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Abstract

In this paper, we present the systems of the
University of Stuttgart IMS and the Univer-
sity of Colorado Boulder (IMS-CUBoulder)
for SIGMORPHON 2020 Task 2 on unsu-
pervised morphological paradigm completion
(Kann et al., 2020). The task consists of gen-
erating the morphological paradigms of a set
of lemmas, given only the lemmas themselves
and unlabeled text. Our proposed system is
a modified version of the baseline introduced
together with the task. In particular, we ex-
periment with substituting the inflection gen-
eration component with an LSTM sequence-
to-sequence model and an LSTM pointer-
generator network. Our pointer-generator sys-
tem obtains the best score of all seven submit-
ted systems on average over all languages, and
outperforms the official baseline, which was
best overall, on Bulgarian and Kannada.

1 Introduction

In recent years, a lot of progress has been made on
the task of morphological inflection, which consists
of generating an inflected word, given a lemma
and a list of morphological features (Kann and
Schiitze, 2017; Makarov and Clematide, 2018; Cot-
terell et al., 2016, 2017, 2018; McCarthy et al.,
2019). The systems developed for this task learn
to model inflection in morphologically complex
languages in a supervised fashion.

However, not all languages have annotated data
available. For the 2018 SIGMORPHON shared
task (Cotterell et al., 2018), data for 103 unique
languages has been provided. Even this highly mul-
tilingual dataset is just covering 1.61% of the 6359
languages' that exist in the world (Lewis, 2009).
The unsupervised morphological paradigm com-
pletion task (Jin et al., 2020) aims at generating

'The number of languages can vary depending on the
classification schema used.
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Figure 1: Partial Portuguese development examples.
The input is a list of lemmas, and the output is a list
of all inflected forms of each lemma. In this exam-
ple, unnamed paradigm slots correspond to the fol-
lowing UniMorph features: 1=V.PTCP;FEM;PL;PST,
2=V.PTCP;FEM;SG;PST, 3=V.PTCP;MASC;PL;PST,
4=V.PTCP;MASC;SG;PST.

inflections — more specifically all inflected forms,
i.e., the entire paradigms, of given lemmas — with-
out any explicit morphological information during
training. A system that is able to solve this problem
can generate morphological resources for most of
the world’s languages easily. This motivates us to
participate in the SIGMORPHON 2020 shared task
on unsupervised morphological paradigm comple-
tion (Kann et al., 2020).

The task, however, is challenging: As the num-
ber of inflected forms per lemma is unknown a
priori, an unsupervised morphological paradigm
completion system needs to detect the paradigm
size from raw text. Since the names of morphologi-
cal features expressed in a language are not known
if there is no supervision, a system should mark
which inflections correspond to the same morpho-
logical features across lemmas, but needs to do so
without using names, cf. Figure 1. For the shared
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task, no external resources such as pretrained mod-
els, annotated data, or even additional monolingual
text can be used. The same holds true for multilin-
gual models.

We submit two systems, which are both modi-
fications of the official shared task baseline. The
latter is a pipeline system, which performs four
steps: edit tree retrieval, additional lemma retrieval,
paradigm size discovery, and inflection generation
(Jin et al., 2020). We experiment with substitut-
ing the original generation component, which is
either a simple non-neural system (Cotterell et al.,
2017) or a transducer-based hard-attention model
(Makarov and Clematide, 2018) with an LSTM
encoder-decoder architecture with attention (Bah-
danau et al., 2015) — IMS-CUB1- and a pointer-
generator network (See et al., 2017) — IMS-CUB2.
IMS-CUB?2 achieves the best results of all submit-
ted systems, outperforming the second best sys-
tem by 2.07% macro-averaged best-match accu-
racy (BMAcc; Jin et al., 2020), when averaged
over all languages. However, we underperform the
baseline system, which performs 1.03% BMAcc
better than IMS-CUB2. Looking at individual lan-
guages, ITMS—CUB2 obtains the best results overall
for Bulgarian and Kannada.

The findings from our work on the shared task
are as follows: i) the copy capabilities of a pointer-
generator network are useful in this setup; and ii)
unsupervised morphological paradigm completion
is a challenging task: no submitted system outper-
forms the baselines.

2 Related Work

Unsupervised methods have shown to be effec-
tive for morphological surface segmentation. LIN-
GUISTICA (Goldsmith, 2001) and MORFESSOR
(Creutz, 2003; Creutz and Lagus, 2007; Poon et al.,
2009) are two unsupervised systems for the task.

