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Abstract

In this paper, we describe the findings of the
SIGMORPHON 2020 shared task on unsu-
pervised morphological paradigm completion
(SIGMORPHON 2020 Task 2), a novel task
in the field of inflectional morphology. Partici-
pants were asked to submit systems which take
raw text and a list of lemmas as input, and out-
put all inflected forms, i.e., the entire morpho-
logical paradigm, of each lemma. In order to
simulate a realistic use case, we first released
data for 5 development languages. However,
systems were officially evaluated on 9 surprise
languages, which were only revealed a few
days before the submission deadline. We pro-
vided a modular baseline system, which is a
pipeline of 4 components. 3 teams submitted
a total of 7 systems, but, surprisingly, none
of the submitted systems was able to improve
over the baseline on average over all 9 test lan-
guages. Only on 3 languages did a submitted
system obtain the best results. This shows that
unsupervised morphological paradigm com-
pletion is still largely unsolved. We present
an analysis here, so that this shared task will
ground further research on the topic.

1 Introduction

In morphologically rich languages, words inflect:
grammatical information like person, number,
tense, and case are incorporated into the word it-
self, rather than expressed via function words. Not
all languages mark the same properties: German
nouns, for instance, have more inflected forms than
their English counterparts.

When acquiring a language, humans usually
learn to inflect words without explicit instruction.
Thus, most native speakers are capable of gen-
erating inflected forms even of artificial lemmas
(Berko, 1958). However, models that can gener-
ate paradigms without explicit morphological train-

∗Equal contribution.

lemman

guess1 guess2

guess3 guess4

guess5 guess6

lemma2

guess1 guess2

guess3 guess4

guess5 guess6

...

lemma1

guess1 guess2

guess3 guess4

guess5 guess6

lemma1

lemma2

lemman

Figure 1: The task of unsupervised morphological
paradigm completion (Jin et al., 2020) consists of gen-
erating complete inflectional paradigms for given lem-
mas, with the only additional available information be-
ing a corpus without annotations.

ing have not yet been developed. We anticipate
that such systems will be extremely useful, as they
will open the possibility of rapid development of
first-pass inflectional paradigms in a large set of
languages. These can be utilized both in se for
generation and as a starting point for elicitation
(Sylak-Glassman et al., 2016), thus aiding the de-
velopment of low-resource human language tech-
nologies (Christianson et al., 2018).

In this paper, we present the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion (SIGMORPHON 2020 Task
2). We asked participants to produce systems that
can learn to inflect in an unsupervised fashion:
given a small corpus (the Bible) together with a
list of lemmas for each language, systems for the
shared task should output all corresponding in-
flected forms. In their output, systems had to mark
which forms expressed the same morphosyntactic
features, e.g., demonstrate knowledge of the fact
that walks is to walk as listens is to listen, despite
not recognizing the morphological features explic-
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itly. We show a visualization of our shared task
setup in Figure 1.

Unsupervised morphological paradigm comple-
tion requires solving multiple subproblems either
explicitly or implicitly. First, a system needs to
figure out which words in the corpus belong to the
same paradigm. This can, for instance, be done
via string similarity: walks is similar to walk, but
less so to listen. Second, it needs to figure out
the shape of the paradigm. This requires detecting
which forms of different lemmas express the same
morphosyntactic features, even if they are not con-
structed from their respective lemmas in the exact
same way. Third, a system needs to generate all
forms not attested in the provided corpus. Using
the collected inflected forms as training data, this
can be reduced to the supervised morphological
inflection task (Cotterell et al., 2016).

This year’s submitted systems can be split
into two categories: those that built on the
baseline (Retrieval+X) and those that did not
(Segment+Conquer). The baseline system is set
up as a pipeline which performs the following
steps: edit tree retrieval, additional lemma retrieval,
paradigm size discovery, and inflection generation
(Jin et al., 2020). As it is highly modular, we pro-
vided two versions that employ different inflection
models.1 All systems built on the baseline substi-
tuted the morphological inflection component.

No system outperformed the baseline overall.
However, two Retrieval+X models slightly im-
proved over the baseline on three individual lan-
guages. We conclude that the task of unsupervised
morphological paradigm completion is still an open
challenge, and we hope that this shared task will
inspire future research in this area.

2 Task and Evaluation

2.1 Unsupervised Morphological Paradigm
Completion

Informal description. The task of unsupervised
morphological paradigm completion mimics a set-
ting where the only resources available in a lan-
guage are a corpus and a short list of dictionary
forms, i.e., lemmas. The latter could, for instance,
be obtained via basic word-to-word translation.
The goal is to generate all inflected forms of the
given lemmas.

