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Abstract

Morphological inflection in low resource lan-
guages is critical to augment existing cor-
pora in Low Resource Languages, which can
help develop several applications in these lan-
guages with very good social impact. We de-
scribe our attention-based encoder-decoder ap-
proach that we implement using LSTMs and
Transformers as the base units. We also de-
scribe the ancillary techniques that we experi-
mented with, such as hallucination, language
vector injection, sparsemax loss and adversar-
ial language network alongside our approach
to select the related language(s) for training.
We present the results we generated on the con-
strained as well as unconstrained SIGMOR-
PHON 2020 dataset (Vylomova et al., 2020).
One of the primary goals of our paper was to
study the contribution varied components de-
scribed above towards the performance of our
system and perform an analysis on the same.

1 Introduction

Morphological inflection is the process of generat-
ing varied representations of words based on sev-
eral linguistic properties(gender, tense,etc). Inflec-
tions of words retain their core meanings, however
they differ in their word structure. As mentioned
by (Faruqui et al., 2015), morphological inflections
can be generated from the root word through two
primary methods: concatenative measures and non-
concatenative measures. In the case of concatena-
tive measures, suffixes and prefixes are added to
the original word to generate various inflectional
forms of the word. Non-concatenative inflectional
forms are generated by changing the basic structure
of the original word. The generation of inflectional
forms of a word has proved to be an asset in a wide
array of NLP tasks.

Prominent languages like English, Spanish,
French, etc. have large corpora that can be utilised

to train large scale machine learning applications.
However there are several languages in today’s
world that are not as well documented. These lan-
guages are termed as “low resource” languages.
Morphological inflection has proven to be an effec-
tive tool to augment the datasets of “low resource”
languages, so that they corpora can be better mod-
eled using NLP techniques.

To this end, several studies have been done on
morphological inflection on monolingual high re-
source settings, such as in the SIGMORPHON
2016, 2017, 2018 challenges. However, the low
resource setting has been extensively studied in the
SIGMORPHON 2019 and 2020 shared task (Vylo-
mova et al., 2020). The data in these tasks consists
of the form of [I, O, T], where I, O, T stand for
input lemma, inflected form and tags respectively.
The inflected form is essentially the inflected form
of the input lemma upon applying the tags specified
by T.

In this paper, we present an overview of the
various techniques that we implemented to per-
form the task of Morphological Inflection in both
the constrained and unconstrained settings. We
start by describing the different models that we ex-
perimented with to improve our performance on
this dataset. Furthermore, we describe hallucina-
tion, sparsemax/sparseloss, adversarial language
network and language vector injection techniques
that we prototyped to improve the performance of
our system. In order to understand the impact of
each component on the performance of the system,
we perform a detailed analysis on the influence of
these techniques on varied set of languages.

2 Related Works

In recent years there has been an increase in work
in the field of extremely low resource languages.
The work recent work done in the field of mor-
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phological inflection can be divided into two main
categories: Non-neural approaches and Neural ap-
proaches.

The non-neural based approach proposed by
(Cotterell et al., 2017) has two stages, alignment
and rule generation. A prominent work that com-
bines neural and non-neural approaches is that of
(Wu and Cotterell, 2019), where they seek to incor-
porate monotonicity as an inductive bias in their
approach and develop a cubic-time based dynamic
programming approach with a greedy decoding
scheme. The paper hypothesizes that the mono-
tonic attention-based models perform worse off
because they were not jointly trained to incorporate
the alignments.

Neural based approaches have recently outper-
formed the non neural based approaches. (Faruqui
etal., 2015) introduces a neural network based strat-
egy, for the task of morphological inflection gener-
ation, for languages that are morphologically rich.
The authors introduce an encoder decoder based
architecture which makes use of character level
embeddings. (Coltekin, 2019) on the other hand
adopts the idea from transition-based parsers where
the aim is to predict the parsing actions (copy, re-
place(c), insert(c), delete) in a given state of parser.
In the recent years attention based models have
gained huge popularity in Natural Language Pro-
cessing tasks. (Peters and Martins, 2019) intro-
duce a model inspired by sparse sequence to se-
quence models with a two-headed attention mech-
anism. The attention and output distributions are
computed with Sparsemax function and Sparsemax
loss is optimized. (Anastasopoulos and Neubig,
2019) introduce yet another attention based model
which is trained on multiple languages and tries
to leverage the knowledge learnt on high resource
languages for low resource languages. The authors
propose a novel two-step attention decoder archi-
tecture. Moreover, (Anastasopoulos and Neubig,
2019) augment low resource datasets with data hal-
lucination.

