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Abstract

This paper proposes a method for the joint opti-
mization of constraint weights and symbol ac-
tivations within the Gradient Symbolic Com-
putation (GSC) framework. The set of gram-
mars representable in GSC is proven to be a
subset of those representable with lexically-
scaled faithfulness constraints. This fact is
then used to recast the problem of learning
constraint weights and symbol activations in
GSC as a quadratically-constrained version
of learning lexically-scaled faithfulness gram-
mars. This results in an optimization problem
that can be solved using Sequential Quadratic
Programming.

1 Introduction and background

This paper proposes a method for the joint optimiza-
tion of constraint weights and symbol activations
within the Gradient Symbolic Computation (GSC)
framework. The set of grammars representable in
GSC is proven to be a subset of those representable
with lexically-scaled faithfulness constraints. This
fact is then used to recast the problem of learning
constraint weights and symbol activations in GSC
as a quadratically-constrained version of learning
lexically-scaled faithfulness grammars. This re-
sults in an optimization problem that can be solved
using Sequential Quadratic Programming.

The remainder of this paper proceeds as follows.
The rest of this section provides the relevant back-
ground on GSC, previous approaches to the same
problem, and maximum entropy grammars which
are used in the proposed model. §2 describes and
proves the relationship between GSC grammars
and lexically-scaled faithfulness constraints and
then uses this proof to develop the proposed learn-
ing algorithm. §3 illustrates with a minimal test
case of an example used through the GSC literature,
French Liaison. §4 provides a brief discussion and
concludes.

1.1 Phonological grammars in Gradient
Symbolic Computation

Gradient Symbolic Computation is a general cogni-
tive framework in which structures are represented
as gradient blends of multiple symbolic representa-
tions. Smolensky and Goldrick (2016) adapt stan-
dard optimality-theoretic constraints and optimiza-
tion procedures to allow for inputs which consist of
blends of symbolic structures. They propose that
each position in the input is associated with a blend
of discrete units, each of which is associated with
an activation. In phonological terms an input may
be composed of a series of positions, each of which
is associated with a set of phonemes with different
degrees of activation. The evaluation of constraints
that make reference to the input, traditionally only
faithfulness constraints, is done with respect to the
activations of individual segments in the gradient
representation. So if this partially active /t/ is fully
realized, then a constraint like Dep, which penal-
izes epenthesis, will be violated to the degree that
reflects the extent of this epenthesis: in this ex-
ample, a violation of strength 0.3. Phonological
grammars that allow for gradient inputs will hence-
forth be referred to as gradient symbolic grammars
(GS grammars).

GS grammars have been employed to capture
phonological phenomena that are difficult for tradi-
tional representational theories, including opacity
(Mai et al., 2018), and exceptionality (Zimmer-
man, 2018; Hsu, 2018)/subregularity (Rosen, 2016;
Smolensky and Goldrick, 2016).

1.2 Learning gradient symbolic grammars

GS grammars present a unique learning problem.
In standard constraint-based grammars a phonolog-
ical learner must discover the discrete underlying
forms of the target language as well as the rank-
ing or weighting of the constraints. In GS gram-
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mars the learner has to learn these things as well,
while also learning the activations of all symbols
at all positions in the underlying form. The com-
plete GS grammar learning problem, discovering
the discrete units, their activations, and the con-
straint ordering, has not been addressed in previous
literature and will not be addressed here. Previous
work has however looked at different subparts of
this problem, including the learning of activations
in isolation (Rosen, 2019) and the parallel learning
of activations and constraint weights (Rosen, 2016;
Smolensky et al., 2020). This parallel problem is
the topic of the present work.

Rosen (2016) presents an approach to jointly op-
timizing constraint weights and input activations
based on simulated annealing which is able to
successfully learn a grammar capturing Japanese
rendaku. As will be discussed below, the joint
optimization of weights and activations is non-
convex so simulated annealing is a promising ap-
proach. This work will not attempt to improve on
the empirical performance of a simulated anneal-
ing model, but rather it will propose an alternative
approach which is more closely related to gradient-
based methods used elsewhere in the phonolog-
ical learning literature (Goldwater and Johnson,
2003; Boersma and Pater, 2008; Hayes and Wilson,
2008).

