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Abstract

Toxic comments in online platforms are an
unavoidable social issue under the cloak of
anonymity. Hate speech detection has been
actively done for languages such as English,
German, or Italian, where manually labeled
corpus has been released. In this work, we
first present 9.4K manually labeled entertain-
ment news comments for identifying Korean
toxic speech, collected from a widely used on-
line news platform in Korea. The comments
are annotated regarding social bias and hate
speech since both aspects are correlated. The
inter-annotator agreement Krippendorff’s al-
pha score is 0.492 and 0.496, respectively.
We provide benchmarks using CharCNN, BiL-
STM, and BERT, where BERT achieves the
highest score on all tasks. The models gener-
ally display better performance on bias iden-
tification, since the hate speech detection is
a more subjective issue. Additionally, when
BERT is trained with bias label for hate speech
detection, the prediction score increases, im-
plying that bias and hate are intertwined. We
make our dataset publicly available and open
competitions with the corpus and benchmarks.

1 Introduction

Online anonymity provides freedom of speech to
many people and lets them speak their opinions
in public. However, anonymous speech also has a
negative impact on society and individuals (Banks,
2010). With anonymity safeguards, individuals eas-
ily express hatred against others based on their
superficial characteristics such as gender, sexual
orientation, and age (ElSherief et al., 2018). Some-
times the hostility leaks to the well-known people
who are considered to be the representatives of
targeted attributes.

*Both authors contributed equally to this manuscript.
†This work was done after the graduation.

Recently, Korea had suffered a series of tragic in-
cidents of two young celebrities that are presumed
to be caused by toxic comments (Fortin, 2019; Mc-
Curry, 2019a,b). Since the incidents, two major
web portals in Korea decided to close the comment
system in their entertainment news aggregating ser-
vice (Yeo, 2019; Yim, 2020). Even though the toxic
comments are now avoidable in those platforms,
the fundamental problem has not been solved yet.

To cope with the social issue, we propose the
first Korean corpus annotated for toxic speech de-
tection. Specifically, our dataset consists of 9.4K
comments from Korean online entertainment news
articles. Each comment is annotated on two aspects,
the existence of social bias and hate speech, given
that hate speech is closely related to bias (Boeck-
mann and Turpin-Petrosino, 2002; Waseem and
Hovy, 2016; Davidson et al., 2017). Considering
the context of Korean entertainment news where
public figures encounter stereotypes mostly inter-
twined with gender, we weigh more on the preva-
lent bias. For hate speech, our label categorization
refers that of Davidson et al. (2017), namely hate,
offensive, and none.

The main contributions of this work are as fol-
lows:

• We release the first Korean corpus manu-
ally annotated on two major toxic attributes,
namely bias and hate1.

• We hold Kaggle competitions234 and provide
benchmarks to boost further research develop-
ment.

• We observe that in our study, hate speech de-
tection benefits the additional bias context.

1https://github.com/kocohub/korean-hate-speech
2www.kaggle.com/c/korean-gender-bias-detection
3www.kaggle.com/c/korean-bias-detection
4www.kaggle.com/c/korean-hate-speech-detection
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2 Related Work

The construction of hate speech corpus has been
explored for a limited number of languages, such as
English (Waseem and Hovy, 2016; Davidson et al.,
2017; Zampieri et al., 2019; Basile et al., 2019),
Spanish (Basile et al., 2019), Polish (Ptaszynski
et al., 2019), Portuguese (Fortuna et al., 2019), and
Italian (Sanguinetti et al., 2018).

For Korean, works on abusive language have
mainly focused on the qualitative discussion of
the terminology (Hong, 2016), whereas reliable
and manual annotation of the corpus has not yet
been undertaken. Though profanity termbases are
currently available56, term matching approach fre-
quently makes false predictions (e.g., neologism,
polysemy, use-mention distinction), and more im-
portantly, not all hate speech are detectable using
such terms (Zhang et al., 2018).

In addition, hate speech is situated within the
context of social bias (Boeckmann and Turpin-
Petrosino, 2002). Waseem and Hovy (2016) and
Davidson et al. (2017) attended to bias in terms of
hate speech, however, their interest was mainly in
texts that explicitly exhibit sexist or racist terms. In
this paper, we consider both explicit and implicit
stereotypes, and scrutinize how these are related to
hate speech.

3 Collection

We constructed the Korean hate speech corpus us-
ing the comments from a popular domestic enter-
tainment news aggregation platform. Users had
been able to leave comments on each article be-
fore the recent overhaul (Yim, 2020), and we had
scrapped the comments from the most-viewed arti-
cles.

