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Abstract

In this paper, we describe two CU Boulder
submissions to SIGMORPHON 2020 Task 1
on multilingual grapheme-to-phoneme conver-
sion (G2P). Inspired by the high performance
of a standard transformer model (Vaswani
et al., 2017) on the task, we improve over this
approach by adding two modifications: (i) In-
stead of training exclusively on G2P, we addi-
tionally create examples for the opposite direc-
tion, phoneme-to-grapheme conversion (P2G).
We then perform multi-task training on both
tasks. (ii) We produce ensembles of our
models via majority voting. Our approaches,
though being conceptually simple, result in
systems that place 6th and 8th amongst 23
submitted systems, and obtain the best results
out of all systems on Lithuanian and Modern
Greek, respectively.

1 Introduction

This paper describes the CU Boulder submissions
to the SIGMORPHON 2020 shared task on mul-
tilingual grapheme-to-phoneme conversion (G2P).
G2P is an important task, due to its applications
in text-to-speech and automatic speech recognition
systems. It is explained by Jurafsky and Martin
(2009) as:

The process of converting a sequence
of letters into a sequence of phones is
called grapheme-to-phoneme conversion,
sometimes shortened g2p. The job of a
grapheme-to-phoneme algorithm is thus
to convert a letter string like cake into a
phone string like [K EY K].

While the earliest G2P algorithms have used
handwritten parser-based rules in the format of
Chomsky-Halle rewrite rules, often called letter-to-
sound, or LTS, rules (Chomsky and Halle, 1968),

later techniques have moved on to generating semi-
automatic alignment tables such as in Pagel et al.
(1998). Today, a lot of work aims at using machine
learning – in particular deep learning techniques –
to solve sequence-to-sequence problems like this.

We explore using a transformer model (Vaswani
et al., 2017) for this problem, since it has shown
great promise in several areas of natural language
processing (NLP), outperforming the previous state
of the art on a large variety of tasks, including ma-
chine translation (Vaswani et al., 2017), summariza-
tion (Raffel et al., 2019), question-answering (Raf-
fel et al., 2019), and sentiment-analysis (Munikar
et al., 2019). While previous work has used trans-
formers for G2P, experiments have only been per-
formed on English, specifically on the CMUDict
(Weide, 2005) and NetTalk1 datasets (Yolchuyeva
et al., 2020; Sun et al., 2019). Our approach
builds upon the standard architecture by adding
two straightforward modifications: multi-task train-
ing (Caruana, 1997) and ensembling. We find
that these simple additions lead to performance
improvements over the standard model, and our
models place 6th and 8th among 23 submissions to
the SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. Our two
models further perform the best on the languages
Lithuanian and Modern Greek, respectively.

2 Task and Background

2.1 Grapheme-to-Phoneme Conversion

G2P can be cast as a sequence-to-sequence
task, where the input sequence is a sequence of
graphemes, i.e., the spelling of a word, and the
output sequence is a sequence of IPA-like symbols,
representing the pronunciation of the same word.

1https://archive.ics.uci.edu/ml/
datasets/Connectionist+Bench+(Nettalk+
Corpus)

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)
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Formally, let ΣG be an alphabet of graphemes
and ΣP be an alphabet of phonemes. For a word w
in a language, G2P then refers to the mapping

g(w) 7→ p(w), (1)

with g(w) ∈ Σ∗G and p(w) ∈ Σ∗P being the
grapheme and phoneme representations of w, re-
spectively.

2.2 Related Work

Many different approaches to G2P exist in the
literature, including rule-based systems (Black
et al., 1998), LSTMs (Rao et al., 2015), joint-
sequence models (Galescu and Allen, 2002), and
encoder-decoder architectures, based on convolu-
tional neural networks (Yolchuyeva et al., 2019),
LSTMs (Yao and Zweig, 2015), or transformers
(Yolchuyeva et al., 2020; Sun et al., 2019). In this
paper, we improve over previous work by explor-
ing two straightforward extensions of a standard
transformer (Vaswani et al., 2017) model for the
task: multi-task training (Caruana, 1997) and en-
sembling. Multi-task training has been explored
previously for G2P (Milde et al., 2017), with the
tasks being training on different languages and al-
phabet sets. Sun et al. (2019) successfully used
token-level ensemble distillation for G2P to boost
accuracy and reduce model-size, ensembling mod-
els based on multiple different architectures.