Smolensky et al. (2020) apply the Gradual Learn-
ing Algorithm (GLA) for Harmonic Grammar
(Boersma and Pater, 2008), which is based on the
Perceptron Update Rule (Rosenblatt, 1958), to the
problem of learning both constraint weights and
input activations. They report promising results,
however the convergence proof for the GLA does
not necessarily apply to the case of GS grammars,
where multiple interacting parameters are being
simultaneously optimized. As will be discussed
later, activations add quadratic terms to the Har-
mony function. This means that Harmonies are
not linear in the parameters and consequently the
relationship between Harmonic Grammar and the
Perceptron does not hold between GS grammar and
the Perceptron.

This work presents a third approach to jointly
learning activations and constraint weights, based
on the fact that blended inputs represent a scaling
function on faithfulness violations and on previous
work which has explored the learning of scaled
faithfulness. The presented model is also not guar-
anteed to converge on a global optimum, so it does

not improve on the GLA approach in that respect.
It does however have the benefit of casting the
GS grammar learning problem as an explicit and
well-understood optimization procedure while also
relating it to a familiar problem, learning lexically-
scaled constraint weights (Hughto et al., 2019).

1.3 Maximum entropy grammars

Unlike previous work in GSC, the learning algo-
rithm in the present work will make use of Maxi-
mum Entropy (MaxEnt) Grammars (Goldwater and
Johnson, 2003). A MaxEnt grammar is a log-linear
model which allows for the probabilistic interpreta-
tion of a Harmonic Grammar (HG). In Harmonic
Grammar the Harmony H of a candidate is the
dot-product of its constraint violations and the con-
straint weights. Constraint violations are generally
treated as strictly negative and weights as strictly
positive, so given an input x a candidate y is opti-
mal if it has the highest Harmony score in the set
of all competing candidates Y(x).

H(x,y) =
∑
i

wici(x, y) (1)

A MaxEnt probability distribution is computed
by applying the softmax function to the set of Har-
monies.

p(x) =
eH(x,y)∑

γ∈Y(x) e
H(x,γ)

(2)

MaxEnt grammars are used for the learning al-
gorithm purely because it is intuitive to define an
interpretable loss function when model outputs are
a probability distribution, as will be discussed in
§2.2. This is an expository choice: the learning
algorithm presented below could be equivalently
described as learning a Harmonic Grammar by min-
imizing a loss function that incorporates the soft-
max function. Because softmax is monotonic, a
MaxEnt grammar makes the same prediction about
the most well-formed candidate as its correspond-
ing Harmonic Grammar.

2 Optimizing gradient symbolic
grammars

2.1 Gradient symbolic computation as
lexically scaled faithfulness

The observation driving the proposed learning al-
gorithm for GS grammars is that GS grammars can
be rewritten as a special case of lexically-scaled
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faithfulness (LSF) grammars. An LSF grammar
(Linzen et al., 2013) is a grammar in which all mor-
phemes come with a set of scales which combine
additively with constraint weights. This section
aims to prove that the set of expressible GS gram-
mars is a subset of the expressible LSF grammars.

In this work I assume all outputs are discrete
structures and consequently only faithfulness con-
straints are gradiently evaluated1. Within the
faithfulness constraints, Smolensky and Goldrick
(2016) describe two classes in terms of how gra-
dient activations in the input influence evaluation.
Constraints belonging to the PROPORTIONAL class
are violated to a degree proportional to the activa-
tion level of a deleted feature or segment, for exam-
ple MAX constraints in Smolensky and Goldrick.
Constraints belonging to the COMPLEMENT class
are violated to a degree proportional to one minus
the activation level of a realized feature or seg-
ment, for example DEP constraints in Smolensky
and Goldrick. Introducing gradient inputs to the
grammar results in a rescaling of faithfulness con-
straint violations and in no effect on markedness
constraint violations2.