3 Methodology

We implemented four variants of Sequence to Se-
quence architectures to tackle the problem of mor-
phological injection. We primarily utilize LSTM
and Transformers (Vaswani et al., 2017) to con-
struct our models. Additionally we experimented
with four techniques Hallucination (Anastasopou-
los and Neubig, 2019), Sparse Max-Loss (Peters
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and Martins, 2019), Language Adversarial Net-
work (Anastasopoulos and Neubig, 2019)(Chen
et al., 2019) and Language Vector Injection (Littell
etal., 2017).

3.1 LSTM Encoder Decoder (LSTM)

We prototyped an elementary LSTM sequence to
sequence model. We incorporated two LSTM en-
coders with each individual encoder taking the
input as the Lemma and Tags respectively. Fur-
thermore, we implemented two separate attention
heads one for the encoded representation of the in-
put Lemma and one for the encoded representation
Tags. The decoder was input the context vector and
the LSTM representations with the inflected form
being generated in an autoregressive manner. The
architecture can be seen in Figure 1.
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3.2 Transformer Encoders LSTM Decoder
(TELD)

Sequence Translation models such as Recurrent
Neural Networks or Convolutions Neural Networks
are typically trained in an encoder decoder config-
uration. Recently, the use of attention has shown
improvement in the performance of such models.
Thus we replace the LSTM encoders in the previ-
ous modules with Transformer encoder (Vaswani
et al., 2017). The rest of the architecture is the
same as presented in the LSTM model. We gen-
erate the output sequence using a LSTM Decoder.

The structure of the architecture is shown in Figure
2.
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3.3 Transformer Encoders Transformer
Decoder (TETD)

We further replace the LSTM Decoder with a Trans-
former Decoder. The two Transformer Encoders
separate disparate encoder representations for the
Lemma and Tags respectively. We concatenate the
representations generated by the two Transformer
Encoders and feed it to the output Decoder. Since
the Transformer Decoder inherently has a multi-
head attention layer, we remove the explicit atten-
tion over the encoders. An outline of the model can
be seen in Figure 3.
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3.4 Joint Transformers (TJ)

The final architecture we implement is an end-
to-end Transformer model. We concatenate the
Lemma and the Tag and feed it to the Transformer.
The Transformer encoder learns a joint represen-
tation for the Lemma and Tag. And the decoder
generates the required output. A representation of
the architecture can be seen in Figure 4.
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3.5 Hallucination (HALL)

(Anastasopoulos and Neubig, 2019) incorporated
Hallucination techniques and observed a perfor-
mance boost in their system. Since the data for low
resource language is scarce, the distribution learnt
by the model for the language doesn’t match the
true distribution. To help alleviate this problem,
we use this data augmentation technique. In this
process each part is considered as a “stem”, char-
acters inside the region are randomly substituted
with other characters without changing the over-
all length. A detailed explanation can be found in
(Anastasopoulos and Neubig, 2019).

3.6 Sparse-Max and Sparse Loss (SPARSE)

Output vocabulary space can be potentially large
with some of the characters not being used as fre-
quently in the language. Sparsemax assigns exactly
zero attention weight to irrelevant source tokens
and implausible hypotheses and is shown to re-
turn sparse posterior distributions. This makes the
model output more interpretable and can also help
to filter out large output spaces. SparseLoss is the
loss typically associated with Sparsemax and is
known to be computationally very feasible. The
incorporation of Sparse-max and Sparse loss in a
manner similar to that of (Peters and Martins, 2019)



can be seen in Figure 5.

