penn-
Tree-Bank (PTB) (Marcus et al., 1993) for POS,
annotated with the PTB tag-set; CONLL2003 for
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Task Classes Sources Eval. Metrics Splits (train - val - test)
POS: POS Tagging 36 WSJ Top-1 Acc. 912,344 - 131,768 - 129,654
CK: Chunking 22 CONLL-2000 Top-1 Exact-match F1. 211,727 - n/a - 47,377
NER: Named Entity Recognition 4 CONLL-2003 Top-1 Exact-match F1. 203,621 - 51,362 - 46,435
DP: Dependency Parsing 51 UD-English-EWT Top-1 LAS. 204,585 - 25,148 - 25,096
POS: POS Tagging 17 TweeBank Top-1 Acc. 24,753 - 11,742 - 19,112
CK: Chunking 18 TChunk Top-1 Exact-match F1. 10,652 - 2,242 - 2,291
NER: Named Entity Recognition 6 WNUT Top-1 Exact-match F1. 62,729 - 15,734 - 23,394
DP: Dependency Parsing 51 TweeBank Top-1 LAS. 24,753 - 11,742 - 19,112

Table 1: Statistics of the datasets we used to train our multi-task learning models. Top: datasets of the source
domain (called “EnglishAll”). Bottom: datasets of the target domain (called “TweetAll”).

NER (Sang and De Meulder, 2003); CONLL2000
(Sang et al., 2000) for CK; and finally UD-English-
EWT (Nivre et al., 2016) for DP.

In the same vein, for the target-datasets, we
used the Tweets domain and the following datasets:
the recent TweeBank (Liu et al., 2018) for POS, an-
notated with the PTB universal tag-set; WNUT-17
from emerging entity detection shared task (Der-
czynski et al., 2017) for NER; TChunk (Rit-
ter et al., 2011) for CK; and the data annotated
with Universal dependency relations in the Twee-
Bank dataset for DP1. Detailed statistics of all the
datasets are summarised in Table 1.

To evaluate our models, we use the accuracy
(acc) for POS, Exact-match F12 (Li et al., 2020) for
NER and CK and labelled attachment score (LAS)
(Nivre et al., 2004).

5.2 Comparison methods
5.2.1 Baselines
We compare our method to multiple baselines, that
we separate into 4 categories according to the pre-
training method.
Without Pretraining: Training from scratch on the
Tweets (target-domain) datasets.

• Mono-Task Learning: an independent train-
ing of our mono-tasks models (one model per
task) on every target task separately.

• Multi-Task Learning: a joint training of our
multi-task model described in Sec.3.3 (one
model for all the tasks) on all the tasks from
target-domain.

Unsupervised pretraining: we replace the WRE
component in Mono-Task Learning by the
pre-trained model3 ELMo (Embeddings from
Language Models) (Peters et al., 2018), consisting

1Note that TweeBank dataset is already anonymised.
For TChuck and WNUT datasets, we used simple rules to
anonymise usernames and URLs.

2SeqEval package were used to calculate F1 metric.
3https://allennlp.org/elmo

of a CNNs-based character-level representations
followed by a 2-layer LSTMs. Thus, ELMo with
the randomly initialised FE and Cl are further
trained on the target-domain tasks. Specifically,
we run experiments with two ELMo models: 1)
ELMosmall: the small pre-trained model (13.6M
parameters) on 1 billion word benchmark. 2)
ELMolarge: the big pre-trained model (93.6M
parameters) on 5.5 billion word benchmark.

Supervised pretraining on the source-domain of
the network on each task independently then
fine-tuning on the same task in the Tweets domain.
This method is called Mono-Task Pre-Training.
A variant of it is marked with *, and consists of
just pretraining, i.e., without fine-tuning. Note that
this variant is possible only when target dataset has
the same tagset as the source dataset.

Adversarial pretraining (Ganin et al., 2016; Gui
et al., 2017) is particularly used for domain adap-
tation, that aims to reduce the shift between the
source and target domains at the pretraining stage.
Precisely, in parallel to task’s objective trained on
supervised annotations from the source domain, an
adversarial objective with respect to a domain dis-
criminator is trained on unsupervised target data to
minimise the distance between source and target
representations. Followed by a fine-tuning on the
same task in the Tweets domain.