In the realm of morphological generation,
Yarowsky and Wicentowski (2000) worked on a
task which was similar to unsupervised morpholog-
ical paradigm completion, but required additional
knowledge (e.g., a list of morphemes). Dreyer and
Eisner (2011) used a set of seed paradigms to train a
paradigm completion model. Ahlberg et al. (2015)
and Hulden et al. (2014) also relied on information
about the paradigms in the language. Erdmann et al.
(2020) proposed a system for a task similar to this
shared task.

Learning to generate morphological paradigms
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Language | Training Development Test
Basque 85 16 499
Bulgarian 1609 441 2874
English 343 83 302
Finnish 2306 522 1789
German 3940 999 667
Kannada 832 211 2854
Navajo 17 4 279
Spanish 1940 494 2506
Turkish 3095 787 8502

Table 1: Number of instances retrieved by steps 1 to 3
in our pipeline, which are used for training and devel-
opment of our inflection generation components. The
test set contains the lemma and paradigm slot for forms
that need to be generated.

in a fully supervised way is the more common
approach. Methods include Durrett and DeNero
(2013), Nicolai et al. (2015), and Kann and Schiitze
(2018). Supervised morphological inflection has
further gained popularity through previous SIG-
MORPHON and CoNLL-SIGMORPHON shared
tasks on the topic (Cotterell et al., 2016, 2017,
2018; McCarthy et al., 2019). The systems pro-
posed for these shared tasks have a special rel-
evance for our work, as we investigate the per-
formance of morphological inflection components
based on Kann and Schiitze (2016a,b) and Sharma
et al. (2018) within a pipeline for unsupervised
morphological paradigm completion.

3 System Description

In this section, we introduce our pipeline system for
unsupervised morphological paradigm completion.
First, we describe the baseline system, since we
rely on some of its components. Then, we describe
our morphological inflection models.

3.1 The Shared Task Baseline

For the initial steps of our pipeline, we employ the
first three components of the baseline (Jin et al.,
2020), cf. Figure 2, which we describe in this
subsection. We use the official implementation.”

Retrieval of relevant edit trees. This compo-
nent (cf. Figure 2.1) identifies words in the mono-
lingual corpus that could belong to a given lemma’s
paradigm by computing the longest common sub-
string between the lemma and all words. Then, the

https://github.com/cai-1lw/
morpho-baseline
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Figure 2: The baseline system. This paper experiments with modifying the generation module. All components

are described in §3.1.

transformation from a lemma to each word poten-
tially from its paradigm is represented by edit trees
(Chrupata, 2008). Edit trees with frequencies are
below a threshold are discarded.

Retrieval of additional lemmas. To increase the
confidence that retrieved edit trees represent valid
inflections, more lemmas are needed (cf. Figure
2.2). To find those, the second component of the
system applies edit trees to potential lemmas in
the corpus. If enough potential inflected forms are
found in the corpus, a lemma is considered valid.

Paradigm size discovery. Now the system needs
to find a mapping between edit trees and paradigms
(cf. Figure 2.3). This is done based on two assump-
tions: that for each lemma a maximum of one edit
tree per paradigm slot can be found, and that each
edit tree only realizes one paradigm slot for all lem-
mas. In addition, the similarity of potential slots is
measured. With these elements, similar potential
slots are merged until the final paradigm size for a
language is being determined.

Generation. Now, that the system has a set
of lemmas and corresponding potential inflected
forms, the baseline employs a morphological in-
flection component, which learns to generate inflec-
tions from lemmas and a slot indicator, and gener-
ates missing forms (cf. Figure 2.4). We experiment
with substituting this final component.

In the remainder of this paper, we will refer to
the original baselines with the non-neural system
from Cotterell et al. (2017) and the inflection model
from Makarov and Clematide (2018) as BL.—1 and
BL-2, respectively.
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3.2 LSTM Encoder-Decoder

We use an LSTM encoder-decoder model with at-
tention (Bahdanau et al., 2015) for our first system,
IMS—-CUBI, since it has been shown to obtain high
performance on morphological inflection (Kann
and Schiitze, 2016a). This model takes two inputs:
a sequence of characters and a sequence of mor-
phological features. It then generates the sequence
of characters of the inflected form. For the input,
we simply concatenate the paradigm slot number
and all characters.