In total, we retrieved 10,403,368 comments from
23,700 articles published from January 1, 2018 to
February 29, 2020. We draw 1,580 articles using
stratified sampling and extract the top 20 comments
ranked in the order of Wilson score (Wilson, 1927)
on the downvote for each article. Then, we remove
duplicate comments, single token comments (to
eliminate ambiguous ones), and comments com-
posed with more than 100 characters (that could
convey various opinions). Finally, 10K comments
are randomly selected among the rest for annota-
tion.

5https://github.com/doublems/korean-bad-words
6https://github.com/LDNOOBW/List-of-Dirty-Naughty-

Obscene-and-Otherwise-Bad-Words

Figure 1: A sample comment from the online news plat-
form. It is composed of six parts: written date and time,
masked user id, content, the number of replies, and
the number of up/down votes (from top left to bottom
right).

We prepared other 2M comments by gathering
the top 100 sorted with the same score for all arti-
cles and removed with any overlaps regarding the
above 10K comments. This additional corpus is
distributed without labels, expected to be useful
for pre-training language models on Korean online
text.

4 Annotation

The annotation was performed by 32 annotators
consisting of 29 workers from a crowdsourcing
platform DeepNatural AI7 and three natural lan-
guage processing (NLP) researchers. Every com-
ment was provided to three random annotators to
assign the majority decision. Annotators are asked
to answer two three-choice questions for each com-
ment:

1. What kind of bias does the comment contain?
• Gender bias, Other biases, or None

2. Which is the adequate category for the com-
ment in terms of hate speech?

• Hate, Offensive, or None

They are allowed to skip comments which are
too ambiguous to decide. Detailed instructions are
described in Appendix A. Note that this is the first
guideline of social bias and hate speech on Korean
online comments.

4.1 Social Bias
Since hate speech is situated within the context
of social bias (Boeckmann and Turpin-Petrosino,
2002), we first identify the bias implicated in the
comment. Social bias is defined as a preconceived
evaluation or prejudice towards a person/group
with certain social characteristics: gender, politi-
cal affiliation, religion, beauty, age, disability, race,
or others. Although our main interest is on gen-
der bias, other issues are not to be underestimated.

7https://app.deepnatural.ai/
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Thus, we separate bias labels into three: whether
the given text contains gender-related bias, other
biases, or none of them. Additionally, we introduce
a binary version of the corpus, which counts only
the gender bias, that is prevalent among the enter-
tainment news comments.

The inter-annotator agreement (IAA) of the label
is calculated based on Krippendorff’s alpha (Krip-
pendorff, 2011) that takes into account an arbitrary
number of annotators labeling any number of in-
stances. IAA for the ternary classes is 0.492, which
means that the agreement is moderate. For the bi-
nary case, we obtained 0.767, which implies that
the identification of gender and sexuality-related
bias reaches quite a substantial agreement.

4.2 Hate Speech
Hate speech is difficult to be identified, espe-
cially for the comments which are context-sensitive.
Since annotators are not given additional infor-
mation, labeling would be diversified due to the
difference in pragmatic intuition and background
knowledge thereof. To collect reliable hate speech
annotation, we attempt to establish a precise and
clear guideline.

We consider three categories for hate speech:
hate, offensive but not hate, and none. As socially
agreed definition lacks for Korean8, we refer to the
hate speech policies of Youtube; Facebook; Twitter.
Drawing upon those, we define hate speech in our
study as follows:

• If a comment explicitly expresses hatred
against individual/group based on any of the
following attributes: sex, gender, sexual orien-
tation, gender identity, age, appearance, social
status, religious affiliation, military service,
disease or disability, ethnicity, and national
origin

• If a comment severely insults or attacks indi-
vidual/group; this includes sexual harassment,
humiliation, and derogation

However, note that not all the rude or aggressive
comments necessarily belong to the above defini-
tion, as argued in Davidson et al. (2017). We often
see comments that are offensive to certain individ-
uals/groups in a qualitatively different manner. We
identify these as offensive and set the boundary as
follows:

8Though a government report is available for the Korean
language (Hong, 2016), we could not reach a fine extension to
the quantitative study on online spaces.

(%) Hate Offensive None Sum (Bias)

Gender 10.15 4.58 0.98 15.71
Others 7.48 8.94 1.74 18.16
None 7.48 19.13 39.08 65.70

Sum (Hate) 25.11 32.66 41.80 100.00

Table 1: Distribution of the annotated corpus.

