
245

Multi-Tiered Strictly Local Functions

Phillip Burness
University of Ottawa

pburn036@uottawa.ca

Kevin McMullin
University of Ottawa

kevin.mcmullin@uottawa.ca

Abstract

Tier-based Strictly Local functions, as they
have so far been defined, are equipped with
just a single tier. In light of this fact, they are
currently incapable of modelling simultaneous
phonological processes that would require dif-
ferent tiers. In this paper we consider whether
and how we can allow a single function to op-
erate over more than one tier. We conclude
that multiple tiers can and should be permit-
ted, but that the relationships between them
must be restricted in some way to avoid over-
generation. The particular restriction that we
propose comes in two parts. First, each input
element is associated with a set of tiers that
on their own can fully determine what the el-
ement is mapped to. Second, the set of tiers
associated to a given input element must form
a strict superset-subset hierarchy. In this way,
we can track multiple, related sources of infor-
mation when deciding how to process a partic-
ular input element. We demonstrate that doing
so enables simple and intuitive analyses to oth-
erwise challenging phonological phenomena.

1 Introduction

Many theoretical analyses of long-distance phono-
logical patterns share the core intuition that a tier
or projection of segments can allow for ‘local’ re-
lationships to be established between non-adjacent
elements by excluding material that is irrelevant
from the implicated level of representation. For
example, Samala (also known as Ineseño Chu-
mash) has a long-distance process of sibilant har-
mony in which an underlying /s/ surfaces as [S]
if another [S] appears anywhere later in the word,
as in /ha-s-xintila-waS/→ [haSxintilawaS] ‘his for-
mer gentile name’ (Applegate, 1972). The har-
mony target can be arbitrarily far from the har-
mony trigger in the full string of segments, but the
trigger and target are rendered adjacent on a level

of representation containing all and only the sibi-
lant consonants.

Within the subregular hierarchy of formal lan-
guages, the class of Strictly Local languages,
which model local phonotactic restrictions (Mc-
Naughton and Papert, 1971; Rogers and Pullum,
2011; Rogers et al., 2013) have been extended
to incorporate the notion of a tier, resulting in
the class of Tier-based Strictly Local (TSL) lan-
guages (Heinz et al., 2011). Likewise, the In-
put Strictly Local (ISL) and Output Strictly Lo-
cal (OSL) functions—which characterize locally-
bounded phonological processes as subregular
maps (Chandlee, 2014; Chandlee et al., 2014,
2015)—have been generalized to the classes of
Input Tier-based Strictly Local (ITSL) and Out-
put Tier-based Strictly Local (OTSL) functions in
order to account for non-local phonological pro-
cesses (Burness and McMullin, 2019; Hao and
Andersson, 2019; Hao and Bowers, 2019).

These TSL formal languages and functions suc-
cessfully model a wide range of long-distance
phonological patterns (McMullin, 2016; Mc-
Mullin and Hansson, 2016; Burness and Mc-
Mullin, 2019; Hao and Bowers, 2019), and more-
over have desirable properties for learnability (Jar-
dine and Heinz, 2016; Jardine and McMullin,
2017; Burness and McMullin, 2019). However,
they suffer from a major drawback in that they
are restricted to a single tier, and as a conse-
quence are ill-equipped to deal with multiple, si-
multaneous long-distance dependencies. For ex-
ample, the Tamashek dialect of Tuareg exhibits
regressive long-distance sibilant harmony and re-
gressive long-distance labial dissimilation (Heath,
2005; McMullin, 2016). Each of the two processes
can be modelled in isolation as a TSL function, but
there is no single TSL function that can apply both
rules simultaneously. The solution we pursue in
this paper is to give functions access to more than

246

one tier.
Incorporating multiple tiers into a single func-

tion is relatively straightforward; the difficulty
lies in understanding the computational proper-
ties of such functions and establishing appropri-
ate restrictions on the number of tiers and the rela-
tionships between tiers. Progress has been made
with regards to properly restricting multi-tiered
languages (Aksënova and Deskmukh, 2018; Mc-
Mullin et al., 2019), and this paper considers the
restrictions that need to be imposed onto the mul-
tiple tiers of a multi-tiered function. Our proposal
is to associate each input element with a set of tiers
that must fall into a strict subset-superset hierarchy
(i.e., each tier in the set is a strict subset of the next
largest tier in the set, if it exists). The output cor-
responding to an input element then depends on its
dedicated set of tiers, and no others.

The rest of this paper is structured as follows.
Section 2 introduces the notation that will be used
throughout the paper. Section 3 presents the TSL
functions as they are currently defined. Section 4
discusses some limitations of TSL functions that
this paper aims to address. Section 5 formally
defines the Multi-Tiered Strictly Local (MTSL)
functions, and formalizes the restrictions that we
propose must hold over the relationships among
multiple tiers. Section 6 demonstrates how appro-
priately restricted MTSL functions overcome the
limitations highlighted in Section 4. Finally, Sec-
tion 7 concludes and provides directions for future
research.

2 Preliminaries

To start, let Σ be an alphabet of symbols, which in
the context of phonotactics represents a language’s
inventory of surface phones. A string w is a fi-
nite contiguous sequence of symbols from Σ, and
|w| denotes the length of w. We write λ for the
unique string of length 0 (the empty string). We
use Σ∗ to denote the set of all strings of any length
that can be made from elements in Σ. Note that
Σ∗ includes the empty string. Given two strings
u and v, we write u · v to denote their concatena-
tion, though we will often simply write uv when
context permits. A k-factor of a string w is any
contiguous substring of w with length k, though
in the special case that |w| ≤ k, w is its own and
only k-factor. In what follows, fack(w) denotes
all the k-factors contained in a string w.