Consider the simple GS tableau in (1), where α
is the activation of the input segment b, M is the
weight of a PROPORTIONAL constraint, and ∆ is
the weight of some COMPLEMENT constraint. Two
hypothetical candidates are competing on which
of the two constraints is violated. Note that Har-
mony is a quadratic function of the weights and
activations.

(1)
M ∆

/bα/ PROP COMP H
φ 0 1− α ∆− α∆
ψ α 0 αM

Now consider the grammar in (2), which uses
lexically scaled faithfulness (LSF) constraints. The
scales are indexed to the input morpheme(s) and
combine additively with constraint weights. So the
functional weight of PROP when evaluated on the
ith morpheme is the general weight of PROP, M ,
added with the scale brought by morpheme i, µi

1In GSC this is expressed a strong quantization constraint,
which pushes outputs into discrete states (Smolensky et al.,
2014; Cho et al., 2017)

2 Zimmerman (2018) advocates for gradient outputs, which
will allow for gradiently evaluated markedness constraints.
The approach outlined below can be extended to cover this by
allowing for lexically scaled markedness constraints as well

(Linzen et al., 2013). In this case Harmony is a
linear function of the weights and scales.

(2)
µi δi
M ∆

/b/i PROP COMP H
[b] 0 1 ∆ + δi
∅ 1 0 M + µi

The tableaux in (1) and (2) make identical pre-
dictions as long as the equalities in Eq. (3) hold. In
other words if these equalities are true then the two
grammars assign the exact same Harmonies to the
candidates.

∆− α∆ = ∆ + δi

αM = M + µi
(3)

Given this fact, any GS grammar can be con-
verted into an LSF grammar by replacing any
morpheme’s activation values with a set of scales.
Scales for COMP and PROP constraints can be com-
puted from activations by rearranging Eq. (3), as
in Eq. (4).

δi = −α∆

µi = αM −M
(4)

Eq. (4) proves that any function representable
with a GS grammar can be expressed with an equiv-
alent LSF grammar. The converse however is not
true – there are functions representable in LSF
grammars that are not representable in GS gram-
mars. This is be illustrated by considering how
Eq. (3) would be used to convert an arbitrary LSF
grammar into a GS grammar. Converting in this
direction requires computing activations from the
set of lexical scales. By rearranging Eq. (3), we
see that there are two ways to compute activations
from a given LSF grammar. Activations can be
computed either from the MAX constraints or from
the DEP constraints.

α =
µi
M

+ 1

α = − δi
∆

(5)

It is not possible for a single segment or feature
to have multiple distinct activation levels. An LSF
grammar is a valid GS grammar only if both meth-
ods of computing a yield the same result. So while
there is an LSF grammar for every GS grammar,
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there is not a GS grammar for every LSF grammar.
Only the subset of LSF grammars that satisfy the
equality in Eq. (6) are valid GS grammars.

µi
M

+ 1 = − δi
∆

(6)

For simplicity, Eq. (6) can be rearranged as in Eq.
(7).

µi∆ +M∆ + δiM = 0 (7)

This does not necessarily mean anything about
the linguistic expressivity of GS and LSF gram-
mars. The conversion from GS to LSF grammar
assumes that there are no limits on the constraint
set and consequently may require theoretically un-
wieldy constraints. For example in order to cap-
ture the fact that there are separate activations at
all positions in the input, there must be separate
constraints for every feature at every position in
the input. This point is ultimately unimportant for
the present work, which aims to address the re-
lationship between the mathematical, rather than
linguistic, functions that are representable in the
two theories with the purpose of leveraging this
relationship to construct a learning algorithm for
GS grammars. The next section will outline ex-
actly how this subset-superset relationship can be
used to to formulate the problem of simultaneously
learning input activations and constraint weights as
a quadratically constrained optimization problem.