3 Proposed Approach

We submit two different systems to the shared task,
which are based on the transformer architecture,
multi-task learning, and ensembling. We describe
all components individually in this section.

3.1 Model

Our model architecture is shown in Figure 1; the
vanilla transformer proposed by Vaswani et al.
(2017). In short, the transformer is an auto-
regressive encoder-decoder architecture, which
uses stacked self-attention and fully-connected lay-
ers for both the encoder and decoder. The decoder
is connected to the encoder via multi-head attention
over the encoder outputs. Details can be found in
the original paper.

3.2 Multi-task Training

We propose to train our model jointly on two tasks:
(i) G2P and (ii) phoneme-to-grapheme conversion

Figure 1: The transformer model architecture.

Hyperparameter Value

Batch Size 128
Embedding Dimension 256
Hidden Dimension 1024
Dropout 0.3
Number of Encoder Layers 4
Number of Decoder Layers 4
Number of Attention Heads 4
Learning Rate 1e-3
β1 0.9
β2 0.998
Label Smoothing Coefficient 0.1
Max Norm (Gradient clipping) 1

Table 1: The hyperparameters used in our experiments.

(P2G). Using our formalization from before, given
a word w, P2G corresponds to the mapping

p(w) 7→ g(w). (2)

We denote the set of our original G2P training ex-
amples as Dg2p and our P2G examples, which we
obtain by inverting all examples in Dg2p, as Dp2g.
We then aim to obtain model parameters θ that
maximize the joint log-likelihood of both datasets:

L(θ) =
∑

(w∈Dg2p)

log pθ(p[w] | g[w], λg) + (3)

∑
(w∈Dp2g)

log pθ(g[w] | p[w], λp)
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Grapheme Phoneme Phoneme Grapheme

! a a n d a c h t a: n d ! x t ? a: n d ! x t a a n d a c h t
! b a s s o n b ! s O n ? b ! s O n b a s s o n
! b e g i n t b @ G I n t ? b @ G I n t b e g i n t
! g i e r s t x i: r s t ? x i: r s t g i e r s t
! h e u p H ø: p ? H ø: p h e u p

Table 2: G2P (left) and P2G (right).

λg, λp /∈ ΣG ∪ ΣP are special symbols which
we prepend to each input. These so-called task-
embeddings indicate to our model which task each
individual input belongs to. Examples for both
tasks are shown in Table 2.

Intuition. By training our model jointly on G2P
and P2G, we expect it to learn properties that both
tasks have in common. First, both tasks require
learning of a monotonic left-to-right mapping. Sec-
ond, for some languages, ΣG ∩ ΣP 6= ∅, cf. Table
2 for Dutch as an example. Symbols in ΣG ∩ ΣP

are commonly mapped onto each other in both di-
rections, such that we expect the model to learn
this from both tasks.

3.3 Ensembling
Our second straightforward modification of the
standard transformer model is that we create en-
sembles via majority voting. In particular, each
of our two submitted systems is an ensemble of
multiple different models for each language, which
we generate using different random seeds. We then
create predictions with all models participating in
each ensemble, and choose the solution that occurs
most frequently, with ties being broken randomly.

Our first submitted model – CU-1 – is an ensem-
ble of 5 standard G2P transformers and 5 multi-task
transformers. Our second system – CU-2 – is an
ensemble of 5 multi-task transformers.

4 Experiments

4.1 Data
The datasets provided for the shared task spans 15
individual languages, with each training set consist-
ing of 3600 pairs of graphemes and their associated
phonemes. The datasets include an initial set of
core languages – Armenian (arm), Bulgarian (bul),
French (fre), Georgian (geo), Modern Greek (gre),
Hindi (hin), Hungarian (hun), Icelandic (ice), Ko-
rean (kor), and Lithaunian (lit) –, and a set of sur-
prise languages, which have been released shortly
before the shared task deadline – Adyghe (ady),
Dutch (dut), Japanese (hiragana) (jap), Romanian