• If a comment conveys sarcasm via rhetorical
expression or irony

• If a comment states an opinion in an unethical,
rude, coarse, or uncivilized manner

• If a comment implicitly attacks individ-
ual/group while leaving rooms to be consid-
ered as freedom of speech

The instances that do not meet the boundaries
above were categorized as none. The IAA on the
hate categories is α = 0.496, which implies a mod-
erate agreement.

5 Corpus

Release From the 10k manually annotated cor-
pus, we discard 659 instances that are either
skipped or failed to reach an agreement. We split
the final dataset into the train (7,896), validation
(471), and test set (974) and released it on the Kag-
gle platform to leverage the leaderboard system.
For a fair competition, labels on the test set are not
disclosed. Titles of source articles for each com-
ment are also provided, to help participants exploit
context information.

Class distribution Table 1 depicts how the
classes are composed of. The bias category dis-
tribution in our corpus is skewed towards none,
while that of hate category is quite balanced. We
also confirm that the existence of hate speech is
correlated with the existence of social bias. In other
words, when a comment incorporates a social bias,
it is likely to contain hate or offensive speech.

6 Benchmark Experiment

6.1 Models

We implemented three baseline classifiers:
character-level convolutional neural network
(CharCNN) (Zhang et al., 2015), bidirectional
long short-term memory (BiLSTM) (Schuster
and Paliwal, 1997), and bidirectional encoder
representations from Transformer (BERT) (Devlin
et al., 2018) based model. For BERT, we adopt
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(a) BERT predictions (b) BERT predictions with bias label

Figure 2: Confusion matrix on the model inference of hate categories.

F1 Bias (binary) Bias (ternary) Hate

Term Matching - - 0.195

CharCNN 0.547 0.535 0.415
BiLSTM 0.302 0.291 0.340

BERT 0.681 0.633 0.525

BERT (+ bias) - - 0.569

Table 2: F1 score of benchmarks on the test set. Note
that the term matching model checks the presence of
hate or offensiveness. Therefore, in this case, we com-
bine hate and offensive into a single category, turning
the original ternary task into binary.

KoBERT9, a pre-trained module for the Korean
language, and apply its tokenizer to BiLSTM as
well. The detailed configurations are provided
in Appendix B, and we additionally report the
term matching approach using the aforementioned
profanity terms to compare with the benchmarks.

6.2 Results

Table 2 depicts F1 score of the three baselines and
the term matching model. The results demonstrate
that the models trained on our corpus have an ad-
vantage over the term matching method. Compared
with the benchmarks, BERT achieves the best per-
formance for all the three tasks: binary and ternary
bias identification tasks, and hate speech detection.
Each model not only shows different performances
but also presents different characteristics.

Bias detection When it comes to the gender-bias
detection, the task benefits more on CharCNN than
BiLSTM since the bias label is highly correlated
with frequent gender terms (e.g., he, she, man,
woman, ...) in the dataset. It is known that Char-

9https://github.com/SKTBrain/KoBERT

F1 Gender Others None Bias (ternary)

CharCNN 0.519 0.259 0.826 0.535
BiLSTM 0.055 0.000 0.819 0.291

BERT 0.693 0.326 0.880 0.633

Table 3: Detailed results on macro-F1 of Bias (ternary)

CNN well captures the lexical components that are
present in the document.

However, owing to that nature, CharCNN some-
times yields results that are overly influenced by the
specific terms which cause false predictions. For
example, the model fails to detect bias in “What
a long life for a GAY” but guesses “I think she
is the prettiest among all the celebs” to contain
bias. CharCNN overlooks GAY while giving a
wrong clue due to the existence of female pronouns,
namely she in the latter.

Similar to the binary prediction task, CharCNN
outperforms BiLSTM on ternary classification. Ta-
ble 3 demonstrates that BiLSTM hardly identifies
gender and other biases.

BERT detects both biases better than the other
models. From the highest score obtained by BERT,
we found that rich linguistic knowledge and seman-
tic information is helpful for bias recognition.

We also observed that all the three models barely
perform well on others (Table 3). To make up a
system that covers the broad definition of other
bias, it would be better to predict the label as the
non-gender bias. For instance, it can be performed
as a two-step prediction: the first step to distinguish
whether the comment is biased or not and the sec-
ond step to determine whether the biased comment
is gender-related or not.
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Hate speech detection For hate speech detec-
tion, all models faced performance degradation
compared to the bias classification task, since the
task is more challenging. Nonetheless, BERT is
still the most successful, and we conjecture that
hate speech detection also utilizes high-level se-
mantic features. The significant performance gap
between term matching and BERT explains how
much our approach compensates for the false pre-
dictions mentioned in Section 2.