2.2 Learning gradient symbolic grammars
with constrained optimization

The relationship between GS and LSF grammars
described above is useful because it allows the prob-
lem of learning constraint weights and activations
to be related to a well-understood problem, learn-
ing constraint weights and additive scales. Additive
scales are themselves a special case of another for-
malism, lexically-indexed constraints. Because the
scaled violations combine additively in the Har-
mony function, lexical scales can be represented
as indexed versions of their general form which
always incur the same number of violations as the
general form. Moore-Cantwell and Pater (2016)
show that the problem of learning lexically-indexed
constraint weights is no different than the standard
MaxEnt optimization problem and Hughto et al.
(2019) show that similar approaches can be taken
to learning additive lexical scales. So, like in stan-
dard MaxEnt (Goldwater and Johnson, 2003), the

task of learning an LSF grammar can be cast as op-
timizing the negative log-likelihood of the training
data 3, which is convex in the constraint weights.

Unfortunately, because of the subset-superset
relationship between GS and LSF grammars, the
problem of learning GS grammars is not similarly
reducible to the standard convex MaxEnt learning
problem. Rather, the GS learning problem can be
reduced to a constrained version of the LSF learn-
ing problem. Learning a GS grammar is equivalent
to learning an LSF grammar subject to the hard
constraint that the LSF grammar represents a pos-
sible GS grammar. This can be stated formally as
the optimization problem in Eq. (8), where p(x) is
computed using the standard MaxEnt probability
function in Eq. (2). The weight vector w includes:
General PROP and COMP weights M and ∆, i lexi-
cally indexed scales on PROP µ1, ..., µi, i lexically
indexed scales on COMP δ1, ..., δi, and n general
markedness constraints m1, ...,mn. The rightmost
term in the objective function is an L2 prior with
strength λ.

w = [M,∆, µ1..., µi, δ1..., δi,m
1, ...,mn]

min
w

[(
−
∑
x

log p(x)

)
+ λ || w ||2

]

Subject to:
∑
i

(µi∆ +M∆ + δiM)2 = 0 (8)

The constraint enforcing that the learned grammar
is a viable GS grammar is the equality relation-
ship in Eq. (7) summed over all input phonemes i.
The constraint is squared within the sum to prevent
positive and negative terms in the summation from
canceling out. This ensures that activations com-
puted for a given phoneme and morpheme index
from both the PROP and COMP constraints will be
guaranteed to return the same value.

There are a number of potential approaches to
constrained optimization problems like that posed
above. It is worth mentioning here why meth-
ods familiar in computational phonology will not
work. Maximum Entropy and Harmonic Grammars
are generally fit using projected gradient descent,
which is itself a method of constrained optimiza-
tion. This entails computing the weight update, in-
dependent of any constraints placed on the weights,

3Or other equivalent loss function, such as Kullback-
Leibler divergence
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and then projecting the updated weights onto the
set defined by the constraint. The use familiar in
phonology is in the enforcement non-negativity –
a restriction against negative weights which main-
tains the theoretical tenant of Optimality Theory
that constraints can penalize but not reward. In this
case projected gradient descent is effective. Not
only is the projection function simple to compute
because the nearest non-negative number to any
negative number is 0, but the space defined by the
constraint is a convex set, meaning that projected
gradient descent with this constraint has the same
convergence guarantees as standard gradient de-
scent (Levitin and Polyak, 1966). As defined in Eq.
(8) the current problem is quadratically constrained,
meaning that the set that satisfies the constraint is
non-convex and a projection function onto the set
is not easily computable. Consequently projected
gradient descent is not only not guaranteed to con-
verge, it is computationally intractable.