1In this report, we use the words baseline and baselines
interchangeably.

For an English example, assume the following
lemma list to be given:

walk

listen

With the help of raw text, systems should then
produce an output like this:

walk walk 1

walk walks 2

walk walked 3

walk walking 4

walk walked 5 (1)

listen listens 2

listen listened 5

listen listened 3

listen listening 4

listen listen 1

The numbers serve as unique identifiers for
paradigm slots: in above example, ”4” corresponds
to the present participle. The inflections walking
and talking therefore belong to the same paradigm
slot. For the task, participants are not provided any
knowledge of the grammatical content of the slots.

Formal definition. We denote the paradigm π(`)
of a lemma ` as

π(`) =
〈
f(`,~tγ)

〉
γ∈Γ(`)

, (2)

with f : Σ∗ × T → Σ∗ being a function that
maps a lemma and a vector of morphological fea-
tures ~tγ ∈ T expressed by paradigm slot γ to the
corresponding inflected form. Γ(`) is the set of
slots in lemma `’s paradigm.

We then formally describe the task of unsuper-
vised morphological paradigm completion as fol-
lows. Given a corpus D = w1, . . . , w|D| together
with a list L = {`j} of |L| lemmas belonging to
the same part of speech,2 unsupervised morpho-
logical paradigm completion consists of generating
the paradigms {π(`)} of all lemmas ` ∈ L.

Remarks. It is impossible for unsupervised sys-
tems to predict the names of the features expressed
by paradigm slots, an arbitrary decision made by
human annotators. This is why, for the shared task,

2This edition of the shared task was only concerned with
verbs, though we are considering extending the task to other
parts of speech in the future.
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we asked systems to mark which forms belong to
the same slot by numbering them, e.g., to predict
that walked is the form for slot 3, while listens
corresponds to slot 2.

2.2 Macro-averaged Best-Match Accuracy

The official evaluation metric was macro-averaged
best-match accuracy (BMAcc; Jin et al., 2020).

In contrast to supervised morphological inflec-
tion (Cotterell et al., 2016), our task cannot be
evaluated with word-level accuracy. For the former,
one can compare the prediction for each lemma and
morphological feature vector to the ground truth.
However, for unsupervised paradigm completion,
this requires a mapping from predicted slots to the
gold standard’s paradigm slots.

BMAcc, thus, first computes the word-level ac-
curacy each predicted slot would obtain against
each true slot. It then constructs a complete bipar-
tite graph, with those accuracies as edge weights.
This enables computing of the maximum-weight
full matching with the algorithm of Karp (1980).
BMAcc then corresponds to the sum of all accura-
cies for the best matching, divided by the maximum
of the number of gold and predicted slots.

BMAcc penalizes systems for predicting a
wrong number of paradigm slots. However, detect-
ing the correct number of identical slots – some-
thing we encounter in some languages due to syn-
cretism – is extremely challenging. Thus, we merge
slots with identical forms for all lemmas in both the
predictions and the ground truth before evaluating.

Example. Assume our gold standard is (1) (the
complete, 5-slot English paradigms for the verbs
walk and listen) and a system outputs the following,
including an error in the fourth row:

walk walks 1

walk walking 2

listen listens 1

listen listenen 2

First, we merge slots 3 and 5 in the gold standard,
since they are identical for both lemmas. Ignoring
slot 5, we then compute the BMAcc as follows.
Slot 1 yields an accuracy of 100% as compared to
gold slot 2, and 0% otherwise. Similarly, slot 2
reaches an accuracy of 50% for gold slot 4, and 0%
otherwise. Additionally, given the best mapping of
those two slots, we obtain 0% accuracy for gold

slots 1 and 3. Thus, the BMAcc is

BMAcc =
1 + 0.5 + 0 + 0

4
= 0.375 (3)

3 Shared Task Data

3.1 Provided Resources
We provided data for 5 development and 9 test lan-
guages. The development languages were available
for system development and hyperparameter tun-
ing, while the test languages were released shortly
before the shared task deadline. For the test lan-
guages, no ground truth data was available before
system submission. This setup emulated a real-
world scenario with the goal to create a system for
languages about which we have no information.

For the raw text corpora, we leveraged the JHU
Bible Corpus (McCarthy et al., 2020). This re-
source covers 1600 languages, which will enable
future work to quickly produce systems for a large
set of languages. Additionally, using the Bible
allowed for a fair comparison of models across lan-
guages without potential confounds such as domain
mismatch. 7 of the languages have only the New
Testament available (approximately 8k sentences),
and 7 have both the New and Old Testaments (ap-
proximately 31k sentences).