Provided bias label prepend to each comment
as a special token, BERT exhibits better perfor-
mance. As illustrated in Figure 2, additional bias
context helps the model to distinguish offensive and
none clearly. This implies our observation on the
correlation between bias and hate is empirically
supported.

7 Conclusions

In this data paper, we provide an annotated cor-
pus that can be practically used for analysis and
modeling on Korean toxic language, including hate
speech and social bias. In specific, we construct a
corpus of a total of 9.4K comments from online
entertainment news service.

Our dataset has been made publicly accessible
with baseline models. We launch Kaggle compe-
titions using the corpus, which may facilitate the
studies on toxic speech and ameliorate the cyber-
bullying issues. We hope our initial efforts can be
supportive not only to NLP for social good, but also
as a useful resource for discerning implicit bias and
hate in online languages.
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A Annotation Guideline

A.1 Existence of social bias

The first property is to note which social bias is im-
plicated in the comment. Here, social bias means
hasty guess or prejudice that ‘a person/group with
a certain social identity will display a certain char-
acteristic or act in a biased way’. The three labels
of the question are as follows.

1. Is there a gender-related bias, either explicit
or implicit, in the text?

• If the text includes bias for gender role,
sexual orientation, sexual identity, and
any thoughts on gender-related acts (e.g.,
“Wife must be obedient to her husband’s
words”, or “Homosexual person will be
prone to disease.”)

2. Are there any other kinds of bias in the text?
• Other kinds of factors that are considered

not gender-related but social bias, includ-
ing race, background, nationality, ethnic
group, political stance, skin color, reli-
gion, handicaps, age, appearance, rich-
ness, occupations, the absence of mili-
tary service experience10, etc.

3. A comment that does not incorporate the bias

A.2 Amount of hate, insulting, or offense
The second property is how aggressive the com-
ment is. Since the level of “aggressiveness” de-
pends on the linguistic intuition of annotators, we
set the following categorization to draw a border-
line as precise as possible.

1. Is strong hate or insulting towards the article’s
target or related figures, writers of the article
or comments, etc. displayed in a comment?

• In the case of insulting, it encompasses
an expression that can severely harm the
social status of the recipient.

• In the case of hate, it is defined as an ex-
pression that displays aggressive stances
towards individuals/groups with certain
characteristics (gender role, sexual ori-
entation, sexual identity, any thoughts
on gender-related acts, race, background,
nationality, ethnic group, political stance,
skin color, religion, handicaps, age, ap-
pearance, richness, occupations, the ab-
sence of military service experience,
etc.).

• Additionally, it can include sexual harass-
ment, notification of offensive rumors or
facts, and coined terms for bad purposes
or in bad use, etc.

• Just an existence of bad words in the doc-
ument does not always fall into this cate-
gory.

10Frequently observable in Korea, where the military ser-
vice is mandatory for males.
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2. Although a comment is not as much hateful or
insulting as the above, does it make the target
or the reader feel offended?

• It may contain rude or aggressive con-
tents, such as bad words, though not to
the extent of hate or insult.

• It can emit sarcasm through rhetorical
questions or irony.

• It may encompass an unethical expres-
sion (e.g., jokes or irrelevant questions
regarding the figures who passed away).

• A comment conveying unidentified ru-
mors can belong to this category.

3. A comment that does not incorporate any ha-
tred or insulting

B Model Configuration

Note that each model’s configuration is the same
for all tasks except for the last layer.

B.1 CharCNN
For character-level CNN, no specific tokenization
was utilized. The sequence of Hangul characters
was fed into the model at a maximum length of
150. The total number of characters was 1,685,
including ‘[UNK]’ and ‘[PAD]’ token, and the em-
bedding size was set to 300. 10 kernels were used,
each with the size of [3,4,5]. At the final pooling
layer, we used a fully connected network (FCN) of
size 1,140, with a 0.5 dropout rate (Srivastava et al.,
2014). The training was done for 6 epochs.

B.2 BiLSTM
For bidirectional LSTM, we had a vocab size of
4,322, with a maximum length of 256. We used
BERT SentencePiece tokenizer (Kudo and Richard-
son, 2018). The width of the hidden layers was 512
(=256× 2), with four stacked layers. The dropout
rate was set to 0.3. An FCN of size 1,024 was ap-
pended to the BiLSTM output to yield the final
softmax layer. We trained the model for 15 epochs.

B.3 BERT
For BERT, a built-in SentencePiece tokenizer of
KoBERT was adopted, which was also used for
BiLSTM. We set a maximum length at 256 and ran
the model for 10 epochs.