Another possible approach would be to treat the
constraint as a prior. One simple issue with this
is that priors are violable. Given that the goal is
learn a GS grammar, the constraint on the solution
space defined above cannot be violated. One pos-
sible workaround would be to set the strength of
the prior arbitrarily high, making it functionally
non-violable. However the intersection of the loss
function and the space satisfying the constraint is
non-convex and is not guaranteed to be connected.
Consequently gradient descent and other widely
applied optimization techniques are likely to fail.

The proposed solution is to use Sequential
Quadratic Programming (SQP), an iterative gen-
eralization of Newton’s method developed for min-
imizing a function under quadratic constraints. The
general approach is to iteratively take the quadratic
approximation of the constrained objective func-
tion at w, minimize this subproblem with quadratic
programming, and then set w to the solution. This
will yield increasingly better approximations and
therefore increasingly better solutions. On a prac-
tical note, this requires computing the first three
terms of the Taylor expansion of the objective func-
tion at a given point, meaning that it must be twice
differentiable. For detailed derivation and discus-
sion of the method see Boggs and Tolle (1995).

3 An example

To illustrate the promise of the proposed approach
to learning GS grammars, this section applies it to a

minimal example of the French liaison problem that
Smolensky and Goldrick (2016) use to motivate the
use of gradient representations in the phonologi-
cal grammar. Liaison is a phenomenon in which,
in certain syntactic contexts, a consonant surfaces
between vowel-final and vowel-initial words when
hiatus would otherwise occur. The identity of this
consonant, the liaison consonant, is not phonologi-
cally predictable. There is a long literature on the
phonological analysis on liaison and its interacting
processes, including competing analyses that pro-
pose that the liaison consonant is specified by the
first word (Tranel, 1996) and by the second word
in the sequence (Morin, 2005).

There is a class of words which are phonologi-
cally vowel initial but exceptionally do not trigger
the surfacing of a liaison consonant in environ-
ments where it is otherwise predicted to surface.
These words are always the second word in the pair
and are called the h-aspiré words, referencing the
fact that they are orthographically h-initial.

Consider the following set of French surface
forms. When petit comes together with ami, a
vowel-initial word, the liaison consonant [t] sur-
faces.

[pøti] petit + [ami] ami
‘small’ ‘friend’

[pøtitami] petit ami ‘boyfriend’

However, when petit is followed by héros, an
h-aspiré word, no liaison consonant surfaces.

[pøti] petit + [eKo] héros
‘small’ ‘hero’

[pøtieKo] petit héros ‘little hero’

The adjective [pøti] petit is associated with a
liaison t. When it occurs in isolation the liaison
consonant does not surface, however when it oc-
curs before the vowel-initial [ami] ami the liaison
consonant surfaces, preventing two adjacent vow-
els from surfacing. Despite being vowel-initial, the
h-aspiré word [eKo] héros does not trigger the sur-
facing of the liaison consonant when it surfaces
after peti.

Smolensky and Goldrick (2016) offer an analysis
of this phenomenon couched in Gradient Symbolic
Computation, which suggests that the liaison conso-
nant is specified by both the first and second word
in the pair. In their analysis both words contain
partially active edge consonants. When the words
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surface together the combined activation is enough
to get cause the liaison consonant to surface. In this
analysis h-aspiré words differ from their liaison-
participating counterparts in that they have no or
minimal activation on liaison consonants at their
left edge, preventing them from contributing to the
combined activation.

In terms of the minimal dataset above, they pro-
pose that there is a partially-activated /t/ in the
input at both the right edge of peti and at the left
edge of ami. When either word occurs in isola-
tion there is not sufficient activation of the /t/ for it
to surface. When the two words surface adjacent
to one another the combined activation of /t/ in
both words overcomes a threshold and liaison [t]
surfaces. In the h-aspiré héros there is little to no
activation on an input /t/ at the left edge. Despite
the consequence of realizing a marked vowel-vowel
sequence, the liaison [t] does not surface between
[pøti] and [eKo] because the combined activation of
the input /t/s is not enough to justify its realization.
They argue that this analysis overcomes empiri-
cal shortcomings of analyses which place the onus
of specifying the liaison consonant on exclusively
the first or second consonant, see Smolensky and
Goldrick (2016) and Smolensky et al. (2020) for
detailed discussion.