A prefix of some string w ∈ Σ∗ is any string

u ∈ Σ∗ such that w = u · x and x ∈ Σ∗. A suffix
of some string w ∈ Σ∗ is any string u ∈ Σ∗ such
that w = x · u and x ∈ Σ∗. Note that any string
is a suffix of itself, and that λ is a suffix of every
string. When |w| ≥ n, suffn(w) denotes the
unique suffix of w with a length of n; when |w| <
n, it simply denotes w itself. Given a string w and
one of its prefixes u we write u−1 · w to denote
w with u removed from its front. For example,
ab−1 · abcde = cde. Finally, given a set of strings
S, we write lcp(S) to denote the longest common
prefix of S, which is the string u such that u is a
prefix of every w ∈ S, and there exists no other
string v such that |v| > |u| and v is also a prefix of
every w ∈ S.

A string-to-string function pairs every w ∈ Σ∗

with one y ∈ ∆∗, where Σ and ∆ are the input
alphabet and output alphabet respectively. Given
a set of input strings I ⊆ Σ∗, f(I) =

⋃
i∈I{f(i)}

is the set of all outputs associated to at least one
of the inputs. An important concept is that of the
tails of an input string w with respect to a function
f .

Definition 1. Tails (Oncina and Garcia, 1991)
Given a function f and an input w ∈ Σ∗,
tailsf (w) = {(y, v) | f(wy) = uv ∧ u =
lcp(f(wΣ∗))}.

In words, tailsf (w) pairs every possible
string y ∈ Σ∗ with the portion of f(wy) that is
directly attributable to y. Put another way, the
tails of w are the effect that w has on the output of
any subsequent string of input symbols. Consider
a function f computing post-nasal voicing. The
tails of w1 = /tan/ relative to f will include pairs
such as 〈t, d〉 since f(tant) = [tand] and 〈opu, opu〉
since f(tanopu) = [tanopu]. When tailsf (w1)
= tailsf (w2), we say that w1 and w2 are tail-
equivalent with respect to f . The string w2 = /ken/
is tail-equivalent to w1 with respect to f because
they both end in a nasal consonant, and therefore
both trigger post-nasal voicing. An example of a
string that is not tail-equivalent to w1 or w2 would
be w3 = /sini/; its tail for /t/ is 〈t, t〉 since it does
not end in a nasal consonant and so does not trig-
ger post-nasal voicing.

Throughout the rest of this paper, we will need
to be able to pick out the portion of the output that
corresponds to actual input material. Viewed from
another perspective, we need to be able to ignore
the portion of the output that would correspond
to a word-end symbol. To make this distinction,

247

Chandlee et al. (2015) defined the prefix function
fp associated with a function f such that fp(w) is
equal to the longest common prefix of all strings
f(wx), where x is some member of Σ∗.

Definition 2. Prefix function
Given a function f , its associated prefix function
fp is such that fp(w) = lcp(f(wΣ∗)).

An example where f(w) and fp(w) differ
would be a function that appends a to the end
of every input string. In this case, fp is sim-
ply the identity map, so fp(abc) = abc whereas
f(abc) = abca.

3 Background

Like their name suggests, the Input Strictly Lo-
cal (ISL) and Output Strictly Local (OSL) func-
tions take the Strictly Local (SL) languages as
their base. Theorem 1 states the property of the
SL languages that allowed for the jump to ISL
and OSL functions. This property is known as
Suffix Substitution Closure (SSC; Rogers and Pul-
lum, 2011; Rogers et al., 2013). Informally, if two
grammatical strings share a middle portion of at
least length k − 1 (i.e., if w1 = axb, w2 = cxd,
and |x| ≥ k − 1), then we can substitute the suf-
fixes that come after the overlap without causing
ungrammaticality. A corollary of SSC is that any
two grammatical strings from an SLk language
that end in the same k−1 (or more) symbols can be
legally continued by the exact same set of strings
(Chandlee et al., 2015).

Theorem 1. Suffix Substitution Closure (Rogers
et al., 2013)
A stringset L is Strictly k-Local if and only if
whenever there is a string x of length k − 1 and
strings u1, u2, v1, v2, it is the case that:

[u1xv1 ∈ L ∧ u2xv2 ∈ L] ⇒ u1xv2 ∈ L

Corollary 1. Suffix-defined Residuals (Chandlee
et al., 2015)
A stringset L is Strictly k-Local if and only if for
all pairs w1, w2 ∈ Σ∗:

suffk−1(w1) = suffk−1(w2)⇒
{v | w1 · v ∈ L} = {v | w2 · v ∈ L}

The definitions of the ISL and OSL functions
take the property in Corollary 1 and adapt it so that
it applies to function tails. Informally, a function
f is ISL if the tail-equivalence classes of f corre-
spond to input suffixes, and a function f is OSL if

the tail-equivalence classes of f correspond to out-
put suffixes (or more accurately, suffixes of fp).

Definition 3. Input Strictly k-Local Functions
A function f : Σ∗ → ∆∗ is ISLk if for all w1, w2

in Σ∗:

suffk−1(w1) = suffk−1(w2) ⇒
tailsf (w1) = tailsf (w2)

Definition 4. Output Strictly k-Local Functions
A function f : Σ∗ → ∆∗ is OSLk if for all w1, w2

in Σ∗:

suffk−1(fp(w1)) = suffk−1(fp(w2)) ⇒
tailsf (w1) = tailsf (w2)

Chandlee (2014) and Chandlee et al. (2014,
2015) show that most iterative phonological pro-
cesses can be modelled with an OSL function,
with an important exception being long-distance
iterative processes like consonant harmony. This
is parallel to the fact that long-distance phonotac-
tics cannot be represented with an SL stringset,
which motivated Heinz et al. (2011) to define
the Tier-based Strictly Local (TSL) languages—
stringsets that are SL after an erasure function has
applied, masking all symbols that are irrelevant
to the restrictions that the language places on its
strings. The erasure function takes a tier τ and a
stringw, returningw with all non-tier elements re-
moved.