5.2.2 State-Of-The-Art (SOTA)
We compare our approach to the best SOTA perfor-
mances for each task:

• BiAffine (Dozat and Manning, 2016): we re-
port the LAS score for DP reported by Liu
et al. (2018). Note that, in addition to word-
level and character embeddings, which we use
in our model to represent words, they use pre-
dicted POS labels and lemmas as input.

• Flairs (Akbik et al., 2019): For NER, using

https://allennlp.org/elmo
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Method PreTraining POS (acc) DP (LAS) NER (F1) CK (F1) mNRG
SOTA - BiAffine(Dozat et al., 2017) n/a n/a 77.7 n/a n/a n/a
SOTA - PretRand (Meftah et al., 2019) n/a 94.95 n/a n/a n/a n/a
SOTA - Flairs (Akbik et al., 2019) n/a n/a n/a 49.59 n/a n/a
SOTA - MDMT (Mishra, 2019) n/a 92.44 n/a 49.86 87.85 n/a
SOTA - DA (LSTM) (Gu and Yu, 2020) n/a n/a n/a n/a 84.58 n/a
SOTA - DA (BERTBASE ) (Gu and Yu, 2020) n/a n/a n/a n/a 87.03 n/a
SOTA - DA (BERTLARGE ) (Gu and Yu, 2020) n/a n/a n/a n/a 87.53 n/a
Best SOTA n/a 94.95 77.7 49.86 87.85 n/a
Mono-task Learning none 91.58 67.48 36.75 80.26 0.0
Multi-Task Learning 91.98 71.16 38.98 81.66 5.9
ELMosmall

Unsupervised
92.51 69.12 41.57 84.28 9.3

ELMolarge 94.02 69.76 44.95 85.56 19.9
Mono-Task Pre-Training∗ Supervised n/a 76.92 n/a 70.16 n/a
Mono-Task Pre-Training 93.33 78.21 41.25 84.64 21.5
Adversarial Pre-Training Adversarial 93.47 77.49 41.68 84.75 22.6

MuTSPad (best) MultiTask, Sup. 94.53 80.12 43.34 85.77 31.5

Table 2: Results on the TweetAll test-sets for the four tasks. On the second column, we describe the pretraining
type (none, supervised, unsupervised, adversarial and our multi-task supervised). The last column (mNRG that
states for median Normalised Relative Gain) aggregates relevantly the scores of the methods across tasks.

a BiLSTM-CRF sequence labelling architec-
ture, fed with Pooled Contextual Embeddings,
pre-trained on character-level language mod-
els.

• PretRand (Meftah et al., 2019): a neural
model based on a transfer learning approach,
it improves Mono-Task Pre-Training baseline
by reducing the bias occurring in the pre-
trained neurons.

• Multi-dataset-multi-task (MDMT)
(Mishra, 2019): multi-task learning,
based on pre-trained ELMo embeddings, of 4
NLP tasks: POS, CK, super sense tagging and
NER, on 20 Tweets datasets 7 POS, 10 NER,
1 CK, and 2 super sense–tagged datasets.

• Data Annealing (DA) (Gu and Yu, 2020): a
fine-tuning approach similar to Mono-Task
Pre-Training baseline, but the passage from
pretraining to fine-tuning is performed grad-
ually, i.e. the training starts with only formal
text data (News) at first; then, the proportion
of the informal text data (Tweets) is gradually
increased during the training process.

5.3 Implementation details

The hyper-parameters (HP) we used are as fol-
lows. For The task-agnostic WRE: The di-
mensions of character embedding = 50, hidden
states of the character-level biLSTM = 100 and
word-level embeddings (updated during training)
= 300 (these latter are pre-loaded from Glove
pre-trained vectors (Pennington et al., 2014) and
fine-tuned during training). For Sequence la-
belling branches: we use a single-layer biLSTM

(token-level feature extractor), with dimension =
200. DP branch HP: we follow Stanford parser’
(//github.com/stanfordnlp/stanfordnlp) HP config-
uration. Global HP: In all experiments, SGD was
used for training with early stopping and mini-
batches were set to 16 sentences.