As proof of concept a GS grammar was fit to
these data using the procedure described above.
Model parameters include the weight of three con-
straints, HIATUS, MAX(t) and DEP(t), as well as
the activation levels of liaison /t/ at the left edge of
petit and at the right edge of ami and héros. MAX(t)
is a PROP constraint and DEP(t) is a COMP con-
straint. In every tableau there are two competing
candidates, one in which [t] surfaces and one in
which it does not. Activations were constrained to
being positive by adding the constraint in Eq. (9)
to the optimization procedure.

∑
i

min
( µi
M

+ 1, 0
)

= 0 (9)

In practice the Jacobian and Hessian of the ob-
jective function are estimated analytically, so the al-
gorithm described above is non-deterministic. The
quadratically-constrained optimization problem is
also generally non-convex, so variation is expected
across runs. Consequently 10 models were fit with
weights randomly initialized in [-2,0). An L2 prior
is included with λ = 0.01. Table (1) shows the
average final probability of each candidate in the

five tableaux across the 10 runs.

Candidate avg. s.d.
. [pøti] 0.999 1e-4

[pøtit] 0.001
. [ami] 0.991 0.003

[tami] 0.008
. [eKo] 0.999 2e-7

[teKo] 1e-6
. [pøtit ami] 0.980 0.009

[pøti ami] 0.020
[pøtit eKo] 0.015 0.005

. [pøti eKo] 0.985

Table 1: Average final probability across 10 runs on all
forms. . indicates the target surface forms.

The average activations of input /t/s in all words
are shown in Table (2). Recall that there are two
possible ways to compute the activations, from the
COMP or PROP constraints. To ensure that the
model works correctly, both methods of computing
activations are shown. Note that these are negligi-
bly different, confirming that the final grammar is
indeed a valid GS grammar.

COMP PROP

pøti(t) 0.296 (0.062) 0.296 (0.062)
(t)ami 0.614 (0.081) 0.614 (0.081)
(t)eKo -2e-5 (6e-5) -1e-4 (2e-4)

Table 2: Average (s.d.) activation of liaison conso-
nants in all words as computed from the ∆ and M con-
straints.

The activations suggest that the model may be
converging on a solution that resembles the anal-
ysis proposed by Smolensky and Goldrick. Petit
and ami both have a partially-activated /t/ in the
at the relevant edge, while the activation of liai-
son /t/ in héros is approximately 0. The individual
tableaux confirm that the learned analysis resem-
bles Smolensky and Goldrick’s. For simplicity, and
consistency with previous work, all tableaux will
be presented without probabilities, as HG tableaux.

While petit and ami both have partially-activated
underlying /t/s, the activation is low enough that
when either of these words occur in isolation the /t/
is not realized. This is demonstrated in Tableaux
(3) and (4).
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(3)

-13.1 -5.3 -0.4
/pøtit0.30/ DEP(t) HIATUS MAX(t) H

[pøti] 0 0 0.30 -0.12
[pøtit] 0.70 0 0 -9.59

(4)

-13.1 -5.3 -0.4
/t0.61ami/ DEP(t) HIATUS MAX(t) H

[ami] 0 0 0.61 -0.24
[tami] 0.39 0 0 -5.12

In héros the underlying liaison /t/ has a 0 activation,
so it trivially does not surface in isolation.

(5)

-13.1 -5.3 -0.4
/t0.00eKo/ DEP(t) HIATUS MAX(t) H

[eKo] 0 0 0.0 -0.0
[teKo] 1.0 0 0 -13.1

When petit and ami are realized next to one another,
their combined activation, as well as the threat of a
HIATUS violation, are enough to make the liaison
consonant surface.

