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Abstract

This paper investigates the ability of neu-
ral network architectures to effectively learn
diachronic phonological generalizations in a
multilingual setting. We employ models us-
ing three different types of language embed-
ding (dense, sigmoid, and straight-through).
We find that the Straight-Through model out-
performs the other two in terms of accuracy,
but the Sigmoid model’s language embeddings
show the strongest agreement with the tradi-
tional subgrouping of the Slavic languages.
We find that the Straight-Through model has
learned coherent, semi-interpretable informa-
tion about sound change, and outline direc-
tions for future research.

1 Introduction

Historical phonology is an important area of di-
achronic linguistics, allowing scholars to explore
the space of possible sound change trajectories and
resulting synchronic patterns, as well as posit de-
grees of relatedness between languages on the ba-
sis of sound changes shared across them. The
latter practice traditionally involves the identifi-
cation of innovations that are probative with re-
spect to historical subgrouping. The internal ge-
netic structure of many linguistic groups is uncon-
troversial. For others, scholars disagree in terms of
which isoglosses are relevant to subgrouping, and
whether the relevant features are indeed shared
across groups of languages. The use of compu-
tational methods has aided in resolving a num-
ber of outstanding questions in diachronic linguis-
tics, though little work has been done assessing
the ability of computational models to learn mean-
ingful patterns of sound change as well as capture
language-level information that may bear on de-
grees of genetic relatedness.

This paper employs a neural encoder-decoder
architecture to analyze patterns of sound change
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among Slavic languages, training a series of mod-
els on data from an etymological dictionary. Fol-
lowing the standard practice in multilingual NLP
tasks, we make use of language embeddings con-
catenated to the model input. We make use
of three different types of language embedding,
comprising continuous real-valued DENSE, SIG-
MOID (defined on the [0, 1] interval), and binary
STRAIGHT-THROUGH embeddings. We assess the
accuracy with which these encoder-decoder mod-
els predict held-out forms in contemporary Slavic
languages from their corresponding Proto-Slavic
input. We provide a detailed error analysis, ob-
serving differences across models in terms of the
types of error introduced. We measure the ex-
tent to which the language embeddings learned by
each model recapitulate the the most commonly
accepted subgrouping of the Slavic languages. Fi-
nally, we assess the interpretability of the straight-
through embedding, investigating the degree to
which embeddings in binary latent space represent
meaningful information regarding sound change.
We find that the model with straight-through
language embeddings outperforms the Dense and
Sigmoid models in terms of accuracy. At the same
time, the language embeddings learned by the Sig-
moid model display a signal that shows the highest
agreement out of the three models with received
wisdom regarding the dialect grouping of Slavic
languages. We find that the latent binary represen-
tations learned capture meaningful and coherent
information regarding sound patterns. We outline
future directions for research using latent binary
embeddings in neural historical phonology.

2 Background

The Slavic branch of Indo-European is tradition-
ally divided into East, West, and South Slavic
groups. Many of the oldest and most de-
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cisive isoglosses differentiating the Slavic lan-
guages are phonological in nature (cf. Shevelov
1964, Carlton 1991). For instance, tautosyl-
labic Proto-Slavic vowel+liquid sequences were
subject to METATHESIS or re-ordering in West
and South Slavic languages, whereas East Slavic
languages underwent PLEOPHONY, inserting a
vowel between the liquid and the following con-
sonant.  Variation between liquid metathesis
and pleophony, accompanied by language-specific
vowel changes, can be seen in the cognates
Russian gorod, Ukrainian hdrod, Croatian grdd,
Czech hrad (< *gbrdu ‘city’); the h- found in
Ukrainian (East Slavic) and Czech (West Slavic)
shows also that certain shared features do not
cleanly follow the taxonomy defined above.

It is traditionally assumed that the tripartite
classification of Slavic either reflects the dialec-
tal diversity of the so-called Slavic homeland,
most probably situated on the outskirts of the
Carpathian Mountains, or emerged as a result
of the great Slavic expansion in the 6th century
AD (Briuer, 1961; Hock, 1998). The extensive
study of loanwords, however, suggests that post-
expansional Slavic was, despite the vast territory it
occupied, still uniform. There seem to have been
no significant differences between Slavic spoken
in areas located as far away from each other as the
Baltic sea and the Peloponnese, at least with re-
gard to phonology. It has therefore been argued
that it is this post-expansional Slavic that con-
stitutes the ancestor of all Slavic languages and
not the Slavic language spoken in the homeland
(Holzer, 1995). One of the arguments put for-
ward in support of this claim is the still largely re-
constructible post-Proto-Slavic dialect continuum
(Holzer, 1997). One objective of this paper to as-
sess the degree to which neural models recapitu-
late the uncontroversial subgrouping of Slavic as
an indicator of whether they are capable of resolv-
ing outstanding issues in the field.