Definition 5. Erasure function
Given an alphabet Σ, a tier τ ⊆ Σ, and a string
w = a1...an, eraseτ (w) = b1...bn where for all
i ≤ n, bi = ai if ai ∈ τ , else bi = λ.

Definition 6. Tier-based Strictly k-Local lan-
guages
A language L is TSLk if there is a tier τ ⊆ Σ and
a subset S ⊆ fack(oτ∗n) such that:

L = {w ∈ Σ∗ | fack(oeraseτ (w)n) ⊆ S}

As it turns out, the TSL languages also exhibit a
form of Suffix Substitution Closure (Lambert and
Rogers, 2020). In light of this fact, the legal con-
tinuations of any string w in a TSLk language can
be inferred simply by looking at the k−1 suffix of
eraseτ (w). Just as we did for the ISL and OSL
functions, then, we can define the ITSL and OTSL
functions according to how they partition Σ∗ into
tail-equivalence classes. For convenience, we will
write suffnτ (w) to mean suffn(eraseτ (w)) in
what follows.

248

Definition 7. Input Tier-based Strictly k-Local
Functions
A function f : Σ∗ → ∆∗ is ITSLk if there is a tier
τ ⊆ Σ such that for all w1, w2 in Σ∗:

suffk−1τ (w1) = suffk−1τ (w2) ⇒
tailsf (w1) = tailsf (w2)

Definition 8. Output Tier-based Strictly k-Local
Functions
A function f : Σ∗ → ∆∗ is OTSLk if there is a tier
τ ⊆ ∆ such that for all w1, w2 in Σ∗:

suffk−1τ (fp(w1)) = suffk−1τ (fp(w2)) ⇒
tailsf (w1) = tailsf (w2)

Informally, a function f is ITSL if the tail-
equivalence classes of f correspond to input tier
suffixes (where the tier is a subset of the input al-
phabet Σ), and a function f is OTSL if the tail-
equivalence classes of f correspond to output tier
suffixes (where the tier is a subset of the output
alphabet ∆). Important to note is that the ITSL
functions properly contain the ISL functions and
that the OTSL functions properly contain the OSL
functions. This is because anything SL is also TSL
when the tier is simply the entire alphabet.

The above definitions of the ITSL and OTSL
functions abstract away from reading direction,
which divides each class into two overlapping but
distinct classes. This is similar to how the sub-
sequential functions can be divided into the left-
subsequential functions which read the input from
left to right and the right-subsequential functions
which read the input from right to left (Heinz and
Lai, 2013). We will also abstract away from read-
ing direction when defining our multi-tiered func-
tions, but will specify the directionality of individ-
ual functions.

4 Limitations of TSL functions

As discussed in Burness and McMullin (2019),
the TSL functions are quite versatile, being able
to model long-distance harmony and long-distance
dissimilation, both with and without blocking ef-
fects. This is, however, only the case when we
model each phonological process of a language in
isolation.

Consider the Tamashek dialect of Tuareg, which
contains a process of long-distance regressive sibi-
lant harmony and a process of long-distance re-
gressive labial dissimilation (Heath, 2005; Mc-
Mullin, 2016). The sibilant harmony can be seen

in words where the causative prefix /s-/ is followed
non-locally by another sibilant, whereupon it takes
that other sibilant’s values for anteriority, voicing,
and pharyngealization as shown by the data in (1)
from Heath (2005, p. 442). Note that the lan-
guage has considerable vowel allophony, and we
write ‘V’ where Heath (2005) does not provide
the surface vowel quality. The labial dissimila-
tion can be seen in words where a prefix /m/ (such
as in the mediopassive) is followed non-locally
by a labial consonant other than /w/, whereupon
the prefix /m/ will dissimilate to [n]. Data for
this process is shown in (2) from Heath (2005,
p. 472). That both processes can occur simulta-
neously is demonstrated by the word in (3) from
Heath (2005, p. 462), which contains the causative
and mediopassive prefixes together.

(1) Sibilant harmony: causative /s-/
-s-VNNV- ‘cook’
-s-VsVfVr- ‘treat (patient)’
-sQ-VsQuhV- ‘strengthen’
-S-VluSV- ‘clean sand from’
-z-VjVzzV ‘scrutinize’

(2) Labial dissimilation: mediopassive /m-/
-m-VrtVj- ‘become mixed’
-n-VkmVm- ‘be squeezed’

(3) Both prefixes/processes
A-zQ-@n:-@t-@lm@zQ ‘spitting saliva’

The combination of sibilant harmony and labial
dissimilation cannot, however, be computed by a
single TSL function. To see why, consider what
happens when we try with an OTSL2 function
whose tier consists of all sibilants and labial con-
sonants. Producing a sibilant will push the most
recent labial consonant (if any) out of the k − 1
window, and producing a labial consonant will
push the most recent sibilant (if any) out of the
k − 1 window. At any given point, then, we can
only know how to correctly map an input /s/ or
only know how to correctly map an input /m/.
Increasing k does not eliminate the issue, since
any number of sibilants can in principle occur be-
tween two labial consonants, and any number of
labial consonants can in principle occur between
two sibilants.

