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Abstract

This paper describes our approach for detecting adverse drug effect mentions on Twitter as part
of the Social Media Mining for Health Applications (SMM4H) 2020, Shared Task 2. Our ap-
proach utilizes multilingual sentence embeddings (sentence-BERT) for representing tweets and
Bayesian hyperparameter optimization of sample weighting parameter for counterbalancing high
class imbalance.

1 Introduction and Related Work

Automatic adverse drug reaction detection from social media has high significance to health informat-
ics and pharmacovigilance due to fast, scalable, and diverse public health surveillance opportunities.
Numerous studies have proposed natural language processing and machine learning solutions to detect
mentions of adverse drug effects, especially from Twitter (Bian et al., 2012; Jiang and Zheng, 2013;
Ginn et al., 2014; O’Connor et al., 2014; Katragadda et al., 2015; Egger et al., 2016; Korkontzelos et al.,
2016; Rastegar-Mojarad et al., 2016; MacKinlay et al., 2017; Alimova and Tutubalina, 2017; Moh et al.,
2017; Lee et al., 2017; Gupta et al., 2018a; Gupta et al., 2018b; Masino et al., 2018; Wu et al., 2019;
Mesbah et al., 2019; Zhang et al., 2019; Alhuzali and Ananiadou, 2019). Proposed approaches in earlier
studies vary from rule-based systems to deep learning. The challenge of detecting adverse drug effect
mentions in Twitter remains unsolved due to lack of large-scale annotated datasets, rareness of relevant
tweets among all tweets as well as ever-changing nature of the phenomenon.

The task consists of building separate adverse drug effect mention detection (binary classification)
models for English, French, and Russian datasets from Twitter (9.25%, 1.61%, and 8.75% positive class
prevalence, respectively). Detailed description of data and task can be found in (Klein et al., 2020).

2 Methods
2.1 Sentence Embeddings

We first preprocess the tweets by removing the usernames (in the form @username) and urls. We
utilize recently introduced sentence-BERT (SBERT) models (Reimers and Gurevych, 2019) to represent
each tweet as a sentence embedding instead of using standard BERT (Devlin et al., 2019) or its variants
which work in a token-embedding manner. SBERT models are trained by a Siamese-network structure
using BERT models to learn semantically meaningful sentence embeddings in an efficient manner. We
utilize sentence-embedding versions of pretrained RoBERTa (Liu et al., 2019) model for English dataset
(representation vectors of length 1024) and multilingual DistilBERT (Sanh et al., 2019) model (trained
on 13 languages) for French and Russian datasets (representation vectors of length 512). We then train
3-layer (2 dense layers of size 256 and 32 with ReLU activation, respectively and an output layer with
sigmoid activation) fully-connected neural networks using the sentence embeddings as input features. A
Dropout rate of 0.5 is used between the dense layers. Model trainings are performed in a mini-batch
manner for 100 epochs with a batch size of 32 with Adam optimizer (learning rate of 5 x 10~%). Every
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run is performed in a 5-fold cross-validation manner and models at the epoch that maximizes the F}
score on the validation split of the cross-validation is selected as final model.

2.2 Bayesian Optimization of Sample Weighting

As the problem at hand consists of highly imbalanced datasets, statistical balancing of positive and
negative classes benefits the model training. Such balancing may be performed in various ways, e.g.,
with data augmentation. We chose to tackle the problem by increasing the contribution of the positive
samples (corresponding to adverse effect mentions) to the loss function calculation. Each task requires a
different weight coefficient (multiplier) for the positive samples, 6, as the prevalence of positive samples
differ between datasets. We formulate the problem of finding the optimal multiplier, 0, as a Bayesian
optimization problem:

0= argmax £(0), (1)

where f(0) is the average of cross-validation F scores, i.e., % S°N | Fi. For our experiments N = 5
as we perform 5-fold cross-validation. We use a Gaussian Process for the surrogate model (Rasmussen,
2003) of the Bayesian optimization by which we emulate the statistical relationship between the positive
sample weight coefficient and cross-validation performance, given a dataset.

3 Results

Results of our experiments and submissions can be examined from Table 1. Validation results correspond
to local experiments, i.e., cross-validation with training data and inference on validation data. Test results
(competition results) correspond to cross-validation with training + validation data and inference on test
data from the ensembles of the cross-validation models (mean pooling). F; scores of 0.48, 0.17, and
0.42 are achieved for English, French, and Russian datasets, respectively.

Validation Test Comp. Avg.
Task | SBERT model | Op.s: | P R Py P R F Fy
English RoBERTa 277 |1 046 | 0.54 | 049 | 0.44 | 0.53 | 0.48 0.46
French DistilBERT 19.67 | 0.19 | 0.25 | 0.22 | 0.15 | 0.20 | 0.17 0.07
Russian | DistilBERT 823 | 038 052045035055 042 0.43

Table 1: Validation and competition test results of developed binary classification models for the 3
datasets (P = Precision, R = Recall).

4 Discussion and Conclusions

We chose to use pre-computed sentence embeddings instead of fine-tuning on token embeddings out
of original BERT models due to its low computational requirements (Reimers and Gurevych, 2019).
While it is possible to represent tweets with a standard BERT model as well (e.g. by averaging the
token embeddings out of the output layer), such sentence representations were shown to be inferior to
embeddings specifically trained for representing sentences (Reimers and Gurevych, 2019).

Bayesian optimization is beneficial in settings where the function to be minimized/maximized is a
black-box function without a known closed-form, expensive to evaluate, and stochastic (Mockus, 1975).
As f(0) corresponds to cross-validation performance in our case, it is indeed a black-box function and
computationally expensive to evaluate. Furthermore, it is a stochastic function as the same 6 may give
different outputs for different runs due to randomness in neural network weight initialization. That
is our motive for employing Bayesian hyperparameter optimization for sample weighting. Advantage
of using a Gaussian Process as the surrogate model is that it can provide uncertainty estimations. As
expected, optimum positive sample weight parameters found by Bayesian optimization are different for
each dataset and French dataset requires much higher balancing due to its extreme class inbalance. Our
Bayesian optimization approach can be easily extended to optimization of other hyperparameters of the
model including neural network architecture and other relevant design choices.
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