3 Related Work

A growing body of research assesses the informa-
tion captured by language embeddings trained on
large data sets using neural models. There is some
debate as to whether embeddings learned in these
tasks can pick up on genetic signal (Ostling and
Tiedemann, 2017; Tiedemann, 2018), or whether
the information learned represents structural simi-
larity (Bjerva et al., 2019). The majority of work
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of language embeddings involves models trained
on large parallel corpora. Meloni et al. (2019) ap-
proach the issue of sound change using a GRU-
based neural machine translation model with soft
attention to reconstruct Latin forms from contem-
porary Romance reflexes; the authors employ lan-
guage embeddings, but do not provide an analysis
of the information captured by these embeddings.
Phylogenetic approaches to sound change and the
reconstruction of word forms incorporate a highly
articulated genetic representation of language re-
latedness (Hruschka et al., 2013; Bouchard-Co6té
et al., 2013), but employ simplified representa-
tions of sound change in comparison to what can
be captured by recurrent neural networks; at the
same time, phylogenetic work explicitly models
intermediate stages of change, a potential chal-
lenge for RNNs, which are better suited to learn-
ing patterns resulting from the telescoping of mul-
tiple changes. Related work seeks to disentan-
gle genetic and areal pressures in shaping cross-
linguistic patterns (Daumé III, 2009; Murawaki
and Yamauchi, 2018; Cathcart, 2019, 2020b,a).

In general, while the signal learned by embed-
dings can be analyzed via visualization techniques
(Maaten and Hinton, 2008), it is a challenge to link
the behavior of embeddings to individual features
in the data analyzed. This difficulty undoubtedly
stems in part from the fact that embeddings are
generally continuous, lacking the sparsity or dis-
creteness needed to identify the behavior of the
neural model when features are active or inactive.
This issue has been addressed by the development
of de-noising approaches designed to induce spar-
sity (Subramanian et al., 2018).

Binary latent variables are of key interest to lin-
guistic questions, but pose many challenges for
inference. Binary latent variable models such
as the Indian Buffet Process (IBP, Ghahramani
and Griffiths, 2006) have been used in some ap-
plications in computational phonology and typol-
ogy (Doyle et al., 2014; Murawaki, 2017) using
a combination of Gibbs Sampling and updates
from the Metropolis-Hastings algorithm or Hamil-
tonian Monte Carlo, but it is not clear that these
inference procedures are scalable to neural mod-
els. Discrete variables pose problems for dif-
ferentiability in gradient-based optimization algo-
rithms; marginalizing out all possible combina-
tions of binary variables is generally unfeasible
for binary latent variables. Variational approaches



have attempted to circumvent this issue via the
concrete (alternatively, Gumbel-Softmax) distri-
bution (Maddison et al., 2017; Jang et al., 2017),
which extends the reparameterization trick to cat-
egorical distributions and which produces gradi-
ent estimates that have lower variance than stan-
dard estimation techniques (Williams, 1992) but
are still biased; subsequent approaches reduce bias
but are less straightforward to implement (Grath-
wohl et al., 2018; Liu et al., 2019).

While concrete-distributed versions of the IBP
have been used in neural models (Singh et al.,
2017; Kessler et al., 2019), this work is limited
to variational autoencoders, which use amortized
variational inference to learn latent representa-
tions from the data via a global inference net-
work; encoder-decoder mechanisms with attention
like the one used in this paper cannot exploit this
property of the data; training the latent variable
with stochastic variational inference, while theo-
retically possible, is considerably more difficult
(Kim et al., 2018). As an alternative, we use
straight-through (ST) embeddings (Bengio et al.,
2013; Courbariaux et al., 2016) in a maximum
likelihood framework. Straight-through layers are
discrete but have underlying continuous weights;
model output is predicted on the basis of the dis-
crete representation, while model loss is differen-
tiated with respect to the continuous underlying
weights. While this approach has the same prob-
lems with biased estimates as the concrete dis-
tribution, it is straightforward to implement. We
compare the quality of straight-through embed-
dings to embeddings with no activation and em-
beddings with sigmoid activation.