A further difficulty for TSL functions posed by
Tamashek Tuareg is that long-distance regressive
labial dissimilation interacts with a local process
of regressive nasal place assimilation. The com-
plication arises from the fact that the local pro-

249

cess overrides the long-distance process: /m/ fails
to dissimilate specifically when it is immediately
followed by an oral labial stop, in order to avoid
a heterorganic cluster. This can be seen in a word
like (4) from Heath (2005, p. 476) where the re-
ciprocal prefix /Vm-/ comes immediately before a
/b/. We are faced with a paradox if we attempt to
model this interaction as a single TSL function. In
order to know when an input labial needs to dis-
similate we need to ignore everything that is not
a labial consonant, but in order to know when an
input labial needs to obey place assimilation we
cannot ignore anything.

(4) Local blocking of dissimilation
-æm-bæbbA- ‘carried each other’

Whether these interactions are problematic de-
pends on whether we conceive of a language’s
phonological system as a series of input-output
maps or as a single “master” input-output map.
The latter position is explored by Chandlee and
Heinz (2018) and Chandlee et al. (2018) in the
context of formal language theory and automata
theory. They remark that the ISL functions are not
closed under composition, but that certain opaque
rule interactions (counterfeeding, counterbleed-
ing, etc.) can nevertheless be modelled using a
single ISL function when the component rules are
also ISL functions.

5 Multi-Tiered Strictly Local functions

The main method that we will use to tackle the
limitations presented in the previous Section is by
allowing a single function to operate over multi-
ple tiers. We call these the Multi-Tiered Strictly
k-Local (MTSLk) functions, for lack of a better
name. Note that we use a large subscripted con-
junction symbol to collapse a series of formulae
that are identical aside from using different tiers.

Definition 9. Input Multi-Tiered Strictly k-Local
functions
A function f : Σ∗ → ∆∗ is IMTSLk if there is
a finite set T of tiers τ ⊆ Σ such that for all
w1, w2 ∈ Σ∗:

[
∧
τ∈T

[suffk−1τ (w1) = suffk−1τ (w2)]]

⇒ [tailsf (w1) = tailsf (w2)]

Definition 10. Output Multi-Tiered Strictly k-
Local functions

A function f : Σ∗ → ∆∗ is OMTSLk if there is
a finite set T of tiers τ ⊆ ∆ such that for all
w1, w2 ∈ Σ∗:

[
∧
τ∈T

[suffk−1τ (fp(w1)) = suffk−1τ (fp(w2))]]

⇒ [tailsf (w1) = tailsf (w2)]

In words, there is a finite set of tiers such that if
two input strings share a k − 1 suffix on all tiers,
then they will have the same tails. Notice how this
is a direct extension of the TSLk functions, since
the singleton tier of a TSLk function will satisfy
the above definition.

Of course, allowing any conceivable number of
tiers and allowing any conceivable relationship be-
tween their contents is too powerful. One patho-
logical behaviour that can arise from excessively
free tier sets would be ‘gang-up’ effects. For ex-
ample, given a collection of disjoint tiers that each
contain a single element, we can describe pro-
cesses where the output of some input element de-
pends on the exact set of preceding elements re-
gardless of their order. A similar behaviour can
arise from overlapping but disjoint tiers. Given
τ1 = {s, S, t} and τ2 = {s, S, n} we could describe
a process of sibilant harmony that is blocked only
when both ‘t’ and ‘n’ intervene, regardless of their
order. To the best of our knowledge, such pro-
cesses are unattested and should be excluded.

In order to limit the “tier multiverse”, we pro-
pose to reference the contribution of each σ ∈ Σ
separately, rather than referencing the entirety of
tailsf . Informally, the contribution of a relative
to w is the portion of f(wa) uniquely and directly
attributable to a (e.g., it is what we would append
to the output upon reading a in a transducer after
having read w). A more formal definition is pro-
vided below.

Definition 11. Contribution
Given a function f , some a ∈ Σ, and some
w ∈ Σ∗, contf (a,w) = lcp(f(wΣ∗))−1 ·
lcp(f(waΣ∗)) = fp(w)−1 · fp(wa).

Using this notion of a contribution relative to w,
which singles out a single element of tailsf (w),
we place the following condition on MTSLk func-
tions, which we call target specification.

Definition 12. Target specification
An IMTSLk function f : Σ∗ → ∆∗ is target speci-
fied if for each σ ∈ Σ there is a finite set Tσ of tiers
τ ⊆ Σ that form a strict superset-subset hierarchy,

250

and the following holds for all w1, w2 ∈ Σ∗

[
∧
τ∈Tσ

[suffk−1τ (w1) = suffk−1τ (w2)]]

⇒ [contf (σ,w1) = contf (σ,w2)]

An OMTSLk function f : Σ∗ → ∆∗ is target speci-
fied if for each σ ∈ Σ there is a finite set Tσ of tiers
τ ⊆ ∆ that form a strict superset-subset hierar-
chy, and the following holds for all w1, w2 ∈ Σ∗:

[
∧
τ∈Tσ

[suffk−1τ (fp(w1)) = suffk−1τ (fp(w2))]]

⇒ [contf (σ,w1) = contf (σ,w2)]

In words, when an MTSL function is target
specified, each σ ∈ Σ (i.e., each potential tar-
get of one or more processes) can be associated
with a group of tiers that together determine the
contribution of σ. Viewed from another perspec-
tive, each input element specifies the tiers that it
wants to track, and the contribution of an input el-
ement can always be determined by tracking only
its specified set of tiers; tracking other tiers pro-
vides information that is either redundant or irrel-
evant. Importantly, each member of the tier group
is a proper subset of the next largest member.