All morphological information was taken from
UniMorph (Sylak-Glassman et al., 2015; Kirov
et al., 2018), a resource which contains paradigms
for more than 100 languages. However, this infor-
mation was only accessible to the participants for
the development languages. UniMorph paradigms
were further used internally for evaluation on the
test languages—this data was then released after
the conclusion of the shared task.

3.2 Languages
During the development phase of the shared task,
we released 5 languages to allow participants to in-
vestigate various design decisions: Maltese (MLT),
Persian (FAS), Portuguese (POR), Russian (RUS),
and Swedish (SWE). These languages are typologi-
cally and genetically varied, representing a number
of verbal inflectional phenomena. Swedish and Por-
tuguese are typical of Western European languages,
and mostly exhibit fusional, suffixing verbal inflec-
tion. Russian, as an exemplar of Slavic languages,
is still mostly suffixing, but does observe regu-
lar ablaut, and has considerable phonologically-
conditioned allomorphy. Maltese is a Semitic lan-
guage with a heavy Romance influence, and verbs
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MLT FAS POR RUS SWE

1 # Tokens in corpus 193257 227584 828861 727630 871707
2 # Types in corpus 16017 11877 31446 46202 25913
3 # Lemmas 20 100 100 100 100
4 # Lemmas in corpus 10 22 50 50 50
5 # Inflections 640 13600 7600 1600 1100
6 # Inflections in corpus 252 545 1037 306 276
7 Paradigm size 16 136 76 16 11
8 Paradigm size (merged) 15 132 59 16 11

Table 1: Dataset statistics: development languages. # Inflections=number of inflected forms in the gold file,
token-based; # Inflections in corpus=number of inflections from the gold file which can be found in the corpus,
token-based; Paradigm size=number of different morphological feature vectors in the dataset for the language;
Paradigm size (merged)=paradigm size, but counting slots with all forms being identical only once.

EUS BUL ENG FIN DEU KAN NAV SPA TUR

1 # Tokens in corpus 195459 801657 236465 685699 826119 193213 104631 251581 616418
2 # Types in corpus 18367 37048 7144 54635 22584 28561 18799 9755 59458
3 # Lemmas 20 100 100 100 100 20 100 100 100
4 # Lemmas in corpus 4 50 50 50 50 10 9 50 50
5 # Inflections 10446 5600 500 14100 2900 2612 3000 7000 12000
6 # Inflections in corpus 97 915 127 497 631 1040 54 630 986
7 Paradigm size 1659 56 5 141 29 85 30 70 120
8 Paradigm size (merged) 1658 54 5 141 20 59 30 70 120

Table 2: Dataset statistics: test languages. # Inflections=number of inflected forms in the gold file, token-based;
# Inflections in corpus=number of inflections from the gold file which can be found in the corpus, token-based;
Paradigm size=number of different morphological feature vectors in the dataset for the language; Paradigm size
(merged)=paradigm size, but counting slots with all forms being identical only once.

combine templatic and suffixing inflection. Per-
sian is mostly suffixing, but does allow for verbal
inflectional prefixation, such as negation and mark-
ing subjunctive mood. Since the development lan-
guages were used for system tuning, their scores
did not count towards the final ranking.

After a suitable period for system develop-
ment and tuning, we released nine test languages:
Basque (EUS), Bulgarian (BUL), English (ENG),
Finnish (FIN), German (DEU), Kannada (KAN),
Navajo (NAV), Spanish (SPA), and Turkish (TUR).
Although these languages observe many features
common to the development languages, such as fu-
sional inflection, suffixation, and ablaut, they also
cover inflectional categories absent in the develop-
ment languages. Navajo, unlike any of the devel-
opment languages, is strongly prefixing. Basque,
Finnish, and Turkish are largely agglutinative, with
long, complex affix chains that are difficult to iden-
tify through longest suffix matching. Furthermore,
Finnish and Turkish feature vowel harmony and
consonant gradation, which both require a method
to identify allomorphs correctly to be able to merge
different variants of the same paradigm slot.

3.3 Statistics

Statistics of the resources provided for all lan-
guages are shown in Table 1 for the development
languages and in Table 2 for the test languages.

The token count (line 1) and, thus, the size of the
provided Bible corpora, differs between 104,631
(Kannada) and 871,707 (Swedish). This number
depends both on the typology of a language and
on the completeness of the provided Bible trans-
lation. The number of types (line 2) is between
7,144 (English) and 59,458 (Turkish). It is strongly
influenced by how morphologically rich a language
is, i.e., how large the paradigms are, which is of-
ten approximated with the type–token ratio. The
verbal paradigm size is listed in line 7: English
has with a size of 5 the smallest paradigms, and,
correspondingly, the lowest type count. Turkish,
which has the highest number of types, in contrast,
has large paradigms (120). The last line serves as
an indicator of syncretism: subtracting line 8 from
line 7 results in the number of paradigm slots that
have been merged as a language evolved to use
identical forms for different inflectional categories.