CU-1 CU-2 CU-TB

WER PER WER PER WER PER

arm 13.56 2.75 14.22 2.94 16.10 3.37
bul 29.11 6.98 30.22 7.41 32.06 7.32
fre 8.00 2.00 8.00 1.84 10.29 2.65
geo 25.33 4.98 24.67 4.83 26.03 5.20
gre 17.56 3.05 17.78 3.14 17.92 3.40
hin 6.22 1.58 6.89 1.78 8.78 2.28
hun 2.89 0.66 3.11 0.60 4.52 1.03
ice 9.78 2.13 9.11 2.13 12.20 2.83
kor 23.11 6.83 24.22 6.61 26.61 7.43
lit 21.56 4.11 22.44 4.18 22.88 4.41
ady 22.89 5.68 23.11 5.68 24.66 6.33
dut 14.67 2.84 14.44 2.63 16.80 3.46
jap 6.67 2.14 6.67 2.18 7.23 2.42
rum 12.22 3.15 12.00 3.09 13.04 3.37
vie 2.89 1.07 2.89 0.99 4.70 1.60

avg. 14.43 3.33 14.65 3.34 16.25 3.80

Table 3: Development results in WER and PER; CU-
1=standard and multi-task transformer ensemble, CU-
2=multi-task transformer ensemble, CU-TB=standard
transformer ensemble.

(rum), and Vietnamese (vie). The data is primar-
ily extracted from Wiktionary using the wikipron
library (Lee et al., 2020).

4.2 Hyperparameters
Following the official shared task baseline, we em-
ploy the hyperparameters shown in Table 1. All
models are trained for 150 epochs. Starting from
epoch 100, we evaluate every 5 epochs for early
stopping. Encoder and decoder embeddings are
tied, and the maximum sequence length is 24. Our
system is built on the transformer implementation
by Wu et al. (2020), and our final code is available
on github.2

4.3 Metrics
Word error rate (WER). Word error rate is the
percentage of words for which the model’s predic-
tion does not exactly match the gold transcription.
Phoneme error rate (PER). Phoneme error rate is
the percentage of wrong characters in the model’s
prediction as compared to the gold standard.

Both metrics are calculated using the official
evaluation script3 provided for the shared task.

4.4 Development Results
The results on the development sets are shown in
Table 3. CU-TB represents a transformer baseline

2https://github.com/NikhilPr95/
neural-transducer

3https://github.com/sigmorphon/2020/
blob/master/task1/evaluation/evaluate.py

https://github.com/NikhilPr95/neural-transducer
https://github.com/NikhilPr95/neural-transducer
https://github.com/sigmorphon/2020/blob/master/task1/evaluation/evaluate.py
https://github.com/sigmorphon/2020/blob/master/task1/evaluation/evaluate.py


126

CU-1 CU-2 SIG-TB SIG-LSTM

WER PER WER PER WER PER WER PER

arm 12.89 2.91 13.56 3.04 14.22 3.29 14.67 3.49
bul 26.89 5.65 29.78 6.30 34.00 7.89 31.11 5.94
fre 5.78 1.48 5.56 1.28 6.89 1.72 6.22 1.32
geo 25.78 4.83 27.11 5.08 28.00 5.43 26.44 5.14
gre 15.11 2.51 14.44 2.42 18.89 3.06 18.89 3.30
hin 6.67 1.58 6.44 1.55 9.56 2.40 6.67 1.47
hun 4.89 1.12 5.11 1.15 5.33 1.28 5.33 1.18
ice 9.56 2.11 9.78 2.14 10.22 2.21 10.00 2.36
kor 30.67 9.22 31.56 8.79 43.78 17.5 46.89 16.78
lit 18.67 3.53 20.00 3.93 20.67 3.65 19.11 3.55
ady 26.00 5.87 26.22 6.31 28.44 6.49 28.00 6.53
dut 16.00 2.92 15.78 2.86 15.78 2.89 16.44 2.94
jap 5.78 1.44 6.00 1.47 7.33 1.86 7.56 1.79
rum 10.44 2.35 10.89 2.41 12.00 2.62 10.67 2.53
vie 2.67 1.12 2.22 0.91 7.56 2.27 4.67 1.52

avg. 14.52 3.24 14.96 3.31 17.51 4.30 16.84 3.99

Table 4: Official Test results in WER and PER;
CU-1=standard and multi-task transformer en-
semble, CU-2=multi-task transformer ensemble,
SIG-TB=SIGMORPHON transformer baseline,
SIG-LSTM=SIGMORPHON LSTM baseline.