Requiring an input segment’s multiple associ-
ated tiers to fall into a strict superset-subset hi-
erarchy has two apparent positive consequences.
First, this restriction will be beneficial for learn-
ing, since it drastically reduces the number of pos-
sible tier combinations that can influence a given
input element. Aksënova and Deskmukh (2018)
show that even with a small inventory of 10 ele-
ments, there are 1022 ways to create a superset-
subset pair, 511 ways to create a pair of fully dis-
joint sets, and 27990 ways to create a pair of par-
tially overlapping sets. This last number is al-
ready 95% larger than the other two combined,
and the difference only increases as the size of
the alphabet grows. Second, research into multi-
tiered stringsets suggests that we never see a single
restriction enforced on two partially overlapping
tiers (Aksënova and Deskmukh, 2018; McMullin
et al., 2019).

6 Multiple Tiers in Action

This section now considers a range of individual
patterns and pattern interactions that standard TSL
functions are incapable of capturing. We show that
each of the considered patterns and interactions

are simply and intuitively captured by the target-
specified MTSL functions defined in the previ-
ous Section. In order, we consider interactions
between independent processes (6.1), interactions
between conflicting processes (6.2), cases where a
single target is subject to multiple harmonies (6.3),
and cases where some segments act as last-resort
harmony triggers in the absence of canonical trig-
gers (6.4).

6.1 Independent processes
Recall from Section 4 that Tamashek Tuareg con-
tains simultaneous long-distance sibilant harmony
and long-distance labial dissimilation. Postpon-
ing discussion of the complication that arises from
local nasal place assimilation, we can describe
the two processes with a single target-specified
OMTSL2 function as follows.

First, we associate input /s/ with the tier τs =
{s, sQ, z, zQ, S, Z} containing all and only the
sibilant consonants. Doing so, we need only
specify that if suff1τs(f

p(w)) 6= λ when read-
ing from right to left, then contf (s, w) =
suff1τs(f

p(w)), else contf (s, w) =[s]. In other
words, /s/ harmonizes with the closest sibilant to
its right, if there is one, else it surfaces faithfully.

Second, we associate input /m/ with the tier
τm = {m, b, f} containing all and only the
labial obstruents. Doing so, we need only spec-
ify that if suff1τm(fp(w)) 6= λ when reading
from right to left, then contf (m, w) = [n], else
contf (m, w) = [m]. In other words, /m/ dissimi-
lates to [n] if there is a labial obstruent somewhere
to its right, else it surfaces faithfully.

Each of the input elements we are considering
here is associated to a single tier, and so the defi-
nition of target specification is satisfied. By virtue
of tracking separate tiers, the two processes do not
interfere with each other and so can be computed
in tandem, exactly as desired. The simultaneous
computation of the two rules is shown pictorially
in Figure 1 for the word [A-zQ-@n:-@t-@lm@zQ] ‘act
of spitting up saliva’. The string in the center of
the figure is the output string. Solid lines repre-
sent projection to an output tier and dashed lines
represent an output tier element’s influence on an
input element.

6.2 Conflicting processes
The previous Section abstracted away from the in-
teraction between long-distance labial dissimila-
tion and local nasal place assimilation, which we

251

zQ zQ = τs

A zQ @ n: @ t @ l m @ zQ = f(w)

m = τm

/s/→ [zQ]

/m/→ [n]

Figure 1: Simultaneous sibilant harmony and labial dis-
similation in Tamashek Tuareg.

will now consider here. The interaction can be
modelled with a target-specified OMTSL2 func-
tions as follows. First, we associate /m/ with a first
tier τm1 = ∆ containing all elements in the output
alphabet. We furthermore associate /m/ with a sec-
ond tier τm2 = {m, b, f} containing all and only
the labial obstruents. Assuming that the input is
read from right to left, the full behaviour of /m/
can be described as follows. If suff1τm1

(fp(w))
is a labial obstruent, then contf (m, w) = [m]
since /m/ is required to assimilate in place with
the adjacent obstruent. If suff1τm1

(fp(w)) 6= [b]
and suff1τm2

(fp(w)) 6= λ, then contf (m, w)
= [n] since /m/ is not immediately adjacent to a
labial consonant, but nonetheless is preceded non-
locally by a labial and must dissimilate. In all
other cases, /m/ surfaces faithfully as [m]. Note
especially how τm2 ⊂ τm1, and so the function
meets the definition of target specification.

This is not to say that local processes always
override non-local processes. Indeed, the oppo-
site is witnessed in Samala. The Samala language
is well-known for its process of regressive sibi-
lant harmony, whereby the anteriority of the right-
most sibilant overrides the anteriority of all sibi-
lants to the left. As it turns out, the language con-
tains an additional rule affecting the sibilant /s/.
Namely, /s/ regressively palatalizes to [S] when im-
mediately followed by [t], [n], or [l] (Applegate,
1972; Poser, 1982, 1993; McCarthy, 2007; Hans-
son, 2010; McMullin, 2016). The long-distance
process is given priority here, such that the local
sequences [sn], [st] and [sl] are permitted precisely
when palatalization would create a disharmonic
sequence of non-local sibilants.1 Data exempli-

1Some accounts of the data claim that the local process
takes priority. See Heinz and Idsardi (2010) for a discussion
and resolution of this inconsistency.

fying the two processes and their interaction are
provided in (5) through (7) taken from Applegate
(1972, p. 117-120).

(5) Unbounded sibilant harmony
/s-xalam-S/→ [S-xalamS] ‘it is wrapped’

(6) Local palatalization
/s-niP/→ [S-niP] ‘his neck’

(7) Harmony overrides palatalization
/s-net-us/→ [s-net-us] ‘he does it to him’

We can also describe this with a target-specified
OMTSL2 function. In this case, the contribution
of /s/ is dependent on two tiers: a tier τs1 = ∆ rel-
ative to which local palatalization is considered,
and a tier τs2 = {s, S} relative to which sibilant
harmony is considered. Assuming that the input
is read from right to left, the behaviour of /s/ can
be described as follows. If suff1τs2(fp(w)) = λ
and suff1τs1(fp(w)) is one of [t], [n], or [l], then
contf (s, w) = [S] since it is adjacent to a palatal-
ization trigger but not preceded non-locally by a
[-anterior] sibilant. If suff1τs2(fp(w)) = [S], then
contf (s, w) = [S] since /s/ is preceded non-locally
by a [-anterior] sibilant and must harmonize. In all
other contexts, /s/ surfaces faithfully as [s]. Once
again, τs2 ⊂ τs1 and so the function meets the def-
inition of target specification.