Lines 3 and 4 show the number of lemmas in
the lemma lists for all languages, as well as the
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Institution Systems Rank Description Paper

KU-CST KU-CST-1 7 Agirrezabal and Wedekind (2020)
KU-CST KU-CST-2 6 Agirrezabal and Wedekind (2020)

IMS-CUBoulder IMS-CUBoulder-1 5 Mager and Kann (2020)
IMS-CUBoulder IMS-CUBoulder-2 1 Mager and Kann (2020)

NYU-CUBoulder NYU-CUBoulder-1 4 Singer and Kann (2020)
NYU-CUBoulder NYU-CUBoulder-2 2 Singer and Kann (2020)
NYU-CUBoulder NYU-CUBoulder-3 3 Singer and Kann (2020)

Table 3: All submitted systems by institution, together with a reference to their description paper. The rank is
relative to all other submitted systems and does not take the baselines into account.
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Figure 2: Our baseline system: the retrieval component bootstraps lemma–form–slot triplets, which are then used
by the generation component to generate unobserved inflections in the paradigm of each input lemma.

number of lemmas which can be found in the cor-
pus. For the majority of languages, 100 lemmas
are provided, out of which 50 appear in the Bible.
Exceptions are Maltese (20, 10), Persian (100, 22),
Basque (20, 4), Kannada (20, 10), and Navajo (100,
9). These are due to limited UniMorph coverage.

In line 5, we list the number of total inflections,
counting each one in the case of identical forms,
i.e., this corresponds to the number of lines in our
gold inflection file. English, due to its small verbal
paradigm size, has only 500 inflections in our data.
Conversely, Finnish has with 14,100 the largest
number of inflections. Line 6 describes how many
of the forms from line 5 appear in the corpus. As
before, all forms are counted, even if they are iden-
tical. For all languages, a large majority of forms
cannot be found in the corpus. This makes the task
of unsupervised morphological paradigm comple-
tion with our provided data a challenging one.

4 Systems

In this section, we first review the baseline before
describing the submitted systems. An additional
overview of the submissions is shown in Table 3.

4.1 Baseline

We compared all submissions to the baseline sys-
tem of Jin et al. (2020), graphically summarized
in Figure 2. It is a pipeline system, which con-
sists of 4 separate modules, which, in turn, can be
grouped into two major components: retrieval and
generation. The retrieval component discovers and
returns inflected forms – and, less importantly, ad-
ditional lemmas – from the provided Bible corpus.
The generation component produces new inflected
forms which cannot be found in the raw text.

The retrieval component performs three steps:
First, it extracts the most common edit trees
(Chrupała, 2008), i.e., it detects regularities with
regards to word formation, based on the lemma
list. If, for instance, both walk and listen are the
lemmas provided and both walked and listened are
encountered in the corpus, the system notes that
appending -ed is a common transformation, which
might correspond to an inflectional strategy.

Second, it retrieves new lemmas, with the goal
to gather additional evidence for our collected edit
trees. If, for instance, it has already identified the
suffix -ed as an inflectional marker, finding both
pray and prayed in the Bible is an indication that
pray might be a lemma. New lemmas can then, in
turn, be used to detect new regularities, e.g., in the
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case that listen and listens as well as pray and prays
are attested in the corpus, but walks is not. Due to
their complementary nature, components one and
two can, as a unit, be applied iteratively to bootstrap
a larger list of lemmas and transformations. For the
baseline, we apply each of them only once.

Finally, the baseline’s retrieval component pre-
dicts the paradigm size by analyzing which edit
trees might be representing the same inflection. For
instance, the suffixes -d and -ed both represent the
past tense in English. The output of the retrieval
component is a list of inflected forms with their
lemmas, annotated with a paradigm slot number.

The generation component receives this out-
put and prepares the data to train an inflectional
generator. First, identified inflections are divided
into a training and development split, and miss-
ing paradigm slots are identified. The generator
is trained on the discovered inflections, and new
forms are predicted for each missing slot.

We used two morphological inflection systems
for the two variants of our baseline: the non-neural
baseline from Cotterell et al. (2017) and the model
proposed by Makarov and Clematide (2018). Both
are highly suitable for the low-resource setting.