4 Data

Our data set consists of Proto-Slavic etyma and
corresponding reflexes in medieval and mod-
ern Slavic languages taken from a digitized ver-
sion of a Slavic etymological dictionary (Derksen
2007; for alternative reconstructions see Holzer
1995; Andersen 1998). In order to minimize
the chance of introducing morphologically non-
congruent forms into our data set, we extracted
the first form provided for each Slavic language
in each entry, since these are most likely to agree
morphologically with the Proto-Slavic headword.

We converted forms in modern Slavic lan-
guages to a narrow phonetic representation us-
ing IPA transcriptions from Wiktionary (https:
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//www.wiktionary.org), which were used
to train a neural encoder-decoder; these models
were used to obtain IPA transcriptions for forms
not in Wiktionary, and a portion was checked man-
ually. In several cases we reconciled sources used
in the etymological dictionary (e.g., PleterSnik,
1894) with contemporary standardized orthogra-
phies, and made use of phonetic descriptions for
languages where the training data were problem-
atic (Schuster—gewc, 1968; Lencek, 1982; Scat-
ton, 1984; Comrie and Corbett, 1993; Ternes and
Vladimirova-Buhtz, 1990; Landau et al., 1995;
Sustarsi¢ et al., 1995; Dankoviovd, 1997; Jassem,
2003; Gussmann, 2007; Stadnik-Holzer, 2009;
Hanulikova and Hamann, 2010; Mojsijenko et al.,
2010; Yanushevskaya and Bunci¢, 2015; Howson,
2017, 2018; Pompino-Marschall et al., 2017). For
the medieval languages Old Church Slavic and
Church Slavic, orthographic forms were converted
to a broad phonemic transcription based on Lunt
(2001). Suprasegmental features were marked for
all modern languages (pitch accent for Slovene
and BCS and primary stress for the remainder; for
consistency, we chose to mark primary stress on
monosyllables in stress-timed languages). We ex-
cluded languages with fewer than 100 forms in the
etymological dictionary (this resulted in the omis-
sion of Macedonian, Polabian and Slovincian).

We took additional steps to remove morpholog-
ical mismatches in the data set. For Bulgarian
verbs, which reflect the Proto-Slavic 1sg present
in their citation form, we replaced the Proto-Slavic
headword (the infinitive form by default) with a
morphologically congruent form, and excluded a
small number of forms based on athematic verbs.
Additionally, Proto-Slavic adjectives are always
given in the nominal or short form, although con-
temporary Slavic languages often reflect the so-
called long form, which arose from the addition
of an inflected element *-ji to the ending; we con-
verted short Proto-Slavic adjectives to their long
form in the appropriate contexts. We tried to
ensure that Proto-Slavic verbs matched their re-
flexes according to the presence/absence of re-
flexive morphology and preverbs. Additionally,
the original data source contains multiple gen-
der inflections for certain Proto-Slavic etyma (e.g.,
*abliko n., *ablika f., and *ablikd m. for ‘ap-
ple’), which are linked to the same reflexes irre-
spective of the reflexes’ gender; for such forms, we
discarded etymon-reflex pairs with mismatched
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[ Language | Glottocode | # reflexes |
Russian (Rus) russ1263 1572
Slovene (SIn) slov1268 1462
Serbo-Croatian (BCS[M]) | soutl528 1434
Czech (Cze) czecl258 1377
Polish (Pol) polil260 1282
Slovak (SIk) slov1269 1091
Old Church Slavic (OCS) | churl257 1097
Bulgarian (Bul) bulg1262 950
Church Slavic (CS) churl257 392
Ukrainian (Ukr) ukral253 301
Upper Sorbian (USo) uppel395 243
Lower Sorbian (LSo) lowe1385 120
Belarusian (Bel) belal254 79
Total 11400

Table 1: Number of forms in each language in data set,
along with closest matching glottocodes.

gender. Ultimately, this process yielded 11400
forms in 13 languages (see Table 1), and allowed
us to rid the data set of a large number (albeit not
the entirety) of morphological mismatches.