6.3 Single target, multiple harmonies
The target-specified MTSL functions are not lim-
ited to describing interactions between a local
and non-local process, they can equally describe
cases where a single element is subject to two
long-distance dependencies operating over differ-
ent featural dimensions. An example of this comes
from then Imdlawn dialect of Tashlhiyt. The lan-
guage’s causative prefix /s-/ agrees in both ante-
riority and voicing with a following sibilant, as
shown in (8), although the voicing dimension of
the harmony is blocked by an intervening voice-
less obstruent (Elmedlaoui, 1995; Hansson, 2010;
McMullin, 2016), as shown in (9).

(8) Anteriority and voicing harmony
/s-gruZ:m/→ [Z-gruZ:m]
‘CAUS-be.extinguished’

(9) Voicing harmony blocked
/s-mèaraZ/→ [S-mèaraZ]
‘CAUS-get.angry.with.each.other’

We can describe this as a target-specified
OMTSL2 function wherein the contribution of /s/

252

depends on one tier τs1 for its voicing and another
tier τs2 for its anteriority. The voicing tier τs1
contains all sibilants and all voiceless obstruents,
while the anteriority tier τs2 contains only the sibi-
lants. Assuming that the input is read from right
to left, the behaviour of /s/ can be described as
follows. If suff1τs1(fp(w)) = suff1τs2(fp(w)),
then an input /s/ harmonizes in both anteriority and
voicing with that sibilant. Note that both tiers con-
tain all sibilants and so the two tier suffixes can
never be different sibilants. If suff1τs2(fp(w)) is
a sibilant and suff1τs1(fp(w)) is a voiceless ob-
struent, then /s/ harmonizes in anteriority but not
voicing with suff1τs2(fp(w)). The voicing di-
mension of the harmony is blocked because τs2 ⊂
τs1, and so the voiceless obstruent necessarily in-
tervenes between the triggering sibilant and the
target sibilant. In all other cases, /s/ surfaces faith-
fully as [s].

In this Imdlawn Tashlhiyt case, the harmony tar-
get agrees with the harmony source along two di-
mensions, but there are cases where a single target
can agree with multiple sources in specific con-
figurations. Suffixal high vowels in Turkish typi-
cally agree in backness and rounding with the next
vowel to the left, as shown in (10) from Nevins
(2010, p. 27). An interesting exception, however,
concerns the consonants /k/, /g/, and /l/ which are
contrastively [+back] and have the [-back] coun-
terparts /kj/, /gj/, and /lj/ (Clements and Sezer,
1982). If one of these consonants intervenes be-
tween the suffixal high vowel and the next vowel
to the left, the suffixal high vowel takes its back-
ness value from the consonant and its rounding
feature from the vowel, as shown in (11) from
Nevins (2010, p. 54).

(10) Two harmonies, same source
son-un ‘end-GEN
sap-Wn ‘stalk-GEN’

(11) Two harmonies, two sources
usulj-y ‘system-Acc.SG’
sualj-i ‘question-ACC.SG’

Let us assume that the harmonizing suffixal
high vowels are underlyingly /U/, which lacks
values for [back] and [round]. The potentially
split harmony can be analyzed with the follow-
ing target-specified OMTSL2 function. We have a
backness tier τU1 containing all the vowels and the
abovementioned consonants. We also also have a
rounding tier τU2 containing all and only the vow-
els. Assuming that the input is read from left to

right, the behaviour of /U/ can be described as fol-
lows. If suff1τU1

(fp(w)) = suff1τU2
(fp(w)),

then the nearest source of backness and the near-
est source of rounding are both the nearest left-
ward vowel. If, however, suff1τU1

(fp(w)) 6=
suff1τU2

(fp(w)), then one of the relevant conso-
nants must intervene between the suffixal vowel
and the nearest leftward vowel. In this case, the
suffixal vowel will take on the backness value of
the consonant; the source of rounding will, how-
ever, always be the nearest leftward vowel.

6.4 Last-resort triggers

The final type of behaviour we will consider
comes from a case of harmony that is triggered
by a special class of segments in the absence of a
more “preferred” trigger. Uyghur vowels are sub-
ject to a progressive backness harmony for which
the non-low front vowels [i] and [e] are transpar-
ent (Lindblad, 1990; Vaux, 2000; Mayer and Ma-
jor, 2018). The language’s locative suffix shows
that the harmony is an active process; its vowel al-
ternates between front [æ] and back [a] as shown
in (12) taken from Mayer and Major (2018).

(12) Uyghur vowel harmony
aKinæ-dæ ‘friend-LOC’
qoichi-da ‘shepherd-LOC’

Interestingly, dorsal consonants can trigger har-
mony in the absence of a harmonic vowel, with
velar consonants causing front allomorphs of suf-
fixes and uvulars causing back allomorphs (Lind-
blad, 1990; Vaux, 2000; Mayer and Major, 2018),
as shown in (13). The harmony “prefers” to be
triggered by vowels, however, which is witnessed
by the fact that a back vowel can trigger back
allormorphs across a velar consonant (Lindblad,
1990; Vaux, 2000; Mayer and Major, 2018), as
shown in (14). Dorsal consonants only decide
the front/back status of a suffix when the base
lacks non-transparent vowels altogether, in a sense
acting as a “last-resort trigger” (Lindblad, 1990;
Vaux, 2000; Mayer and Major, 2018).