4.2 Submitted Systems: Retrieval+X

We now describe the first category of shared task
submissions: Retrieval+X. Systems in this cate-
gory leverage the retrieval component of the base-
line, while substituting the morphological inflec-
tion component with a custom inflection system.

The IMS–CUBoulder team relied on LSTM
(Hochreiter and Schmidhuber, 1997) sequence-to-
sequence models for inflection. In IMS-CUB-1, the
generation component is based on the architecture
by Bahdanau et al. (2015), but with fewer param-
eters, as suggested by Kann and Schütze (2016).
This model – as well as all other inflection compo-
nents used for systems in this category – receives
the sequence of the lemma’s characters and the
paradigm slot number as input and produces a se-
quence of output characters.

Their second system, IMS-CUB-2, uses an
LSTM pointer-generator network (See et al., 2017)
instead. This architecture has originally been pro-
posed for low-resource morphological inflection by
Sharma et al. (2018).

The NYU–CUBoulder team also substituted
the baseline’s generation component. Their mor-
phological inflection models are ensembles of dif-

ferent combinations of transformer sequence-to-
sequence models (Vaswani et al., 2017) and pointer-
generator transformers, a model they introduced
for the task.
NYU-CUB-1 is an ensemble of 6 pointer-

generator transformers, while NYU-CUB-2 is an en-
semble of 6 vanilla transformers. Their last system,
NYU-CUB-3, is an ensemble of all 12 models.

4.3 Submitted Systems: Segment+Conquer

The KU–CST team did not modify the baseline
directly, but, nevertheless, was heavily inspired
by it. Their system first employs a character-
segmentation algorithm to identify stem–suffix
splits in both the provided lemma list and the cor-
pus, thus identifying potential suffix-replacement
rules. Next, k-means is used to cluster the extracted
suffixes into allomorphic groups. These suffixes
are then concatenated with the most frequent stems
obtained from the lemma list, and scored by a lan-
guage model, in order to arrive at plausible inflec-
tional candidates. This approach is KU-CST-2.

However, KU-CST-2 often produces very small
inflectional paradigms; unsurprisingly, given that
the provided corpora are small as well, and, thus,
any particular lemma is only inflected in limited
ways – if at all. Therefore, KU-CST-1 expands the
lemma list with a logistic-regression classifier that
identifies novel verbs to be added.

5 Results and Analysis

5.1 Results on Development Languages

To encourage reproducibility, we first report the
performance of all systems on the development
languages in the upper part of Table 4. Although
participants were not evaluated on these languages,
the results provide insight and enable future re-
searchers to benchmark their progress, while main-
taining the held-out status of the test languages.

5.2 Official Shared Task Results

We show the official test results in the lower part of
Table 4. Baseline-2 obtained the highest BMAcc
on average, followed in order by Baseline-1,
IMS-CUB-2, and NU-CUB-2. Overall, systems
built on top of the baseline, i.e., systems from Re-
trieval+X, performed better than systems from Seg-
ment+Conquer: the best Segment+Conquer sys-
tem only reached 4.66% BMAcc on average. This
shows the effectiveness of the baseline. However,
it also shows that we still have substantial room
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Baseline KU-CST IMS-CUB NYU-CUB
1 2 1 2 1 2 1 2 3

MLT 9.12 (17) 20.00 (17) 0.22 (254) 1.30 (2) 14.41 (17) 17.35 (17) 15.29 (17) 15.59 (17) 15.88 (17)
FAS 6.67 (31) 6.54 (31) 1.55 (11) 0.74 (2) 2.52 (31) 2.70 (31) 2.76 (31) 2.73 (31) 2.74 (31)
POR 40.39 (34) 39.56 (34) 1.09(1104) 12.75 (70) 38.69 (34) 39.17 (34) 39.93 (34) 39.95 (34) 40.07 (34)
RUS 40.68 (19) 41.68 (19) 0.35 (387) 7.06 (10) 38.63 (19) 41.11 (19) 39.26 (19) 40.00 (19) 39.74 (19)
SWE 45.07 (15) 40.93 (15) 0.93 (588) 22.82 (17) 37.60 (15) 39.93 (15) 39.80 (15) 39.93 (15) 40.13 (15)