5 Method

To learn mappings between Proto-Slavic etyma
and the Slavic reflexes that descend from them,
we use an LSTM Encoder-Decoder with Oth-
order hard monotonic attention (Wu and Cotterell,
2019), trained on all languages in our data set.
The basic model architecture used for the exper-
iments in this study has the following structure
(schematized in Figure 1): a trainable language-
level embedding is concatenated to a one-hot rep-
resentation of each input segment at each input
time step; each concatenation is fed to a Dense
layer (with no activation) to generate a embed-
ding for each time step that encodes information
about the input phoneme and language ID of the
reflex; these embeddings subsequently are fed to
the encoder-decoder in order to generate the out-
put. The parameters of the encoder-decoder archi-
tecture are shared across languages in the data set;
the sole language-specific variable employed is the
language-level embedding fed to the model.

In all experiments, we set the dimension
of the language-level embedding and the lan-
guage/character embedding to 128, and the hidden
layer dimension to 256. In our experiments, we
employ different representations of the language-
level embedding, including a dense layer with no
activation (DENSE model), a dense layer with sig-
moid activation, (SIGMOID model) and a dense
layer with straight-through activation (ST model),
which uses the Heaviside step function (negative
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Figure 1: Basic schema of architecture used in this pa-
per; for each input-output pair X;,y;, an embedding
associated with the language ID for index ¢ is concate-
nated to a one-hot representation of the input.

values map to 0, non-negative values to 1). We
train our model for 200 epochs with a batch size
of 256 using the Adam optimizer with a learning
rate of .001 with the objective of minimizing the
mean categorical cross-entropy between the pre-
dicted and observed distributions of the output. To
evaluate model performance, we carry out K -fold
cross-validation (K = 10), randomly holding out
10% of the forms in each language, and greed-
ily decoding the held-out forms using the trained
model. For additional analyses regarding the in-
terpretability of the embeddings learned, we train
the model on all forms in the data set. Models are
implemented in Keras (Chollet, 2015) and Larq
(Geiger and Team, 2020).!

6 Results
6.1 Accuracy

We assess the accuracy of each model by gener-
ating held-out forms on the basis of the language
ID of the form and the Proto-Slavic etymon from
which the form descends, greedily decoding on the
basis of the trained model. We measure accuracy
in terms of word error rate (WER), which gives the
proportion of incorrectly generated forms, and the
phoneme error rate (PER), which we define as the
Levenshtein edit distance between generated and
ground truth strings divided by the length of the
longer form. Accuracy measures are found in Ta-
ble 2. The ST model shows the best performance,

'Code accompanying this paper is available at

https://github.com/chundrac/slav-dial/
tree/master/SIGMORPHON_2020
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WER | PER
Dense 0.535 | 0.143
Sigmoid | 0.559 | 0.151
ST 0.530 | 0.140

Table 2: Mean word error and phoneme error rate for
each model

followed by the Dense and Sigmoid models. Fig-
ure 2 shows WER and PER for each model plot-
ted by the log number of training examples for
each language in our data set. There is at best a
very weak negative correlation between error rates
and training example frequencies; the worst per-
formance seems to be restricted to four languages
(Belarusian, Lower Sorbian, Ukrainian, and Upper
Sorbian), which vary in training data frequency,
but in our impression posed the most difficulties
for phonetic conversion. Old Church Slavic and
Church Slavic show the highest accuracy; forms
in these languages tend to be close to their Proto-
Slavic ancestral forms,? and were straightforward
to convert to IPA.

6.2 Error analysis

6.2.1 Quantitative error analysis

We wish to obtain a fuller picture of the errors
made by our models, and in particular, whether
different models produce different types of errors.
We analyze errors according to a taxonomy in-
spired by Gorman et al. (2019). At a high level,
errors can be divided according to whether they
stem from mistakes in the data or are a result
of model idiosyncrasies. Errors in the data (tar-
get errors) largely consist of morphologically non-
congruent etymon reflex pairs that we were un-
able to detect a priori: for instance, the Slavic et-
ymon *dilti ‘to hollow, chisel’ is paired with re-
flexes such as Czech dlbsti, which contains the
cluster -bs- due to analogical influence; similarly,
the etymon *majati ‘wave, beckon’ (inf.) is paired
with OCS namaiaaxg (3pl impf.). Additionally,
there exists the possibility of doublet reflexes in
contemporary Slavic languages due to dialect bor-
rowing (free variation errors), e.g., Russian éblako
from Church Slavic (Vasmer, 1953-1958). Incor-
rect phonetic conversion is another source of er-
rors of this type.