(6)
-13.1 -5.3 -0.4

/pøti t0.30+0.61 ami/ DEP(t) HIATUS MAX(t) H
[pøtiami] 0 1 1.01 -5.70

[pøtitami] 0.01 0 0 -0.13

However this is not the case when petit and héros
surface together. Because héros contributes 0 acti-
vation to /t/, the cost of epenthesizing the remaining
activation needed for the /t/ to be realized does not
outweigh the cost of incurring a HIATUS violation.

(7)
-13.1 -5.3 -0.4

/pøti t0.30+0.00 eKo/ DEP(t) HIATUS MAX(t) H
[pøtieKo] 0 1 0.30 -5.42

[pøtiteKo] 0.70 0 0 -9.17

The presented learning algorithm for GS gram-
mars reliably converges on the analysis of French
liaison offered by Smolensky and Goldrick (2016)
as a motivating pattern for the inclusion of gradient
inputs in the phonological grammar. This serves
to illustrate the fact that the proposed learning al-
gorithm is capable of learning interpretable GS
grammars and has promising application in future
work, both in finding GSC analyses of linguistic
phenomena and in evaluating the learnability of
phenomena in the GSC framework.

4 Discussion and Conclusions

This paper has presented a method for the joint op-
timization of blended inputs and constraint weights
in gradient symbolic grammars. The proposed
method leverages the fact that the set of functions
representable by GS grammars is a subset of those
representable by lexically-scaled faithfulness gram-
mars to cast the GS grammar learning problem as

a constrained version of the LSF grammar learn-
ing problem. The primary aim of this work is to
introduce and justify the method, rather than dis-
cuss its implications for linguistic theory, however
points of interest to linguistic theory will be briefly
addressed here.

The subset-superset relationship that was shown
to hold between GS and LSF grammars does not
make predictions regarding the expressivity of the
two theories in terms of the linguistic phenomena
they are capable of representing. It does, how-
ever, highlight differences between the two theories
which may provide a starting point for comparing
their linguistic expressivity. For example, repre-
senting GS grammars in the LSF framework re-
quires a set of faithfulness constraints which make
reference to every position in every input. This dif-
fers from standard approaches to positional faithful-
ness, where faithfulness constraints make reference
to prosodic positions (Beckman, 1998), and may
yield pathological predictions. Consequently, de-
spite the fact that LSF grammars represent a greater
range of functions, it is likely that there are phe-
nomena that can be captured with GS grammars but
not with LSF grammars given a limited constraint
set. This is left to future work.

This work has also shown that the optimization
problem for GS grammars is likely more difficult
than the analogous problem in other frameworks
designed to capture the same types of phonological
phenomena. For example, grammars with lexically-
scaled constraints like those mentioned throughout
this paper have also been shown to capture lexical
exceptionality and subregularity but, as described,
they correspond to a convex optimization problem.
Similarly, grammars with underlying representa-
tion constraints have also been shown to be a vi-
able approach to capturing these phonological phe-
nomena (Apoussidou, 2007; Smith, 2015) and, in
learning problems like that described in this paper
present a convex optimization problem. The critical
difference between these approaches and GS gram-
mars is that Harmony function for GS grammars is
quadratic, consequently the optimization problem
is not guaranteed to be convex. It is not necessarily
the case that the complexity of the related opti-
mization problems is a valid metric along which to
compare linguistic theories. Previous work how-
ever, has made strong claims regarding the relation-
ship between the numerical optimization of Max-
Ent/HG grammars and the learning trajectories of
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human language learners (Boersma et al., 2000;
Jäger, 2007; Jesney and Tessier, 2008, 2011), in
which case there may be merit in comparing the
optimization procedure for competing theories.

The broader GSC framework offers a novel the-
ory of phonological grammars, the expressivity and
restrictiveness of which has not been thoroughly
explored. This work hopes to facilitate further re-
search by introducing a method for simultaneously
learning constraint weights and input activations
of GS grammars which both relates GS grammars
to an existing phonological framework and serves
as a tool in finding GS analyses of phonological
phenomena.
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