avg. 28.39 29.74 0.83 8.93 26.37 28.05 27.41 27.64 27.71

EUS 0.06 (30) 0.06 (27) 0.02 (30) 0.01 (2) 0.04 (30) 0.06 (30) 0.05 (30) 0.05 (30) 0.07 (30)
BUL 28.30 (35) 31.69 (34) 2.99 (138) 4.15 (13) 27.22 (35) 32.11 (35) 27.69 (35) 28.94 (35) 27.89 (35)
ENG 65.60 (4) 66.20 (4) 3.53 (51) 17.29 (7) 47.80 (4) 61.00 (4) 50.20 (4) 52.80 (4) 51.20 (4)
FIN 5.33 (21) 5.50 (21) 0.39(1169) 2.08 (108) 4.90 (21) 5.38 (21) 5.36 (21) 5.47 (21) 5.35 (21)
DEU 28.35 (9) 29.00 (9) 0.70 (425) 4.98 (40) 24.60 (9) 28.35 (9) 27.30 (9) 27.35 (9) 27.35 (9)
KAN 15.49 (172) 15.12 (172) 4.27 (44) 1.69 (1) 10.50 (172) 15.65 (172) 11.10 (172) 11.16 (172) 11.10 (172)
NAV 3.23 (3) 3.27 (3) 0.13 (38) 0.20 (2) 0.33 (3) 1.17 (3) 0.40 (3) 0.43 (3) 0.43 (3)
SPA 22.96 (29) 23.67 (29) 3.52 (225) 10.84 (40) 19.50 (29) 22.34 (29) 20.39 (29) 20.56 (29) 20.30 (29)
TUR 14.21 (104) 15.53 (104) 0.11(1772) 0.71 (502) 13.54 (104) 14.73 (104) 14.88 (104) 15.39 (104) 15.13 (104)

avg. 20.39 21.12 1.74 4.66 16.49 20.09 17.49 18.02 17.65

Table 4: BMAcc in percentages and the number of predicted paradigm slots after merging for all submitted systems
and the baselines on all development (top) and test languages (bottom). Best scores are in bold.

for improvement on unsupervised morphological
paradigm completion.

Looking at individual languages, Baseline-2
performed best for all languages except for EUS,
where NYU-CUB-3 obtained the highest BMAcc,
and BUL and KAN, where IMS-CUB-2 was best.

5.3 Analysis: Seen and Unseen Lemmas

We further look separately at the results for lemmas
which appear in the corpus and those that do not.
While seeing a lemma in context might help some
systems, we additionally assume that inflections of
attested lemmas are also more likely to appear in
the corpus. Thus, we expect the performance for
seen lemmas to be higher on average.

Examining the performance with respect to ob-
served inflected forms might give cleaner results.
However, we instead perform this analysis on a
per-lemma basis, since the lemmas are part of a
system’s input, while the inflected forms are not.

Table 5 shows the performance of all systems
for seen and unseen lemmas. Surprisingly, both
versions of the baseline show similar BMAcc for
both settings with a maximum difference of 0.12%
on average. However, the baseline is the only sys-
tem that performs equally well for unseen lemmas;
IMS-CUB-1 observes the largest difference, with an
absolute drop of 7.85% BMAcc when generating
the paradigms of unseen lemmas. Investigating the
cause for IMS-CUB-1’s low BMAcc, we manually
inspected the English output files, and found that,
for unseen lemmas, many generations are nonsensi-

cal (e.g., demoates as an inflected form of demodu-
late). This does not happen in the case of seen lem-
mas. A similar effect has been found by Kann and
Schütze (2018), who concluded that this might be
caused by the LSTM sequence-to-sequence model
not having seen similar character sequences dur-
ing training. The fact that IMS-CUB-2, which uses
another inflection model, performs better for un-
seen lemmas confirms this suspicion. Thus, ad-
ditional training of the inflection component of
IMS-CUB-1 on words from the corpus might im-
prove generation. Conversely, the baseline – which
benefits from inflection models specifically catered
to low-resource settings – is better suited to in-
flecting unseen lemmas. Overall, we conclude that
there is little evidence that the difficulty of the task
increases for unseen lemmas. Rather, inflection
systems need to compensate for the low contextual
variety in their training data.

6 Where from and Where to?

6.1 Previous Work
Prior to this shared task, most research on unsuper-
vised systems for morphology was concerned with
developing approaches to segment words into mor-
phemes, i.e., their smallest meaning-bearing units
(Goldsmith, 2001; Creutz, 2003; Creutz and La-
gus, 2007; Snyder and Barzilay, 2008; Goldwater
et al., 2009; Kurimo et al., 2010; Kudo and Richard-
son, 2018). These methods were built around the
observation that inflectional morphemes are very
common across word types, and leveraged probabil-
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Baseline KU-CST IMS-CUB NYU-CUB
1 2 1 2 1 2 1 2 3