2Note that according to the common practice in etymolog-
ical dictionaries, OCS snd CS forms are given in a normalized
form not reflecting regional differences.
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In terms of linguistic errors that are not direct
artifacts of our data set, we are interested in the
degree to which the models’ behavior results in
a specific set of error pattern types. We wish to
measure the extent to which models introduce er-
rors when decoding forms in a given language due
to overgeneralization on the basis of forms seen in
the training data for the SAME LANGUAGE. For
instance, all models fail to learn the Upper Sor-
bian development *pr > [p[], erroneously gener-
alizing the change *r > [R] to an incorrect envi-
ronment (e.g., PSI *presti ‘spin’ > ['pRjasfj], ex-
pected ['pjasa]). Additionally, because our model
leverages global information shared across lan-
guages along with language-specific information,
errors in one language involving the application
of a sound law from a DIFFERENT SLAVIC LAN-
GUAGE are a potential concern. For example,
the Sigmoid model generates the erroneous BCS
reflex [léﬁgaeti] ‘to fly’ (< PSI *letéti, expected
[letjeti]); [ee] is attested only in OCS, CS, Rus-
sian, and Slovak. Of additional interest are errors
where the model produces a rule that is unattested
across the data set, and hence UNMOTIVATED by
the data. For instance, the Sigmoid model gener-
ates BCS [ppé:ta] (< PSI *peta ‘heel’, expected
[pé:ta]); word-initial [pp-] is unattested in our data
set, and the origin of this error is unclear.

We quantitatively assess the issues enumerated
above in the manner described below. To assess
the prevalence of target errors, we measure the ex-
tent to which models agree in terms of the data
points for which poor performance is exhibited.
We take this agreement as a proxy for errors in the
data; if the same data points cause problems across
models, this poor performance may be an artifact
of morphological mismatches in the data or fewer
examples in the training data than needed to learn
the patterns for the data points in question. The
agreement matrix in Table 3 shows that agreement
levels are quite high, indicating that some errors
may be due to artifacts of the data used.

To gain an overview of the error types made by
the model, we use the attention mechanism of the
trained models to obtain alignments between all
Proto-Slavic etyma and attested reflexes as well as
between Proto-Slavic etyma and erroneously pro-
duced reflexes. We extract sound changes operat-
ing between Proto-Slavic and daughter languages
from these alignments (e.g., PSI *o > Slovak o),
which indicate whether a given edit is attested in
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Figure 2: PER (top) and WER (top) values (y axis) plotted by the log number of training examples for each
language (x axis), for Dense, Sigmoid and ST models (left to right)

Model Dense | Sigmoid | ST
Dense — 0.789 | 0.812
Sigmoid | 0.824 — 0.827
ST 0.803 | 0.783 —

Table 3: Proportion of word errors produced by each
model (rows) shared with other models (columns)

Model SL OL U

Dense 0.551 | 0.105 | 0.342
Sigmoid | 0.593 | 0.101 | 0.305
ST 0.617 | 0.101 | 0.281

data set where at least one of the three models
produced an error. Roughly 15% of the forms
surveyed contain some sort of morphological mis-
match; many of these are trivial one-off analogi-
cal idiosyncrasies. In some cases, loanwords un-
marked in the dictionary can be detected (cf. the
example of Russian ¢blako mentioned above).
Annotated error types that occur more than once
across all models include incorrect accent type
(Dense: 18, Sigmoid: 12, ST: 10), accent mis-
placement (Dense: 40, Sigmoid: 40, ST: 32),
consonant mismatches (Dense: 139, Sigmoid:

Table 4: Proportion of errors produced by models that
are present in the same language (SL), other languages
(OL), or are unmotivated (U)

a language (irrespective of conditioning environ-
ment). We automatically annotate each erroneous
edit according to whether it is attested in the same
language as the decoded form in which it occurs
(same language), if not, whether it is attested in an-
other Slavic language (other language), or finally,
if it is not attested in any Slavic language (unmo-
tivated). Table 4 shows proportions of these error
types produced by each model; the Sigmoid and
ST models produce more other-language and un-
motivated errors than the Dense model.