(13) Harmony with a dorsal
gezit-tæ ‘newspaper-LOC’
qiKiz-da ‘Kyrgyz-LOC’

(14) Harmony across a dorsal
rak-ta ‘exercise-LOC’

This pattern too can be generated by a target-
specified OMTSL2 function. The suffixal low

253

vowel /A/ is associated to one tier τA1 contain-
ing all non-transparent vowels and dorsal conso-
nants, and is also associated to a second tier τA2
containing only the non-transparent vowels. As-
suming that the input is read from left to right,
the harmony can be described as follows. If
suff1τA2

(fp(w)) 6= λ, then there is a non-
transparent vowel in the stem that triggers har-
mony. If, however, suff1τA2

(fp(w)) = λ and
suff1τA1

(fp(w)) 6= λ, then all stem vowels are
transparent, but there is a dorsal consonant avail-
able to trigger harmony as a last resort.

7 Conclusion

This paper defined an extension of the Tier-based
Strictly Local functions, allowing them to track
multiple tiers so long as the inter-tier relationships
obey certain restrictions. Rather than having the
entirety of the functional tails depending on just
one tier, we allow the contribution of each input el-
ement to separately depend on its own set of tiers,
provided that the set falls into a strict superset-
subset hierarchy.

Our strategy of dividing the work amongst sev-
eral independent sets of tiers greatly resembles the
search procedure of Nevins (2010), see also An-
dersson et al. (2020). In this search procedure,
specific input elements initiate a search for the
nearest item relevant to them in some specified di-
rection, and their output fate depends on the iden-
tity of the first relevant element found. Our ap-
proach is in many ways the mirror of the search
procedure: by tracking the tiers specified by σ,
we preemptively remember the most recent ele-
ment(s) that would be relevant to the output fate
of σ, and we therefore always know what to do
when σ is encountered. We demonstrated that a
wide variety of otherwise challenging phonologi-
cal processes receive simple and intuitive analyses
from this perspective.

A reviewer asks about the closure of the TSL
functions under composition, pointing out that the
MTSL languages are the closure of the TSL lan-
guages under intersection. While we have not
yet formally proven so, it is likely that the left-
reading MTSL functions are indeed the closure of
the left-reading TSL functions under composition
(mutatis mutandis for right-reading functions). At
the very least, all of the language patterns analyzed
in Section 6 can be described as the composition of
two same-direction TSL functions. Similar to how

Aksënova and Deskmukh (2018) and McMullin
et al. (2019) argue that the full class of MTSL lan-
guages is too powerful, though, we believe that our
proposal of target specification is necessary since
free composition of TSL functions can lead to pro-
cesses with bizarre properties (see Section 5).

One noteworthy behaviour not covered by the
proposed class is bidirectional application. Re-
search into bidirectional patterns has established
that they can be modelled by weakly determinis-
tic functions (Heinz and Lai, 2013). These are
those functions from Σ∗ to ∆∗ that can be mod-
elled as a pair of subsequential functions that ap-
ply in sequence and meet the following criteria:
(i) the two functions read in opposite directions,
(ii) the first function is from Σ∗ to Σ∗, and (iii)
the first function is not permitted to increase the
length of the string. Since the function class con-
sidered in this paper is a proper subclass of the
subsequential functions, it would be interesting to
see whether we can lower the complexity bound
of these bidirectional processes. Namely, can we
instead model them as a pair of MTSL functions
running in opposite directions?

Finally, future work will consider the learnabil-
ity of MTSL functions. Burness and McMullin
(2019) showed that any OTSL function is effi-
ciently learnable from positive data if the tier is
known in advance. This result can likely be carried
over to MTSL functions once they receive a suit-
able automata characterization. When the tier is
not known in advance, however, Burness and Mc-
Mullin (2019) show that only total OTSL2 func-
tions are learnable from positive data. The induc-
tion of multiple tiers, necessary for the learning of
MTSL functions, will thus likely be a significant
challenge. That being said, McMullin et al. (2019)
developed a method for learning the Multi-Tiered
Strictly 2-Local languages, and their methods may
perhaps be fruitfully applied to the function case.

Acknowledgements

We thank reviewers of this paper for their help-
ful comments. This research was supported by the
Social Sciences and Humanities Research Council
of Canada.

References

Aksënova, A. and Deskmukh, S. (2018). Formal re-
strictions on multiple tiers. In Proceedings of the

254

Society for Computation in Linguistics (SCiL) 2018,
pages 64–73.

Andersson, S., Dolatian, H., and Hao, Y. (2020). Com-
puting vowel harmony: The generative capacity of
search and copy. In Baek, H., Takahashi, C., and
Hong-Lun Yeung, A., editors, Proceedings of the
2019 Annual Meeting on Phonology.

Applegate, R. B. (1972). Ineseño Chumash Gram-
mar. Doctoral Dissertation, University of Califor-
nia, Berkeley.

Burness, P. and McMullin, K. (2019). Efficient learn-
ing of Output Tier-based Strictly 2-Local functions.
In Proceedings of the 16th Meeting on the Mathe-
matics of Language, pages 78–90. Association for
Computational Linguistics.

Chandlee, J. (2014). Strictly Local Phonological
Processes. Doctoral Dissertation, University of
Delaware.

Chandlee, J., Eyraud, R., and Heinz, J. (2014). Learn-
ing strictly local subsequential functions. Transac-
tions of the Association for Computational Linguis-
tics, 2:491–503.

Chandlee, J., Eyraud, R., and Heinz, J. (2015). Output
strictly local functions. In Proceedings of the 14th
Meeting on the Mathematics of Language (MOL
2015), pages 112–125.