True
Inflected

Firm
Sparse Loss

T

Inflected
Form

T

Sparsemax

.T

Decoder

Sparsemax Attention Sparsemax Attention

i f

Encoder Encoder

Lemma Tags

Figure 5: Sparse-Max and Sparse Loss

3.7 Adversarial Language Network
(ADV-LANG)

In multilingual setting and in particular trying to
transfer knowledge between related language(s)
and a target language it is sometimes useful to
learn language agnostic representations. Thus we
implement a Language Adversarial Network which
encourages the same. We extract the representa-
tions generated at the first time step and the last
time step by the Lemma encoder and concatenate
these representations. This representation is then
passed through a linear layer and a softmax layer
which produces a prediction for the Language. We
then reverse the gradient while training. An illus-
tration of the same can be seen in Figure 6.

3.8 Language Vector Injection (LVI)

(Tsvetkov et al., 2016) show that vectors which
encode information about the genetics of language
outperform simple one-hot representations. The
lang2vec released by (Littell et al., 2017) repre-
sent languages using rich typological, geographical
and phylogenetic vectors. These vectors mainly
consist of binary language facts pertaining to the
language such as if negation precedes a verb, is
it represented as a suffix, if a language is part of
Germanic family, etc. with the value of each of
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these facts represented between [0.0, 1.0]. We pro-
pose that the injection of these rich vectors into
our model may increase the performance for low
resource languages where training data is scarce
and all round characteristics of a language cannot
be learnt just from the training data.

To integrate language vectors we first extract the
lang2vec vector for a particular language. We pass
it through a two layer dense neural network. This
provides us a compact representation for the vec-
tor. We then concatenate this representation with
the output representation generated by the decoder.
We then pass this through a softmax layer and the
output character is evaluated. The integration can
be seen in figure 7.

Furthermore we conducted a set of experiments
by initializing the hidden and cell states of the
(LSTM) model with language vectors but did not
see promising results.

3.9 Selecting Related Language(s) for given
Target Language

To select the related language(s) and target lan-
guage pairs for training, we utilised the precom-
puted feature distance present in the Lang2Vec
library(Littell et al., 2017). This distance is the
cosine distance between the vectors obtained by
combining the Geographical, Phonological, Syn-
tactic, Inventory and Genetic features present in
the Lang2Vec database. We assume that this dis-
tance accurately represents a metric to measure the
similarity between language pairs.
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4 Experimental Results

We performed our experiments on the data pro-
vided in the SIGMORPHON 2020 shared task. The
dataset consists of 90 languages. The data for each
language consisted of triplets in the {input, out-
put, tags} format, where the ‘output’” was the out-
put word generated after applying the morphologi-
cal tags as specified by ‘tags’ on the ‘input’ word.
The languages we split into two halves.The first
half consisted of 45 languages development lan-
guages and the latter half consisted of 45 surprise
languages.

We made submissions on all 90 languages for
two different settings, unconstrained and con-
strained. For the unconstrained setting we trained
our model in a cross-lingual manner. To comple-
ment the languages with a low number of training
examples we included genetically close languages
to augment the training process as explained above.
For the constrained setting we restricted our train-
ing to only a single language.

As explained above we implemented various
models such as (LSTM), (TELD), (TETD) and
(TJ) augmented with techniques such as (HALL),
(ADV-LANG), (SPARSE), (LVI). Since (HALL)
has proven to perform better than the original
setting we augment all languages with less then
10,000 training samples to a complete 10,000 train-
ing instances and thus all models and techniques
presented below are built on top of hallucinated
data. We present the results on a small subset of

languages (due to the space constraints) on the
development set (since we have results on all the
models we trained on the development set) for the
unconstrained and constrained settings in table 2
and table 3 respectively.

We did not experiment with hyperparameters
and had a constant set of hyperparameters for all
languages. We trained our models with the follow-
ing hyperparameters 1. A further fine-tuning per
language basis might have provided us with a more
competitive score. But since one of the primary
goals of our study was to understand the influence
of the various components on our system we did
not pursue this avenue in great detail.

We made a total of 5 submissions to the shared
task: 3 in the unconstrained settings and 2 in the
constrained setting. The submissions made to the
unconstrained section are the top 3 ranked results
we obtained on the development set and top 2 re-
sults for the constrained section.