3.3 Pointer-Generator Network

For IMS-CUB2, we use a pointer-generator net-
work (See et al., 2017).> We expect this system to
perform better than IMS—CURB1, given the pointer-
generator’s better performance on morphological
inflection in the low-resource setting (Sharma et al.,
2018). A pointer-generator network is a hybrid
between an attention-based sequence-to-sequence
model (Bahdanau et al., 2015) and a pointer net-
work (Vinyals et al., 2015).

The standard pointer-generator network consists
of a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) encoder and a unidirectional LSTM
decoder with a copy mechanism. Here, we follow
(Sharma et al., 2018) and use two separate encoders:
one for the lemma and one for the morphological
tags. The decoder then computes the probability
distribution of the output at each time step as a
weighted sum of the probability distribution over
the output vocabulary and the attention distribution
over the input characters. The weights can be seen
as the probability to generate or copy, respectively,

SWe use the following implementation:
https://github.com/abhishek0318/
conll-sigmorphon—-2018


https://github.com/abhishek0318/conll-sigmorphon-2018
https://github.com/abhishek0318/conll-sigmorphon-2018

IMS—-CUB

Language 1 2-S 2=V
Basque 25.00 18.75 12.50
Bulgarian | 97.73 98.19  97.28
English 96.39 98.80  98.80
Finnish 99.04 98.47  98.85
German 9149 93.39 91.99
Kannada | 9147 92.89 91.00
Maltese 79.17  79.17  85.42
Navajo 0.00 75.00 100.00
Persian 95.56 94.81 95.56
Portuguese | 93.81 93.87 93.74
Russian 92.15 93.02 93.19
Spanish 9291 9271 93.52
Swedish | 93.48 93.69  93.27
Turkish 93.90 9530  95.68

Table 2: Accuracy of our morphological inflection com-
ponents on the development sets produced by the first
three steps in our pipeline. We list both development
and test languages.

and are computed by a feedforward network, given
the last decoder hidden state. For details, we refer
the reader to Sharma et al. (2018).

4 Experimental Setup

4.1 Data and Languages

The shared task organizers provide data for five
development languages, for which development
sets with gold solutions are given. Those languages
— Maltese, Persian, Portuguese, Russian, Swedish —
are not taken into account for the final evaluation.

The test languages, in contrast, are supposed to
be only for system evaluation and do not come with
developments sets. For those languages — Basque,
Bulgarian, English, Finnish, German, Kannada,
Navajo, Spanish, and Turkish — only a list of lem-
mas and a monolingual Bible (McCarthy et al.,
2020) are given.

4.2 Evaluation Metric

The official evaluation metric of the shared task
is BMAcc (Jin et al., 2020). Gold solutions are
obtained from UniMorph (Kirov et al., 2018). Two
versions of BMAcc exist: micro-averaged BMAcc
and macro-averaged BMAcc. In this paper, we
only report macro-averaged BMAcc, the official
shared task metric.

During the development of our morphological
generation systems, we use regular accuracy, the
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standard evaluation metric for morphological in-
flection (Cotterell et al., 2016).

4.3 Morphological Inflection Component

Morphological inflection data. We use the first
three components of the baseline model, i.e., the
ones performing edit tree retrieval, additional
lemma retrieval, and paradigm size discovery, to
create training and development data for our in-
flection models. Those datasets consist of lemma-—
inflection pairs found in the raw text, together with
a number indicating the (predicted) paradigm slot,
and are described in Table 1.

The test set for our morphological inflection sys-
tems consist of the lemma—paradigm slot pairs not
found in the corpus.

Hyperparameters. For IMS-CUBL, we use an
embedding size of 300, a hidden layer of size 100,
a batch size of 20, Adadelta (Zeiler, 2012) for op-
timization, and a learning rate of 1. For each lan-
guage, we train a system for 100 epochs, using
early stopping with a patience of 10 epochs.

For IMS-CUB2, we follow two different ap-
proaches. The first is to use a single hyperparame-
ter configuration for all languages (IMS-CUB2-3).
The second consists of using a variable setup de-
pending on the training set size (IMS—-CUB2-V).
For IMS—-CUB2-S, we use an embedding size of
300, a hidden layer size of 100, a dropout rate of
0.3, and train for 60 epochs with an early-stopping
patience of 10 epochs. We further use an Adam
(Kingma and Ba, 2014) optimizer with an initial
learning rate of 0.001.

For IMS—-CUB2-V, we use the following hyper-
parameters for training set size 1"

e 7" < 101: an embedding size of 100, a
dropout coefficient of 0.5, 300 epochs of train-
ing, and an early-stopping patience of 100;

e 100 < T < 501: an embedding size of 100, a
dropout coefficient of 0.5, 80 training epochs,
and an early-stopping patience of 20;

e 500 < T': the same hyperparameters as for
IMS-CUB2-S.