EUS 0.11 (30) 0.11 (19) 0.03 (30) 0.03 (2) 0.11 (28) 0.19 (30) 0.11 (30) 0.11 (30) 0.11 (30)
BUL 25.48 (35) 28.93 (34) 5.62 (138) 6.33 (13) 27.85 (35) 29.70 (34) 29.30 (35) 29.78 (35) 29.52 (35)
ENG 70.80 (4) 71.20 (4) 3.02 (51) 18.86 (7) 69.60 (4) 70.40 (4) 69.20 (4) 70.00 (4) 70.00 (4)
FIN 6.17 (21) 6.38 (21) 0.70(1169) 3.60 (108) 6.11 (21) 6.65 (21) 6.55 (21) 6.58 (21) 6.57 (21)
DEU 26.70 (9) 27.00 (9) 1.14 (425) 8.75 (40) 27.40 (9) 27.30 (9) 27.50 (9) 27.60 (9) 27.40 (9)
KAN 16.35 (171) 15.61 (172) 6.61 (44) 1.69 (1) 13.99 (172) 16.49 (172) 14.63 (172) 14.68 (172) 14.63 (172)
NAV 2.96 (3) 2.96 (3) 1.46 (38) 2.22 (2) 2.96 (3) 2.96 (3) 2.96 (3) 2.96 (3) 2.96 (3)
SPA 20.97 (29) 21.60 (29) 4.43 (225) 16.37 (40) 20.40 (29) 21.14 (29) 21.17 (29) 21.09 (29) 21.14 (29)
TUR 14.68 (104) 16.38 (104) 0.23(1772) 1.42 (502) 16.98 (104) 18.02 (104) 18.30 (104) 18.70 (104) 18.50 (104)

avg. 20.47 21.13 2.58 6.59 20.60 21.43 21.08 21.28 21.20

EUS 0.06 (30) 0.06 (30) 0.03 (30) 0.00 (2) 0.03 (30) 0.04 (30) 0.05 (30) 0.05 (30) 0.07 (30)
BUL 31.11 (35) 34.44 (34) 0.83 (138) 2.04 (13) 26.59 (35) 34.52 (35) 26.07 (35) 28.11 (35) 26.26 (35)
ENG 60.40 (4) 61.20 (4) 4.12 (51) 15.71 (7) 26.00 (4) 51.60 (4) 31.20 (4) 35.60 (4) 32.40 (4)
FIN 4.52 (21) 4.62 (21) 0.12(1169) 0.98 (108) 3.69 (21) 4.11 (21) 4.17 (21) 4.37 (21) 4.13 (21)
DEU 30.84 (9) 32.63 (9) 0.55 (425) 3.05 (40) 22.95 (9) 30.95 (9) 28.74 (9) 28.63 (9) 28.95 (9)
KAN 14.64 (172) 14.55 (172) 1.88 (24) 1.69 (1) 6.72 (172) 14.72 (172) 7.27 (172) 7.33 (172) 7.28 (172)
NAV 3.26 (3) 3.30 (3) 0.00 (38) 0.00 (2) 0.07 (3) 0.99 (3) 0.15 (3) 0.18 (3) 0.18 (3)
SPA 24.94 (29) 25.74 (29) 3.86 (225) 8.94 (40) 18.60 (29) 23.54 (29) 19.60 (29) 20.03 (29) 19.46 (29)
TUR 13.73 (104) 14.70 (104) 0.00(1757) 0.00 (500) 10.12 (104) 11.47 (104) 11.48 (104) 12.08 (104) 11.77 (104)

avg. 20.39 21.25 1.27 3.60 12.75 19.10 14.30 15.15 14.50

Table 5: BMAcc in percentages and the number of predicted paradigm slots after merging for all submitted systems
and the baselines on all test languages; listed separately for lemmas which appear in the corpus (top) and lemmas
which do not (bottom). Best scores are in bold.

ity estimates such as maximum likelihood (MLE)
or maximum a posteriori (MAP) estimations to
determine segmentation points, or minimum de-
scription length (MDL)-based approaches. How-
ever, they tended to make assumptions regarding
how morphemes are combined, and worked best
for purely concatenative morphology. Furthermore,
these methods had no productive method of han-
dling allomorphy—morphemic variance was sim-
ply treated as separate morphemes.

The task of unsupervised morphological
paradigm completion concerns more than just seg-
mentation: besides capturing how morphology is
reflected in the word form, it also requires correctly
clustering transformations into paradigm slots and,
finally, generation of unobserved forms.

While Xu et al. (2018) did discover something
similar to paradigms, those paradigms were a
means to a segmentation end and the shape or
size of the paradigms was not a subject of their
research. Moon et al. (2009) similarly uses seg-
mentation and clustering of affixes to group words
into conflation sets, groups of morphologically re-
lated words, in an unsupervised way. Their work
assumes prefixing and suffixing morphology. In a
more task-driven line of research, Soricut and Och
(2015) develop an approach to learn morphological
transformation rules from observing how consis-

tently word embeddings change between related
word forms, with the goal of providing useful word
embeddings for unseen words.