5.4 Results

5.4.1 Comparison to SOTA & baselines
Our experimental results are reported in Table 2.
Clearly, MuTSPad strongly outperforms baselines,
and is very competitive with the best SOTA results.
We detail our main findings below:

Multi-Task Learning baseline enhances the per-
formances of all tasks compared to mono-task
learning. Obviously, it is most benefactor for DP
by∼3.5% since DP is highly influenced by POS la-
bels, while it is least benefactor for POS by∼0.5%.

Unsupervised pretraining: Clearly, incorporating
pre-trained ELMo representations performs better
compared to mono-task learning. Particularly for
NER task with ∼+8% by ELMolarge. We also
found that it improves the other tasks but not with
the same order of improvement as for NER, which
we mainly attribute to the fact that contextual
representations pre-trained on language modelling
capture more semantic features. Particularly, we
find that DP gains the least from ELMo compared
to the other syntactic tasks.

Comparing MuTSPad to baselines: MuTSPad out-
performs both TL methods, Multi-Task Learning
and Mono-Task Fine-Tuning, on all data-sets, by
∼+26 and ∼+10, respectively, on mNRG (median
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Method POS DP NER CK
w/o unif. 94.08 79.17 43.34 84.87
w/ source unif. 94.36 79.67 43.21 85.77
w/ source+target unif. 94.53 80.12 40.65 85.71

Table 3: Impact of Datasets Unification on MuTSPad.

Normalised Relative Gain; a well suited metric for
multi-task (Tamaazousti et al., 2019)). Compared
to unsupervised pretraining, we can observe that
MuTSPad outperforms ELMo on POS, CK and DP,
where Elmolarge brought higher performances
for NER. Note that ELMo is complementary to our
approach, hence, we expect higher performances
when incorporating Elmolarge to MuTSPad.

Comparing MuTSPad to SOTA: Our score on DP
is about ∼2.5% higher than best SOTA scores.
For POS, CK and NER experiments, we achieve
lower scores than SOTA. It is noteworthy that, first,
contrary to our approach, all these methods are
mono-task models (except MDMT), i.e., unable to
solve other tasks. Second, NER and CK best SOTA
used pretrained contextualised representations
that harness the performance, namely, Flais
embeddings by Akbik et al. (2019), ELMo by
Mishra (2019) and BERT by Gu and Yu (2020).

5.4.2 Impact of Datasets Unification

We report in Tab.3 MuTSPad’s results:
1) w/o unif. : training on independent datasets,
using the “one batch per task” scheduling rule. on
both stages, pretraining and fine-tuning
2) w/ source unif. : In the pretraining stage, train-
ing is performed on unified EnglishAll dataset.
While in fine-tuning, training is performed on inde-
pendent datasets.
3) w/ source+target unif. : In both pretraining and
finetuning stages, training is performed on unified
EnglishAll and TwitterAll datasets, respectively.

Clearly, pretraining on unified source datasets
(w/source unif) slightly improved performances
on all tasks. Nevertheless, finetuning on unified
target datasets (w/source+target unif) is beneficial
only for POS and DP tasks, while it strongly hurts
NER’s performance. We mainly attribute this to the
NER’s “Mono-task learning” model’s low perfor-
mance on Tweets leading to noisy NER automatic
predictions. It is noteworthy that, using unified
datasets is easier to train, making training conver-
gence faster.

Figure 2: Maximum drop on class-score for each task
when ablating individual units from the POS Feature
Extractor output (hpos). Dark/light blue: high/low
drop. One can see that it is the POS task that is most
impacted by the POS units.

5.5 Low-Level Tasks Importance Analysis
In this section, we investigate how low-level tasks
impact high-level tasks in our hierarchical multi-
task model (See Fig.1). Specifically, we focus on
the impact of hpos, the representation encoded by
the POS task, for CK, NER and DP tasks.

For this purpose, we quantify the importance of
hpos individual units for POS, CK, NER and DP
performances. Assuming that ablating the most im-
portant units for a task should bring higher drop in
performance compared to the least important units,
we perform an individual ablation (also called prun-
ing) of hpos units (neurons), as in (Zhou et al.,
2018; Dalvi et al., 2019).