Chandlee, J. and Heinz, J. (2018). Strict Locality and
Phonological Maps. Linguistic Inquiry, 49(1):23–
59.

Chandlee, J., Heinz, J., and Jardine, A. (2018). Input
Strictly Local opaque maps. Phonology, 35(2):171–
205.

Clements, G. N. and Sezer, E. (1982). Vowel and con-
sonant disharmony in Turkish. In van der Hulst, H.
and Smith, N., editors, The Structure of Phonologi-
cal Representations (Part II), pages 213–255. Foris,
Dordrecht.

Elmedlaoui, M. (1995). Aspects de Représentations
Phonolgiques Dans Certains Langues Chamito-
Sémitiques [Aspects of Phonological Representa-
tions in Certain Chamito-Semitic Languages]. Doc-
toral Dissertation, Université Mohammed V, Rabat,
Morocco.

Hansson, G. Ó. (2010). Consonant Harmony: Long-
Distance Interaction in Phonology. Number 145 in
University of California Publications in Linguistics.
University of California Press, Berkeley, CA.

Hao, Y. and Andersson, S. (2019). Unbounded stress
in subregular phonology. In Proceedings of the
16th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology and Morphol-
ogy, pages 135–143, Florence, Italy. Association for
Computational Linguistics.

Hao, Y. and Bowers, D. (2019). Action-Sensitive
Phonological Dependencies. In Proceedings of the
16th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology and Morphol-
ogy, pages 218–228, Florence, Italy. Association for
Computational Linguistics.

Heath, J. (2005). A Grammar of Tamashek (Tuareg of
Mali). Mouton de Gruyter, Berlin.

Heinz, J. and Idsardi, W. J. (2010). Learning opaque
generalizations: the case of Samala. Unpublished
Manuscript.

Heinz, J. and Lai, R. (2013). Vowel harmony and sub-
sequentiality. In Kornai, A. and Kuhlmann, M., edi-
tors, Proceedings of the 13th Meeting on the Mathe-
matics of Language (MoL13), pages 52–63, Sofia,
Bulgaria. Association for Computational Linguis-
tics.

Heinz, J., Rawal, C., and Tanner, H. G. (2011). Tier-
based strictly local constraints for phonology. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 58–64,
Portland, OR. Association for Computational Lin-
guistics.

Jardine, A. and Heinz, J. (2016). Learning Tier-based
Strictly 2-Local languages. Transactions of the As-
sociation for Computational Linguistics, 4:87–98.

Jardine, A. and McMullin, K. (2017). Efficient Learn-
ing of Tier-Based Strictly k-Local Languages. In In-
ternational Conference on Language and Automata
Theory and Applications (LATA 2017), pages 64–76.

Lambert, D. and Rogers, J. (2020). Tier-Based Strictly
Local Stringsets: Perspectives from Model and Au-
tomata Theory. In Proceedings of the Society for
Computation in Linguistics (SCiL) 2020, pages 330–
337, New Orleans, Louisianna.

Lindblad, V. M. (1990). Neutralization in Uyghur.
Master’s Thesis, University of Washington.

Mayer, C. and Major, T. (2018). A challenge for tier-
based strict locality from Uyghur backness harmony.
In Formal Grammar 2018, number 10950 in Lecture
Notes in Computer Science, pages 62–83. Springer,
Berlin.

McCarthy, J. (2007). Consonant harmony via corre-
spondence: Evidence from Chumash. In Bateman,
L., O’Keefe, M., Reilly, E., and Werle, A., edi-
tors, Papers in Optimality Theory III, pages 223–
237. University of Massachusetts Occasional Papers
in Linguistics.

McMullin, K. (2016). Tier-Based Locality in Long-
Distance Phonotactics: Learnability and Typol-
ogy. Doctoral Dissertation, University of British
Columbia, Vancouver, BC.

255

McMullin, K., Aksënova, A., and De Santo, A. (2019).
Learning phonotactic restrictions on multiple tiers.
In Proceedings of the Society for Computation in
Linguistics (SCiL) 2019, volume 2, pages 377–378.

McMullin, K. and Hansson, G. Ó. (2016). Long-
distance phonotactics as Tier-based Strictly 2-Local
Languages. In Albright, A. and Fullwood, M. A.,
editors, Proceedings of the 2014 Annual Meeting on
Phonology, Washington, DC. Linguistic Society of
America.

McNaughton, R. and Papert, S. A. (1971). Counter-
Free Automata. MIT Press, Cambridge, MA.

Nevins, A. (2010). Locality in Vowel Harmony.
Number 55 in Linguistic Inquiry Monographs. MIT
Press.

Oncina, J. and Garcia, P. (1991). Inductive learning
of subsequential functions. Technical Report DSIC
II-34, University Politecnia de Valencia.

Poser, W. (1982). Phonological representations and
action-at-a-distance. In van der Hulst, H. and Smith,
N., editors, The Structure of Phonological Represen-
tations, volume 2, pages 121–158. Foris, Dordrecht.

Poser, W. (1993). Are strict cycle effects derivable? In
Hargus, S. and Kaisse, E., editors, Studies in Lexical
Phonology, pages 315–321. Academic Press, New
York.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D.,
and Wibel, S. (2013). Cognitive and sub-regular
complexity. In Formal Grammar, number 8036 in
Lecture Notes in Artificial Intelligence, pages 90–
108. Springer.

Rogers, J. and Pullum, G. K. (2011). Aural pattern
recognition experiments and the subregular hierar-
chy. Journal of Logic, Language and Information,
20:329–342.

Vaux, B. (2000). Disharmony and derived transparency
in Uyghur vowel harmony. In Proceedings of NELS
30, pages 671–698.