Hyperparameter Value
Optimizer Adam
Initial Learning Rate | 0.001
State Size 1024
Embedding Size 256
Number of Heads 4
Dropout 0.3
Batch Size 32

Table 1: Hyperparameters used for training the 4 mod-
els

5 Analysis

Our approach of generating morphological in-
flections, encapsulates several models namely:
LSTM Encoder Decoders, Transformer Encoder
LSTM Decoder(TELD), Transformer Encoder and
Transformer Decoder(TETD) and Joint Transform-
ers(TJ). To supplement these models, we have
utilised additional strategies namely Adversarial
Language Networks, Language Vector Injection
and Sparse Max and Sparse Loss.

5.1 Analysis of Models Used

In our experiments, we saw that the Transformer
based models, usually outperformed LSTM based
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Related Language(s)

Target Language (ISO 639-3) Model | L1+4L2 | ADV-LANG | SPARSE | LVI
LSTM | 0.81 0.83 0.81 0.83
Zulu gaa,lug,aka TELD | 0.83 0.84 0.83 0.86
TETD | 0.81 0.84 0.83 0.83
Chichicapan LSTM | 0.84 0.83 0.87 0.84
Zapotec azg,cly TELD | 0.87 0.88 0.88 0.88
TETD | 0.85 0.86 0.85 0.88

Yoloxéchitl LSTM | 0.86 0.89 0.87 0.88
Mixtec gmh,ang TELD | 0.84 0.84 0.84 0.83
TETD | 0.81 0.79 0.81 0.79

LSTM 1.0 1.0 1.0 1.0

Sotho nya,dan TELD | 0.98 1.0 0.96 1.0
TETD | 0.94 0.96 0.90 0.96

LSTM | 0.90 0.90 0.90 0.89
Luganda lin,zul,ceb TELD | 0.91 0.90 0.91 0.90
TETD | 0.82 0.83 0.82 0.82

LSTM | 0091 0.91 0.92 0.91
Livonian gmh,ang,kon,swa TELD | 0.92 0.92 0.94 0.92
TETD | 0.67 0.71 0.71 0.70
Classical LSTM | 0.94 0.92 0.83 0.94
Syriac ang TELD | 0.92 0.91 0.93 0.94
TETD | 0.93 0.92 0.94 0.93
LSTM | 0.79 0.78 0.83 0.80
Kannada nob TELD | 0.79 0.79 0.79 0.80
TETD | 0.77 0.75 0.79 0.57

Swiss LSTM | 0.87 0.86 0.87 0.87
German mlg,dan TELD | 0.85 0.88 0.86 0.85
TETD | 0.78 0.77 0.76 0.78

Table 2: Accuracy obtained on 6 languages from the SIGMORPHON 2020 dataset in the unconstrained setting,
where the languages were trained in conjunction with related language(s). Related language(s) have been presented

in their ISO 639-3 code format.

models in general for most language pairs. Specif-
ically, the Transformer encoder and LSTM de-
coder model showed the most optimal performance
across all the language pairs. The ability of Trans-
former based models to capture long-distance de-
pendencies, makes them more adept at generating
inflections for words that were longer in length.
This ensures that these models have a higher accu-
racy at the morphological inflection task as com-
pared to standard LSTM based models. We can
also observe that the joint transformer method was
the least optimal method for most language pairs.
We assume this is primarily because this method
encodes both the input lemma and tags together.
By encoding the lemma and tags together, we can-
not utilise the information present in the tags to
determine the next character to be generated during
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the decoding process.

5.2 Utility of Adversarial Language Network

As mentioned in (Anastasopoulos and Neubig,
2019), in a multi-lingual setting it is essential to
ensure that the output of the encoder should be
independent of the input language. This is vital
in the task of morphological inflection generation
for low resource languages. The primary reason
behind this, is that while training inflection gener-
ation systems, low resource languages are trained
with related language(s) that has a similar structure,
due to paucity of training data.