6.2.2 Qualitative error analysis

We present results of a detailed error analysis in-
volving 422 forms spanning all languages in the
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161, ST: 149), vowel quality mismatches (Dense:
192, Sigmoid: 219, ST: 195), vowel length mis-
matches (Dense: 35, Sigmoid: 47, ST: 31), and
general segmental mismatches involving the erro-
neous substitution of a vowel for a consonant, or
vice versa (Dense: 85, Sigmoid: 81, ST: 68). The
ST model’s overall higher performance bears out
the larger-scale analysis of errors presented in the
previous section.

Our manual error analysis was carried out by a
single specialist; future research will involve more
detailed error analyses carried out by multiple spe-
cialists in order to gauge inter-annotator reliability.

6.3 Genetic signal in embeddings

We wish to measure the degree to which the
language-level embeddings learned by each model
reflect received wisdom regarding the dialectal
makeup of the Slavic languages. As stated previ-
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Figure 3: Reference phylogeny of Slavic languages and neighbor-joined trees from embeddings for Dense, Sig-

moid, and Straight-Through models (left to right)

ously, languages employed in this paper are tra-
ditionally divided among East, South and West
Slavic groups. To assess the signal contained
by the embeddings, we generated trees from co-
sine distances between pairs of language embed-
dings learned by each model using neighbor join-
ing (NJ, Saitou and Nei, 1987) as implemented in
the R package ape (Paradis et al., 2019). These
trees can be found in Figure 3 alongside a ref-
erence topology from Glottolog (Hammarstrom
et al., 2017). The Sigmoid model’s embeddings
show the highest agreement with the Glottolog
tree; the main discrepancies found are the place-
ment of Bulgarian outside of South Slavic, as
well as the placement of the Lechitic languages
Polish, Upper Sorbian and Lower Sorbian within
East Slavic. The ST embeddings show mixed
performance; certain West and South Slavic lan-
guages are grouped correctly, but a large number
of taxa are misplaced. We used the R package
Quartet (Smith, 2019) to measure the gener-
alized quartet distance (Pompei et al., 2011) be-
tween the reference tree and the trees constructed
from the embeddings, equal to the number of four-
taxon groups resolved differently across the two
trees, divided by the number of resolved four-
taxon groups found in the reference tree; lower
values indicate greater agreement (Dense: 0.322,
Sigmoid: 0.247, ST: 0.368). It is possible that
the ST model shows low agreement with the ref-
erence phylogeny but high accuracy because it has
succeeded in detecting areal features that conflict
with the traditional tripartite subgrouping. Further
investigation into the treelikeness of each network
(Wichmann et al., 2011) is needed in order to prop-
erly address this issue.

6.4 Interpretation of embeddings

A common goal of neural modeling with discrete
latent variables is to learn sparse interpretable fea-
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Figure 4: Active dimensions (white cells) in ST lan-
guage embeddings

tures. Ideally, activating or deactivating a single
binary latent variable should correlate with the
presence or absence of a meaningful feature in
the model’s output. Inducing the level of sparsity
needed to generate such latent variables is an on-
going issue in the deep learning literature (Singh
et al., 2017). Our models have not learned mean-
ingful features in the sense that turning a single
variable “on” or “off” can produce a meaningful
feature of Slavic dialectology (e.g., the presence of
liquid metathesis/pleophony); these processes ap-
pear to be distributed across multiple latent binary
variables.

As shown in Figure 4, language-level straight-
through embeddings are far from sparse; of the
128 embedding dimensions, only 1 is inactive
across languages. Individual language embed-
dings contain between 32 and 61 active dimen-
sions. Preliminary attempts to turn individual di-
mensions “on” and feed the latent representation
to the encoder-decoder along with a Proto-Slavic
input do not produce interpretable or coherent re-
sults; it appears to be the case that it is not indi-
vidual dimensions, but interactions between them,
that influence the behavior of the decoder.

6.4.1 Nearest neighbors

Feeding all possible 2'?® combinations of embed-

ding values to the model is computationally infea-
sible, though it might allow us to discover which
feature combinations are responsible for certain
types of behavior of the encoder-decoder. In or-
der to gain a better understanding of the behavior
of these dimensions individually and as a group,
we explore the NEAREST NEIGHBORS in embed-



ding space of reflexes for languages in our data set
by altering the values of each variable in our lan-
guage embeddings, and feeding these altered em-
beddings to the model architecture along with a
Proto-Slavic etymon and observing the set of re-
sulting outputs. Specifically, we take language-
level embeddings and alter each of the embed-
ding’s 128 dimensions.