For ITMS—-CUBZ2, we select the best performing sys-
tem (between IMS—CUB2-S and IMS—-CUB2-V)
as our final model. The models are evaluated on
the morphological inflection task development set
using accuracy. All scores are shown in Table 2.



BL KU-CST IMS-CUB NYU-CUB
Language 1 2 1 2 1 2 1 2 3
Basque 0.06 0.06 | 0.02 0.01 0.04 00.06 0.05 0.05 0.07
Bulgarian | 28.30 31.69 | 2.99  4.15 | 27.22 3211 | 27.69 2894 27.89
English 65.60 66.20 | 3.53 17.29 | 47.80 61.00 | 50.20 52.80 51.20
Finnish 05.33 5.50 | 0.39 208 | 0490 0538 | 536 547 0535
German 28.35 29.00 | 0.70 498 | 24.60 28.35 | 27.30 27.35 27.35
Kannada | 1549 15.12 | 4.27 1.69 | 10.50 15.65 | 11.10 11.16 11.10
Navajo 3.23 3.27 | 0.13 020 | 033 01.17 | 040 043 0.43
Spanish 2296 23.67 | 3.52 10.84 | 19.50 22.34 | 20.39 20.56 20.30
Turkish 1421 15.53 | 0.11 0.71 | 13.54 1473 | 1488 15.39 15.13
Average 20.39 2112 | 1.74 04.66 | 1649 20.09 | 1749 18.02 17.65

Table 3: Final performance (macro-average BMAcc in percentages) of all systems on all test languages. Best
scores overall are in bold, and best scores of submitted systems are underlined.

4.4 Results

Table 3 shows the official test set results for
IMS-CUB1 and IMS-CUB2, compared to the of-
ficial baselines and all other submitted systems.

Our best system, TMS—-CUBZ2, achieves the high-
est scores of all submitted systems (i.e., exclud-
ing the baselines), outperforming the second best
submission by 2.07% BMAcc. However, BL-1
and BL—2 outperform IMS-CUB2 by 1.03% and
0.3%, respectively. Looking at the results for indi-
vidual languages, IMS—CUB2 obtains the highest
performance overall for Bulgarian (difference to
the second best system 0.42%) and Kannada (dif-
ference to the second best system 0.53%). Com-
paring our two submissions, IMS—-CUB1 underper-
forms IMS-CUB2 by 3.6%, showing that vanilla
sequence-to-sequence models are not optimally
suited for the task. We hypothesize that this could
be due to the amount or the diversity of the gener-
ated morphological inflection training files.

As our systems rely on the output of the previous
3 steps of the baseline, only few training examples
were available for Basque and Navajo: 85 and 17,
respectively. Probably at least partially due to this
fact, i.e., due to finding patterns in the raw text
corpus being difficult, all systems obtain their low-
est scores on these two languages. However, even
though Finnish has 2306 training instances for mor-
phological inflection, our best system surprisingly
only reaches 5.38% BMAcc. The same happens
in Kannada and Turkish: the inflection training set
is relatively large, but the overall performance on
unsupervised morphological paradigm completion
is low. On the contrary, even though English has
a relatively small training set (343 examples), the
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performance of TMS-CUB?2 is highest for this lan-
guage, with 66.20% BMAcc. We think that the
quality of the generated inflection training set and
the correctness of the predicted paradigm size of
the languages are the main reasons behind these
performance differences. Improving steps 1 to 3 in
the overall pipeline thus seems important in order
to achieve better results on the task of unsupervised
morphological paradigm completion in the future.

5 Conclusion

In this paper, we described the IMS—CUBoulder
submission to the SIGMORPHON 2020 shared
task on unsupervised morphological paradigm com-
pletion. We explored two modifications of the of-
ficial baseline system by substituting its inflection
generation component with two alternative models.
Thus, our final system performed 4 steps: edit tree
retrieval, additional lemma retrieval, paradigm size
discovery, and inflection generation. The last com-
ponent was either an LSTM sequence-to-sequence
model with attention (IMS—-CUB1) or a pointer-
generator network (IMS—-CUB2). Although our
systems could not outperform the official baselines
on average, IMS—-CUB2 was the best submitted
system. It further obtained the overall highest per-
formance for Bulgarian and Kannada.
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