In the context of our experiments, the adversarial
language network was applied with each model that
we trained, to ensure that the output of the encoder
was language invariant. For the SIGMORPHON
2020 dataset, the use of adversarial language net-



Language | Model | SPARSE + LVI
LSTM 0.81
Zulu TELD 0.86
TETD 0.83
. LSTM 0.85
ggﬁlgfn TELD 0.88
TETD 0.87
. ... LSTM 0.87
;ﬁi"t’;‘gcmﬂ TELD 0.84
TETD 0.79
LSTM 1.0
Sotho TELD 1.0
TETD 0.94
LSTM 0.91
Luganda | TELD 0.90
TETD 0.80
LSTM 0.91
Livonian | TELD 091
TETD 0.82
Classical LSTM 0.94
Syriac TELD 0.93
TETD 0.93
LSTM 0.80
Kannada | TELD 0.80
TETD 0.80
Swiss LSTM 0.90
German TELD 0.89
TETD 0.80

Table 3: Accuracy obtained on 6 languages from the
SIGMORPHON 2020 dataset in the constrained set-
ting, where the languages were trained without using
any related language(s).

work was found to be beneficial for most of the
language pairs that we tested. However for some
of our models, performance remained unchanged
after the introduction of the adversarial language
network. We believe that the reason for this static
performance lies in the fact that the related lan-
guage(s) and target language we chose during train-
ing already possessed high structural similarity. We
hypothesize that this particular method would be
highly useful in cases where the related language(s)
and the target language pair differ widely in their
structure.

5.3 Use of SparseMax and Sparse Loss

In the SIGMORPHON 2020 challenge, this tech-
nique was useful for the Chichicapan Zapotec,Zulu
and Livonian languages. We hypothesize that this
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improvement in performance due to the addition of
SparseMax is primarily because of the large vocab-
ularies of these language pairs. For all the other lan-
guages that we tested, we noticed that we achieved
a similar level of performance after the incorpo-
ration of SparseMax. The addition of SparseMax
and Sparse loss aided the LSTM encoder-decoder
models to a greater extent as compared to the Trans-
former based models that we proposed.

5.4 Utility of Language Vector Injection

We seek to use language vectors to improve perfor-
mance for low resource languages where we find a
paucity of data. These vectors contain embedded
information about the language that we hope will
be useful while generating inflectional forms of in-
put lemmas. For the SIGMORPHON 2020 dataset,
the use of language vectors helped us improve per-
formance in almost all the language pairs that we
tested. We believe the structural information em-
bedded in the language vectors helped our model
efficiently generate morphological inflections.

6 Future Work

Due to the time constraints we were not
able to search through all combinations of
the techniques that were mentioned such as
LVI+SPARSE+LANG-ADV+NO-HALL and var-
ious others. Moreover, further fine-tuning the
model hyperparameters for each language could
have yielded better results.

Additionally multiple approaches to language
vector injection can be explored. The vectors can
be fed to the model at every-time step of the en-
coder by concatenating the input with the vectors or
the decoder by concatenating the language vector
to the context vector. This form of early injection
of the vectors may help the system perform bet-
ter. Another approach can be feeding the language
vector to the system in place of the <sos> token.

The limited availability of supervised data for
low resource languages makes it difficult to train
the various data hungry Neural Network models.
It has been shown that incorporation of unlabelled
data can help improve the performance of such
models and thus we propose to integrate a semi-
supervised approach by learning Language Models
over these low resource languages.These language
models inherently contain information about the ap-
propriate character sequences in a given language
and thus provide valuable information for predict-



ing the next character in the decoding process. We
propose to combine the probability generated by
the language model with the with probability gen-
erated by the inflection model and learn the interpo-
lation weights during training similar to the experi-
mental setup of that of (Faruqui et al., 2016).The
language model can be constructed using a basic
recurrent model or even complex models such as
BERT. (Devlin et al., 2018).

7 Conclusion

This paper presents a detailed description of the
models that we implemented to undertake the
“Typologically Diverse Morphological Inflection”
shared task. We describe our encoder-decoder
based approach using both LSTMs and Transform-
ers. We also describe the different supporting
techniques that we implemented, such as halluci-
nation, language vector injection, adversarial lan-
guage traning and sparsemax. We present a brief
subset of the results for the SIGMORPHON 2020
dataset. We also delve deeper and try to present
a detailed analysis of the different components of
our model and their influence on the performance.
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