By feeding these nearest neighbors to the
encoder-decoder along with a Proto-Slavic ety-
mon, it is possible to see how perturbations of
an embedding result in different outputs from the
expected contemporary Slavic reflex. In gen-
eral, different perturbations often result in the
same output form, indicating that the embed-
ding space is perhaps less sparse than necessary,
and more compact representations can be learned
without losing information. To give a concrete
example of this phenomenon, the nearest neigh-
bors of Polish ['midwo] ‘soap, lather’ (< PSI
*mydlo) in embedding space yield only thirteen
unique forms ([ 'milo], ['midlo], [mi:dlo], [ midwo],
[mi:lo], ['midlo], [mille], [millo], [milo], [milo],
['milo], [mi:]o]); interestingly, there is no evidence
for the otherwise naturalistic and plausible sound
change *dl > [1I] in our data set.

Based on a qualitative appraisal of these near-
est neighbors, it does not appear to be the
case that the ST model has learned to entirely
disentangle orthogonal developments in histori-
cal phonology. The unique nearest neighbors
of Russian [mole'ko] ‘milk’ (< PSl *melko),
[mleko], ['mleko], [mlé:ko], [mlr'ko], [mléko],
['mleko], [mole'’ko] and [mle'ko], appear to show
that our model learns patterns of pleophony/liquid
metathesis and vowel change jointly, rather than
learning disentangled abstractions (though inter-
estingly, the same word in Polish has the neighbors
['mi1lko] and [mlir'ko], showing metathesis inde-
pendent of vowel quality). It is not clear, however,
that this behavior goes against the received wis-
dom of Slavic linguistics; the operation of liquid
metathesis or pleophony among Slavic languages
is generally thought to be a change that has an
early common origin but developed in different
dialect-specific directions (Shevelov, 1964). Ul-
timately, this architecture shows the potential to
generate typologically meaningful (i.e., naturalis-
tic) but also novel representations of hypothetical
Slavic reflexes.
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6.4.2 Sampling from the latent space

An issue that arises in the use of latent variable
models, particularly in the context of linguistic
typology, concerns the coherence of the repre-
sentations that they learn. If we randomly tra-
verse our models’ latent variable space or inter-
polate between representations, how likely are we
to encounter a plausible unattested sister language
of the languages attested in our data set? We
briefly explore this question by randomly sam-
pling 100 embeddings from variously parameter-
ized distributions and feeding them to our models,
along with a set of 100 randomly chosen Proto-
Slavic etyma. For each etymon, we feed zero-
mean Gaussian samples with standard deviation
o € {.01,.1,1,10} to the Dense model; symmet-
ric Beta samples with shape parameters o = § €
{.01,.1,1,10} to the Sigmoid model; and Bino-
mial samples with probability p € {.2,.4,.6,.8}
to the ST model (all samples have the same dimen-
sion as our learned embeddings). Qualitatively
speaking, output forms randomly generated by the
ST model are consistently well formed and coher-
ent across parameterization regimes. Conversely,
when o is greater than .01 (roughly equivalent to
the empirical standard deviation of the learned em-
beddings), the Dense model often generates unre-
alistic strings (e.g., [btl':H3]), and when o is very
small, forms are coherent but there is virtually no
variation; for the Sigmoid model, the strings be-
come more realistic looking as @ = [ increases
(the majority of values for the learned Sigmoid
embeddings are close to .5). To highlight a related
discrepancy, we observe the average number of
unique outputs generated by each regime in each
model (Dense: 3.21, 24.02, 93.08, 61.3; Sigmoid:
96.23, 94.14, 67.39 22.74; ST: 21.3, 24.3, 24.06,
20.1); the quantity of unique outputs stays con-
stant across all regimes for the ST model, along
with their quality.