trained by us (an average of 5 models), while CU-1
and CU-2 are our submitted systems, which are de-
scribed in Section 3.3. CU-1 performs best with an
average performance of 14.43 WER and 3.33 PER,
followed by CU-2 with 14.65 WER and 3.34 PER,
respectively. Both CU-1 and CU-2 improve over
the baseline for each of the 15 languages, with an
average improvement of 1.82 WER and 1.6 WER,
respectively. Both systems show an average im-
provement of 0.47 PER over the baseline, perform-
ing better on all languages, with the sole exception
of Bulgarian, where the baseline slightly outper-
forms CU-2.

4.5 Official Shared Task Results

The results on the test set in Table 4 mirror our de-
velopment set results. Our systems CU-1 and CU-2
are compared with the two best official baselines:
a transformer (SIG-TB) and an LSTM sequence-to-
sequence model (SIG-LSTM). CU-1 gives the best
performance, with an average of 14.52 WER and
3.24 PER, followed by CU-2, with 14.96 WER and
3.31 PER. CU-1 shows an average improvement of
2.99 WER and 2.32 WER as well as 1.06 PER and
0.75 PER over SIG-TB and SIG-LSTM, respec-
tively. CU-2 shows an average of 2.55 WER and
0.99 PER and, respectively, 1.88 WER and 0.68
PER improvement. Compared to all system sub-
missions (Gorman et al.) CU-1 performs best on
Lithuanian, with 18.67 WER and 3.53 PER. CU-2

T T-E MT MT-E

arm 16.10 15.11 14.89 14.22
bul 32.06 28.22 31.82 30.22
fre 10.29 8.22 8.80 8.00
geo 26.03 25.78 25.29 24.67
gre 17.92 17.78 17.60 17.78
hin 8.78 6.67 7.20 6.89
hun 4.52 3.11 3.64 3.11
ice 12.20 10.00 10.53 9.11
kor 26.61 23.33 25.92 24.22
lit 22.88 21.56 23.02 22.44
ady 24.66 22.67 24.22 23.11
dut 16.80 15.33 15.11 14.44
jap 7.23 6.67 6.84 6.67
rum 13.04 12.89 12.31 12.00
vie 4.70 4.00 3.38 2.89

avg. 16.25 14.76 15.37 14.65

Table 5: Results of our ablation study in WER;
T=standard transformer, T-E=standard transformer en-
semble, MT=multi-task transformer, MT-E=multi-task
transformer ensemble.

performs best on Modern Greek, with 14.44 WER
and 2.42 PER.

4.6 Ablation Study
We further perform an ablation study to explicitly
investigate the impact of our two modifications –
multi-task training and ensembling – with results
shown in Table 5. T and MT are the standard and
multi-task transformer, while T-E and MT-E are
the ensembled versions of the same. The ensem-
bles obtain better results: T-E shows an average
improvement of 1.50 WER over T, and MT-E out-
performs MT by 0.72 WER. Multi-task training
also leads to performance gains, with MT improv-
ing over T by 0.88 WER and MT-E over T-E by
0.11 WER, showing that the effect of multi-task
training is not as strong as that of ensembling. We
conclude that both multi-task training and ensem-
bling boost performance overall.

5 Conclusion

We described two CU Boulder submissions to SIG-
MORPHON 2020 Task 1. Our systems consisted
of transformer models, some of which were trained
in a multi-task fashion on G2P and P2G. We further
created ensembles consisting of multiple individual
models via majority voting.

Our internal experiments and the official results
showed that these two straightforward extensions
of the transformer model enabled our systems to
improve over the official shared task baselines and
a standard transformer model for G2P. Our final
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models, CU-1 and CU-2, placed 6th and 8th out
of 23 submissions, and obtained the best results
of all systems for Lithuanian and Modern Greek,
respectively.
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