Given the already trained target multi-task model
Mt, we set the relating weights of each uniti from
hpos to zero, i.e. Tpos weights for CK, NER and
DP; and Clpos weights for POS. Hence, the ab-
lated unit will not contribute to the final predic-
tion for any input word. Then, with one unit ab-
lated at a time, we launch the inference on each-
task’s dev-set, then compute the resulting score-
drop for each class, leading to a matrix per task
Atask ∈ Md,m (R), where d is hpos’s dimension
and m is the number of task’ classes. This matrix
can be summarised in a max-class-score-drop vec-
tor vtask ∈ Rd, where each vtask

i from the vector
represents the max class score drop of uniti from
hpos.

Applying this method, for POS, CK, NER and
DP, leads to 4 max-class-score-drop vectors, one
for each task, vpos, vck, vner and vdp, that we
plot in Fig.4 (one vector per line). We observe high
values of max class score drop for POS compared
to the remaining tasks. First, since hpos’s units
are more important for POS tagging than all other
tasks. And, second, hpos’s units are directly used
for prediction for POS while transformed through
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Task Class Unit Top-10 activations

CK B-INTJ POS-Unit-112 :); awwwwwwww; uggghh; Omg; lol; hahahaha; WELL; Nope; LOL; No
B-ADJP POS-Unit-99 rapidely; Deeply; fine; more; hardly; particulary; slower; guilty; loose; entirely

DP auxiliary POS-Unit-47 do; can; was; ca; can; ’s; would; have; ame; Wo
discourse POS-Unit-112 Hhhahahh; no; lmao; sorry; omg; hey; lol; yea; haha; please

NER B-location POS-Unit-35 North; Ireland; Italy; Kelly; Qatar; in; southafrica; new; over; Wellington
B-person POS-Unit-115 Trilarion; Jo; Watson; Hanzo; Abrikosov; Lily; jellombooty; theguest; Professor

Table 4: Top-10 words activating positively (red) or negatively (blue) (Since LSTMs generate positive and negative
activations) some units from hpos that are the most important for different classes from CK, DP and NER

several layers for the other tasks. Furthermore,
we can also observe that hpos’s units are more
important for CK and DP compared to NER.

Moreover, we attempt to peek inside some units
from hpos, the ablation thereof begets the higher
drop in CK, DP and NER classes-scores. Specifi-
cally, we report in Tab.4 the top-10 words activating
some of these units, as in (Kádár et al., 2017; Mef-
tah et al., 2019). Expectedly, we found that some
of POS’ units are firing, and thus specialised, on
patterns that are beneficial for higher-level tasks.
For instance, Unit-99, specialised on adjectives
ending with the suffix “ly”, is highly important for
the CK class “B-ADJP” (beginning of adjectival
phrase). Also, Unit-115, is firing on persons names,
a valuable pattern for “B-person” class of NER. In-
terestingly, we found some units that are beneficial
for multiple tasks, e.g. Unit-112, which is specific
for interjections, is also important for both “dis-
course” class for DP and “B-INTJ” (beginning of
an interjection phrase) for CK.

6 Conclusion

In this research, we have proposed MuTSPad, a
new approach based on Transfer Learning (TL)
for domain adaptation with three main contribu-
tions: 1) Consolidating two TL’s approaches, se-
quential transfer learning and multi-task learning,
by pretraining on resource-rich domain and fine-
tuning on low-resourced domain in a multi-task
fashion; 2) Unifying independent datasets to over-
come the intricacy of multi-task training from dif-
ferent datasets; and 3) Conducting a set of individ-
ual units ablation, refining our understanding on
how individual neurons lower-level tasks impact
high-level tasks. We showed through empirical re-
sults on domain adaptation from News to Tweets
that the proposed method MuTSPad allows a simul-
taneous benefit from similarities between domains
and tasks, yielding better transfer learning perfor-
mances on four NLP tasks, and outperforming the
state-of-the-art on Dependency Parsing task.

This study leaves several important open direc-
tions for future work. First, we should explore
soft multi-task architectures. Second, we expect
to explore the combination of supervised and un-
supervised multi-tasking. We also plan to explore
the benefit of MuTSPad’s learned representations
for higher-level NLP applications such as machine
translation and sentiment analysis.
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