Additionally, we wish to explore the extent to
which samples from latent variable space gener-
ate realistic sound changes and plausible sound
patterns. While certain diachronic trajectories
can lead to the emergence of “crazy” rules (Bach
and Harms, 1972; Buckley, 2000) and unnatu-
ral phonotactic restrictions (Begus§ and Nazarov,
2017), we might expect the relatively infrequent
nature of these phenomena to somehow be cap-
tured by the behavior of models like the ST
model. To address this question, we feed sets



of hypothetical well-formed Proto-Slavic phono-
logical neighbors (generated by taking 12 etyma
from our data set and generating echo-forms to
create a cohort of forms differing according to
initial *p-/t-/k-/b-/d-/g-; we exclude hypothetical
forms with velar-front vowel sequences, which
would have been affected by palatalization) to
the ST model, randomly sampling binary latent
embeddings from the binomial distribution with
probabilities {.2,.4,.6,,8}. For each probabil-
ity regime, we attempt to evaulate the relative
frequency of unnatural sound patterns displayed
by these hypothetical forms’ descendants; if our
model embodies not only plausible but proba-
ble behavior, we predict that these etymologi-
cal phonological neighbors, which differ only ac-
cording to the word-initial consonant, should fre-
quently yield similar echo-forms, and that other
patterns may arise less frequently. For each pair
of outputs within each cohort (with stress mark-
ing removed), we divide the number of agreeing
final segments by the mean of the two strings’
lengths, and report the proportion of pairs for
which this value is greater than .5 (indicating
greater agreement); these values are 0.427, 0.546,
0.574, and 0.526 for each respective probability
regime, indicating that generated outputs tend not
to be very echo-like. To exemplify, a represen-
tative sample output for *{p,t,b,d}irti comprises
the forms ['pyf;;], ['trt], ['by@], ['drt]. While long-
distance assimilatory and dissimilatory processes
operating between the left and right word edge
are not unknown cross-linguistically, we believe
that changes where differences in word-initial seg-
ments trigger divergent word-final reflexes should
be rare, rather than typical. Further refinement of
metrics designed to assess the validity of output
patterns is much needed.’

From this small and rather premature investi-
gation, it appears that the latent variable design
space represented by the ST model generates co-
herent, realistic-looking output, but the frequency
distributions of patterns in its output may not re-
flect cross-linguistic frequency distributions. A
more in-depth analysis along these lines is outside
the scope of this paper, and methods seeking to

3Indeed, taking the proportion of agreeing final segments
as a measure of naturalness would classify changes resulting
from certain types of tonogenesis to be unnatural, e.g., *pa,
*ba > Vietnamese pa, pa (Haudricourt, 1954), since dissim-
ilarity in initial consonants often leads to dissimilarity at the
right word edge.
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derive typological generalizations should include
data from multiple families; at the same time, the
issues raised here potentially bear on our under-
standing of the diachronic basis of synchronic pat-
terns in phonology.

7 Discussion and outlook

This paper investigated the performance of multi-
ple neural models in capturing patterns of sound
change across Slavic languages. We found that a
model with binarized straight-through language-
level embeddings outperformed other models in
terms of accuracy, and shows great potential for
learning coherent and interpretable information re-
garding sound change. We found that the discrete
features learned by our model appear for the most
part to correspond to meaningful, realistic varia-
tion in sound patterns, though representations are
not particularly sparse. Additionally, randomly
sampling from discrete latent space tended to con-
sistently generate coherent output; the preliminary
attempts that we made to assess the likelihood of
observing these samples in naturalistic contexts
can be expanded considerably.

We used straight-through embeddings as a low-
cost alternative to more involved means of train-
ing discrete latent variables. In the immediate
future, we plan to extend our approach to make
use of variational approaches, the flexibility of
which may help in inducing sparsity in order to
learn more meaningful, realistic representations
(there is additionally room for exploration of sim-
pler approaches that we did not make use of in
this paper, such as dropout regularization); how-
ever, since our encoder-decoder model is different
from the autoencoding models used in previous
work, directly extending these methods presents
a challenge that require considerable experimen-
tation to overcome (an early attempt to adopt the
IBP prior of Singh et al. 2017 was unsuccessful,
as the monotonically decreasing prior probabilities
rarely yielded non-zero values; thus far, attempts
to weight the KL divergence term have not yielded
success). Nevertheless, as low-variance, low-bias
techniques for inferring discrete variables in neu-
ral models progress, we believe that they will be
an increasingly valuable means of capturing mean-
ingful, interpretable features in multilingual neural
tasks like this paper’s.
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