Our task further differs from traditional
paradigm completion (e.g., Dreyer and Eisner,
2011; Ahlberg et al., 2015) in that no seed
paradigms are observed. Thus, no information is
being provided regarding the paradigm size, inflec-
tional features, or relationships between lemmas
and inflected forms. Other recent work (Nicolai
and Yarowsky, 2019; Nicolai et al., 2020) learned
fine-grained morphosyntactic tools from the Bible,
though they leveraged supervision projected from
higher-resource languages (Yarowsky et al., 2001;
Täckström et al., 2013).

Past shared tasks. This task extends a tradition
of SIGMORPHON shared tasks concentrating on
inflectional morphology.

The first such task (Cotterell et al., 2016) en-
couraged participants to create inflectional tools
in a typologically diverse group of 10 languages.
The task was fully-supervised, requiring systems
to learn inflectional morphology from a large anno-
tated database. This task is similar to human learn-
ers needing to generate inflections of previously
unencountered word forms, after having studied
thousands of other types.

The second task (Cotterell et al., 2017) extended
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the first task from 10 to 52 languages and started
to encourage the development of tools for the low-
resource setting. While the first shared task ap-
proximated an adult learner with experience with
thousands of word forms, low-resource inflection
was closer to the language learner that has only
studied a small number of inflections—however,
it was closer to L2 learning than L1, as it still
required training sets with lemma–inflection–slot
triplets. The 2017 edition of the shared task also
introduced a paradigm-completion subtask: partici-
pants were given partially observed paradigms and
asked to generate missing forms, based on com-
plete paradigms observed during training. This
could be described as the supervised version of
our unsupervised task, and notably did not require
participants to identify inflected forms from raw
text—a crucial step in L1 learning.

The third year of the shared task (Cotterell et al.,
2018) saw a further extension to more than 100
languages and another step away from supervised
learning, in the form of a contextual prediction task.
This task stripped away inflectional annotations, re-
quiring participants to generate an inflection solely
utilizing a provided lemma and sentential cues.
This task further imitated language learners, but
extended beyond morphological learning to mor-
phosyntactic incorporation. Furthermore, remov-
ing the requirement of an inflectional feature vector
more closely approximated the generation step in
our task. However, it was still supervised in that
participants were provided with lemma–inflection
pairs in context during training. We, in contrast,
made no assumption of the existence of such pairs.

Finally, the fourth iteration of the task (Mc-
Carthy et al., 2019) again concentrated on less-
supervised inflection. Cross-lingual training al-
lowed low-resource inflectors to leverage informa-
tion from high-resource languages, while a con-
textual analysis task flipped the previous year’s
contextual task on its head—tagging a sentence
with inflectional information. This process is very
similar to the retrieval portion of our task. We ex-
tended this effort to not only identify the paradigm
slot of particular word, but to combine learned in-
formation from each class to extend and complete
existing paradigms. Furthermore, we lifted the
requirement of named inflectional features, more
closely approximating the problem as approached
by L1 language learners.

6.2 Future Shared Tasks
Future editions of the shared task could extend this
year’s Task 2 to a larger variety of languages or
parts of speech. Another possible direction is to
focus on derivational morphology instead of or in
addition to inflectional morphology. We are also
considering merging Task 2 with the traditional
morphological inflection task: participants could
then choose to work on the overall task or on either
of the retrieval or generation subproblem.

Finally, we are looking into extending the shared
task to use speech data as input. This is closer to
how L1 learners acquire morphological knowledge,
and, while this could make the task harder in some
aspects, it could make it easier in others.

7 Conclusion

We presented the findings of the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion (SIGMORPHON 2020 Task
2), in which participants were asked to generate
paradigms without explicit supervision.

Surprisingly, no team was able to outperform the
provided baseline, a pipeline system, on average
over all test languages. Even though 2 submitted
systems were better on 3 individual languages, this
highlights that the task is still an open challenge for
the NLP community. We argue that it is an impor-
tant one: systems obtaining high performance will
be able to aid the development of human language
technologies for low-resource languages.

All teams that participated in the shared task
devised modular approaches. Thus, it will be easy
to include improved components in the future as,
for instance, systems for morphological inflection
improve. We released all data, the baseline, the
evaluation script, and the system outputs in the
official repository,3 in the hope that this shared
task will lay the foundation for future research on
unsupervised morphological paradigm completion.
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